AT&T: Latency sensitive, next-gen apps need Edge Computing & We’re All In!

AT&T strongly advocates the use of edge computing (EC) as a way to reinvent the telco network and cloud so as to make new services like augmented reality, virtual reality, and low latency “5G” applications practicable.

The company’s CTO wrote in a blog post that it is adding intelligence to its cell towers, central offices, and small cells that are at the “edge” of the cloud by outfitting them with high-end graphics processing chips and other general purpose computers. By doing so, it will reduce the distance that data has to travel to get processed, thereby reducing latency and boosting overall network performance.

“Edge computing fulfills the promise of the cloud to transcend the physical constraints of our mobile devices,” said Andre Fuetsch, president of AT&T Labs and CTO in a statement. “The capabilities of tomorrow’s “5G” are the missing link that will make edge computing possible.”  That’s because many “5G” applications require low latency, especially for real time control of machinery and Internet connected devices (IoT).

AT&T said it will begin deploying edge computing out over the next few years starting with urban areas and expanding those over time. The company also said that MEC is an important element to the company’s network virtualization program. The company’s goal is to have 55 percent of its network virtualized by year-end with a longer term goal of having 75 percent of its network virtualized by 2020.

Part of AT&T’s network virtualization effort is the deployment of a centralized RAN (C-RAN) architecture, which will be virtualized to help speed the evolution to “5G” services. More on that from Gordon Mansfield, AT&T’s VP of RAN and Device Design here.

The above referenced AT&T blog post identified the challenge and solution for next-gen applications:

Here’s the challenge: Next-gen applications like autonomous cars and augmented reality/virtual reality (AR/VR) will demand massive amounts of near-real time computation.

For example, according to some third-party estimates, self-driving cars will generate as much as 3.6 terabytes of data per hour from the clusters of cameras and other sensors. Some functions like braking, turning and acceleration will likely always be managed by the computer systems in the cars themselves.

But what if we could offload some of the secondary systems to the cloud? These include things like updating and accessing detailed maps these cars will use to navigate.

Or consider AR/VR. The industry is moving to a model where those applications will come through your smartphone. But creating entirely virtual worlds or overlaying digital images and graphics on top of the real world in a convincing way also requires a lot of processing power. Even when phones can deliver that horsepower, the tradeoff is extremely short battery life.

Edge computing addresses those obstacles by moving the computation into the cloud in a way that feels seamless. It’s like having a wireless supercomputer follow you wherever you go.

………………………………………………………………………………………………………………………

AT&T said that it’s already deploying EC-capable services to enterprise customers today through AT&T FlexWareSM service. Customers can currently manage powerful network services through a standard tablet device. We expect to see more applications for EC in areas like public safety that will be enabled by the FirstNet wireless broadband network.

The company claims to be committed to deploying mobile 5G as soon as possible and are committed to edge computing. As AT&T rolls out EC over the next few years, dense urban areas will be their first targets, and they’ll expand from those over time.

In conclusion, AT&T stated “we’re all in- now (for edge computing)” as per these strong closing remarks:

AT&T Labs and AT&T Foundry innovation centers are at the heart of designing and testing edge computing. In February, the AT&T Foundry in Palo Alto, CA, released a white paper on the computing and networking challenges around AR/VR. We’ll put out a second white paper in the coming weeks. It will discuss how we can apply edge computing to enable mobile augmented and virtual reality technology in the ecosystem.

There’s no time to lose. We think edge computing will drive a wave of innovation unlike anything seen since the dawn of the internet itself. Stay tuned.

…………………………………………………………………………………………………………………………..

Other network operators have been touting multi-access edge computing (MEC) in conjunction with “5G” networks. Late last year, 5G Americas, a trade group representing several operators in North and South America (including AT&T), released a white paper about the growing interest in MEC and said that standards bodies like the 3GPP and ETSI are considering including MEC in the 5G standards development.

ETSI has formed the Multi-access Edge Computing Industry Specification Group (MEC ISG).  Earlier this month, ETSI released its first package of standardized application programming interfaces (APIs) that will support MEC interoperability.

……………………………………………………………………….

References:

http://about.att.com/story/reinventing_the_cloud_through_edge_computing.html

https://www.sdxcentral.com/articles/news/att-touts-mec-tool-reduce-latency-boost-performance/2017/07/

https://www.wirelessweek.com/news/2017/07/t-turns-edge-computing-vr-other-5g-use-cases

 

 

One thought on “AT&T: Latency sensitive, next-gen apps need Edge Computing & We’re All In!

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*

 
 

Time limit is exhausted. Please reload CAPTCHA.

Recent Posts