Verizon and AT&T want to virtualize the 5G Network Core and use Mobile Edge Computing

Verizon:

As we reported earlier this week, Verizon announced the first deployment of it’s mobile 5G network with Chicago and Minneapolis going live on April 11. The nation’s largest mobile network operator says the service will be available in “select areas” in those markets, and it plans to bring an additional 30 markets online later this year.

Verizon engineers have been preparing for 5G by migrating network core and edge processing functions from the physical world to the virtual world for about three years now, said Adam Koeppe, SVP of network planning at Verizon.  “Today, in the (proprietary) 5G network that we’ve already launched in our four 5G Home markets (FWA), those software functions that are used for the core of the 5G network are 100 percent virtual. Unlike LTE where you had to start physical and move to virtual, they’re native 5G network functions, those all start as virtual,” said Koeppe.

Similar to other carriers’ 5G roadmaps, Verizon’s initial pre-standard 5G deployments are based on 3GPP Release 15 NR NSA (non-standalone) architecture.  It’s using parts of the 4G network core (EPC) and signaling with a 5G radio access network for the data plane.   “All those functions in that path for 5G are virtual regardless of whether they’re 4G core that you’re using to support 5G or native to 5G functions,” Koeppe said.

“We’re trying to get the processing capabilities required on a network session as close to the consumer as possible, and the reason for that is one of the promises and realities of 5G is that you have the ability to have much lower network latency,” he said. Multi-access edge compute equipment (MEC) and network slicing are key components of that effort. “You have to make fundamental architectural changes to how your core works if you want to provide very low-latency services.”

Verizon currently manages different network use cases manually, by identifying the class of service for each device running on its wireless network. Network slicing and virtualization would change that significantly, and software plays a critical role, Koeppe said. “All the network functions that are providing that service need to be virtualized, because I can’t autonomously spin up physical capacity. That has to be done by a person. But if it’s virtual capacity I can spin that up from a machine through orchestration and machine learning.”

When you have 15 to 20 different use cases, “you have a very sophisticated network that is all virtualized and all programmable. Some of that you physically just can’t do with LTE today. Much of those 5G use cases will rely on that type of programmability of your network and you can’t do that without having a virtualized network function,” Koeppe added.

Verizon wants to put the capabilities of its 5G network and the MEC network into the hands of innovators who can drive use cases beyond what’s possible with 4G today, according to Koeppe. “These are radically different network capabilities, a lot goes in to ensuring that the hardware and the software works well together. And that’s the phase we’re in right now with our deployment.”

…………………………………………………………………………………………………………………………………………………………………………………………………………………………..

ITU-T Standards status of network softwarization:

Question 21 of ITU-T SG13 is studying network softwarization including: network slicing, SDN, and orchestration which are highly expected to contribute to IMT-2020.  Question 21 met during the SG13 meeting, from 4 to 14 March 2019 at Victoria Falls, Zimbabwe under the chairmanship of co-Rapporteur Ms.Yushuang Hu (China Mobile, China) and Mr. Kazunori TANIKAWA (NEC, Japan).

On March 14, 2019, ITU-T SG13 has consented to two new Recommendations:

  1. ITU-T Y.IMT2020-ML-Arch “Architectural framework for machine learning in future networks including IMT-2020” (Ref. SG13-TD355/WP1)
  2. ITU-T Y.3115 (formerly Y.NetSoft-SSSDN). It describes SDN control interfaces for network slicing, which especially focuses on the control of front haul networks such as PON.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………..

AT&T:

AT&T is on a similar path with virtualized network functions and MEF.  According to Light Reading, AT&T has virtualized 65% of its core network during the past five years, and is on track to meet its goal of virtualizing 75% of its network functions by the end of 2020.

“We see the cloud fragmenting again and certain workloads being pushed out to the edge — at customer [premises] and in the network — with more heavy-duty storage, and the back end being in the centralized cloud,” Roman Pacewicz, AT&T Business’s chief product officer, told Light Reading during an interview conducted at MWC 2019 in Barcelona.

Nowhere is [virtualization] more important than in our rollout of 5G,” Pacewicz says. “If we didn’t have a network edge cloud environment that takes the mobile core out to the edge of the network, those deployments would be complicated and longer. The whole strategy of virtualization and cloudification of the network (see IEEE Techblog posts on ITU-T SG13 recommendations related to IMT 2020) becomes more important in upgrading the infrastructure to 5G, because everything is virtualized and software-enabled.”

A new generation of services enabled by 5G will require low latency, and therefore require compute and storage resources close to the edge of the network, Pacewicz says.  That’s where MEC comes in to play a huge role in 5G (as well as real time critical IoT applications).  We previously reported that AT&T has a joint project with Microsoft to deliver Microsoft Azure cloud services from the AT&T network edge. The goal is reduced latency and increased network resiliency.  For applications such as AI, mixed reality and augmented reality, latency needs to be no greater than 20 milliseconds and that requires data to be processed closer to the edge of the network and closer to the end user, Pacewicz says.

A retailer with 8,000–10,000 stores can’t have dedicated compute at every site, but needs low latency to create new types of experience and networks need 2 millisecond latency for safe interactions between robots and human beings, Pacewicz claims.

–>Of course latency includes the mobile access network, mobile packet core, and edge network.  We are a very long way from achieving 20 milliseconds one way latency let alone round trip!

AT&T is teaming with Israeli startup Vorpa on projects to monitor the location of drones around sensitive locations such as aircraft and airports, alert authorities if they’re flying in restricted areas, and identify the location of a drone’s controller. Those types of applications require low latency enabled by mobile edge computing, Pacewicz says.  He concluded the Light Reading interview by highlighting SD-WAN is a key part of making the network more intelligent and flexible to accommodate 5G applications by optimizing traffic routing, particularly as edge devices don’t just consume data, but also generate lots of data.

–>While the SD-WAN market is growing, there are no standard definitions, interfaces or any specs for UNI or NNI interoperability.

AT&T’s CFO John Stephens said that several trends are conspiring to potentially lower AT&T’s CAPEX. He cited the company’s move to network functions virtualization (NFV) and software-defined networking (SDN), which are technologies intended to replacing expensive, proprietary vendor hardware/equipment with less expensive, software-powered equivalents that run on commodity compute servers, white boxes and bare metal switches. Stephens said that more than half of AT&T’s network functions have been virtualized, and that the company remains on track to reach its goal of virtualizing fully 75% of its network functions by 2020.  “All of this leads to an efficiency opportunity on a going forward basis,” he said.

References:

https://www.sdxcentral.com/articles/news/how-verizon-is-using-software-to-power-its-5g-network/2019/03/

https://www.lightreading.com/cloud/atandts-pacewicz-we-see-the-cloud-fragmenting-again/d/d-id/750150

ITU-T SG13 Non Radio Hot Topics and Recommendations related to IMT 2020/5G

 

 

3GPP RAN WG meeting in Taiwan: January 21 – 25, 2019: NTT DOCOMO’s URLLC Use Cases

3GPP RAN WG meeting in Taiwan: January 21 – 25, 2019:

A five-day working group meeting of the 3rd Generation Partnership Project (3GPP) RAN WG opened in Taiwan on Monday January 21, 2019, with 459 registered delegates attending.   The goal of the meeting is to progress 3GPP Release 16 which will include an important IMT 2020 Use Case:  Ultra-Reliable Low-Latency Communications (URLLC).  I counted over a dozen contributions on the URLLC topic at this 3GPP meeting’s document list which can be accessed here.

Services for latency sensitive devices for applications like factory automation, autonomous driving, and remote surgery. These applications require sub-millisecond latency with error rates that are lower than 1 packet loss in 10⁵ packets [ITU-R M.2410.0]. New techniques need to be devised to meet the stringent latency and reliability requirements for URLLC.

 

An interesting 3GPP RAN meeting contribution on Views and evaluations for URLLC scenarios by Kazuaki Takeda of NTT DOCOMO will be presented this week.  In that contribution, NTT DOCOMO selected the following cases for evaluation:

Case Use-case Reliability Latency Data packet size and traffic model Description
1 Factory automation

@ 30GHz

99.9999 (%) 2ms for end-to-end

1ms for air-interface

DL & UL: 32 bytes

Periodic and deterministic traffic model with data arrival interval 2ms

Motion control
2 Factory automation

@ 4GHz

99.9999 (%) 2ms for end-to-end

1ms for air-interface

DL & UL: 32 bytes

Periodic and deterministic traffic model with data arrival interval 2ms

Motion control
3 Rel.15 enabled use-case in indoor hotspot

@ 4GHz

99.9 (%) 7ms for air-interface DL & UL: 4096 bytes

FTP model 3

AR/VR
4 Rel.15 enabled use-case in urban macro

@ 4GHz

99.999 (%) 1ms for air-interface DL & UL: 32 bytes

FTP model 3

Sporadic traffic
5 Power distribution

@ 700MHz

UL/DL SINR CDF only

 

There are high interests on supporting industrial IoT type of services at local area using carrier frequencies of around 4GHz and 30GHz [2]. It would be possible to evaluate NR performance in this type of scenario by simulating case 1, case 2, and case 3. For AR/VR type of services in a specific local area, it is not sure whether all the packets should be delivered as URLLC packets, or some specific type of packets (e.g., control packet) for AR/VR service should only be delivered as URLLC packets (i.e., other types of packets for AR/VR service can be delivered as eMBB). The simple way is to treat all the packets as URLLC packets as the evaluation assumption. Case 3 can be viewed as representing such situation. For emergency type of services in wide area, it can be represented by case 4. As the case 5, we partly evaluate the wide area performance at 700MHz.

…………………………………………………………………………………………………………………………………………………………………..

Taiwan 5G Commercialization Summit

In conjunction with the referenced 3GPP working group meeting, the Taiwan 5G Commercialization Summit organized by Taiwanese entities was also held in Taipei on Monday, January 21st.  The organizers of the Taiwan 5G summit were: MediaTek, Chunghwa Telecom, the Taiwan Association of Information and Communications Standards, and the 5G Office of the Ministry of Economic Affairs (MOEA). Tung Tzu-hsien (童子賢), the head of iPhone assembler Pegatron Corp and a private sector group advising the government’s national innovation/new economy task force, said 5G technology is expected to drive sophisticated applications of the future such as smart medical care and the Internet of Vehicles.  Many of those new applications will require URLLC.

Mr. Tung urged the Taiwan government to update regulations to meet the needs of a fast-changing telecom environment and prevent Taiwan from lagging behind other countries in 5G development.  As long as Taiwan is successful in 5G development, it will create major commercial opportunities for the local Information and Communications Technology (ICT) sector, he added.

Since January 2018, Chunghwa Telecom has teamed up with the MOEA’s 5G Office, and the government-sponsored Institute for Information Industry (III) and Industrial Technology Research Institute in a 5G development alliance.

Recent Posts