IoT for Smart Cities: LoRa with Semtech Silicon as a leading LPWAN

Various wireless LANs and WANs are necessary to linking all the Internet of Things (IoT) devices that will give rise to smart cities.  Some of those wireless networks include: Bluetooth Low Energy, ZigBee, Wi‑Fi and cellular technologies are all established, but low power wide area (LPWA) networking technologies, such as Sigfox, LoRa, LTE-M and NB-IoT are emerging as IoT disruptors.

According to analyst ON World, there could be as many as 2.6 billion connected, wireless IoT devices for smart cities, with LPWA networks suitable for 60% of those connections.

 

 

LPWA networks are increasingly used outdoors in parking, utilities, pollution monitoring and other applications that require wireless communication via always-on nodes in a network.

“Different wireless protocols have different benefits, but where the use case is moving sensor data or small amounts of data, LoRa is designed specifically for that,” says Dave Armour, strategic marketing manager for wireless products at Semtech. The company licenses the proprietary LoRa technology and is a founder member of the LoRa Alliance.

LoRa is based on a transceiver design and uses an unlicensed spectrum, allowing users the option to deploy their own gateways or have their own devices communicate with third party networks, explains Samir Hennaoui, product manager, LPWA at Murata Europe. “Some cities have deployed networks based on LoRa that are free to access and service providers have appeared that rent access to their gateways,” he says.

A spread-spectrum modulation scheme supports data rates from 300bit/s to 50kbit/s to overcome the problem of interference in the shared RF band.

Sigfox, a low-cost, wide area M2M technology developed in 2010 by a French company of the same name, probably has the largest market share for LPWA networks today.  Data rates for this technology are 10bit/s to 1kbit/s.

The main differences between the two are range – Sigfox uses narrowband transmission to achieve up to 50km and LoRa has a range of up to 30km – and that LoRa is bi-directional, whereas Sigfox is not.

“Range depends on a number of things,” concedes Armour. With gateways on top of buildings, the range is more than with a gateway inside the building. “In big open areas we are getting tens of kilometres range typically,” he says, “for sending messages from the sensor back to the gateway in the cloud and also getting updates from the cloud back down to the sensor.

“Most technology allows you to send messages back to the network, but LoRa also enables you to receive messages from the network,” says Armour. This, he adds, is a key characteristic, as LoRa will be deployed in devices that are expected to be in long term use, for example parking sensors or occupancy sensors that can be updated over the air (OTA) rather than needing to be physically removed for updates.

The same OTA functionality can be used for security, which Armour describes as a moving target. A multi‑level AES encryption is the default in the protocol. “Encrypted data is sent from the sensor and goes on to the network encrypted. It is only when its gets to the end-user, who has registered the device, that they can unlock the data and decrypt it,” he explains.

“LoRa is designed specifically for moving sensor data, or small amounts of data,” says Armour. “It can do that over a very long range and at exceptionally low power. The consumption depends on the use case, but some of the sensors can run on coin cell batteries for over 10 years,” he says. “The great thing with sensors is that we can install a large number on a gateway in a building and all the data goes easily back into the cloud where you can start to make use of it,” says Armour.

Sensors can be used to adjust heating and lighting according to the number of tenants in a building, or to adjust the billing in multi-occupancy buildings. LoRa is also used for location services, to track goods, using the two-way communications capability.

“LoRa allows you to locate devices reasonably accurately at low power. If your data starts coming from a location that makes no sense to you, that may be because someone is spoofing, or the device has been stolen or moved,” Armour added.

………………………………………………………………………………………………………………………

LoRa Silicon and IP from Semtech (licensed to other companies, e.g. Microchip):

Semtech, the only supplier of LoRa silicon intellectual property, has announced its next generation of LoRa chipsets, with reduced receiver current and high power option to extend the sensors’ battery life.  The SX1262 (the +22dBm option), the SX1261 (+15dBm) and the SX1268 (+22dBm, China frequency bands) are claimed to extend the battery life of LoRa-based sensors by up to 30%.

The chipsets have a footprint of 4x4mm, which is 45% less than the earlier device and they can be configured to meet application requirements using the LoRaWAN open standard.  Frequency coverage is 150MHz to 960MHz and a spreading factor of SF5 supports dense networks. The chipsets also support FSK modulation, making them compatible with legacy protocols.

https://www.electronicsweekly.com/news/iot-smart-cities-the-long-range-forecast-for-wireless-connectivity-2018-08/

 

 

 

AT&T acquires AlienVault; says its customers demanded NB-IoT

1. AT&T buys AlienVault:

AT&T has announced plans to acquire cybersecurity company AlienVault. Terms of the deal were not disclosed.

Founded in 2007, AlienVault offers a number of tools for detecting and responding to security threats through its Unified Security Management (USM) platform, while its Open Threat Exchange (OTX) platform serves as an online community where security professionals and researchers can share their latest findings and threat data.

2.  AT&T to offer NB-IoT:

AT& already offers cellular LPWAN services (LTE Category 1 and LTE Category M1) for its IoT customers who want to connect devices, assets and equipment to the cloud.  Now, AT&T says NB-IoT opens up new use cases for IoT.  However, the company did not reveal pricing for its NB-IoT data plan(s).

“We already are using LTE-M, and based on a lot of customer feedback we felt that we needed complementary services for other use cases, such as in a fixed asset tracking environment with very low bandwidth uses,” said Shiraz Hasan, VP, IoT solutions at AT&T. “The motivation is cost savings primarily, and the other thing is the ability to utilize the tech a little better because it penetrates even better than LTE-M.”

Shiraz said AT&T has a lot of customers in the security and alarm industries, and that many of these companies are evaluating IoT technology and learning that NB-IoT may serve their needs best. Alarms and locks are often located deep within buildings, so using cellular connectivity to monitor equipment health requires radio transmissions that can penetrate thick walls.

https://www.fiercewireless.com/wireless/at-t-says-customer-demand-prompted-nb-iot-launch

 

AT&T building NB-IoT network in US, Mexico; LPWAN deployments disappoint

AT&T says it will launch a narrowband internet of things network across the US and Mexico in 2019. “Adding NB-IoT to our portfolio will expand our LPWA capabilities, help drive investment in our evolution to 5G, and support our customers as they deploy IoT solutions across the US and Mexico,” said Chris Penrose, AT&T’s president of IoT Solutions.

“Adding NB-IoT to our portfolio will expand our LPWA capabilities, help drive investment in our evolution to 5G, and support our customers as they deploy IoT solutions across the US and Mexico.”

“It really spans every industry out there, connected cars is one of our biggest verticals where we’re adding over a million cars every quarter; we’ve got tons going on in healthcare, agriculture, retail, manufacturing, and asset tracking,” Penrose told ZDNet.

“You name it, we’ve got different solutions out there, and I think we’ve really established ourselves as a true global player; that’s one of the things we also like to say, we can make it happen for you anywhere in the world.”

According to Penrose, AT&T sees smart cities as being a big area, with traction happening in four to five areas: Energy, such as smart lighting; water, including leak detection, smart irrigation, and water quality maintenance; transportation, for instance parking and optimising traffic flow; and smart infrastructure, including roads and bridges.

“We’ve got solutions in all of those different areas, where we’re able to bring to the cities these kind of solutions that they can deploy into their cities to be able to address those particular areas,” he said.

As a result, AT&T created a series of spotlight cities across Dallas, Atlanta, Chicago, Miami, Portland,, Montgomery County, Mexico City, and various college campus environments wherein it allowed the cities themselves to choose what they wanted to solve, and then worked with them to meet those needs.

………………………………………………………………………………………………………………………………………………

Author’s Rebuttal:
We strongly disagree with Global Data (Ms Weldon)’s belief that “5G” will overtake LPWANs.  Most importantly, only about 8 to 12% of IoT applications will need the low latency that 5G will deliver.  The overwhelming majority of IoT applications are low speed, low power, low duty cycle and low cost.  They need solid reliability and strong security much more than (5G) low latency or high bandwidth.
Next is the misconception that “5G is coming sooner than expected.”  That may be true of wireless carrier’s PROPRIETARY deployments, but not IMT 2020 based 5G which will be the only true 5G standard.
It’s curious why so many pundits think anything coming out of 3GPP is a standard when that (honest) organization says their specs have no official status.  3GPP’s first IMT 2020 submission will be a combination of Release 16 (in development) and 15 (completed) at the July 2019 ITU-R WP 5D meeting.
……………………………………………………………………………………………………………………………………………
Reference:

GSMA: NB-IoT and LTE-M deployments gaining market traction; Sequans combo module & NB-IoT silicon

NB-IoT and LTE-M Deployments:

A total of 48 commercial narrowband IoT (NB-IoT) and LTE-category M (LTE-M) have been launched worldwide as of the end of April, according to the GSMA.  Statistics from GSMA show that 13 mobile operators have deployed mobile IoT solutions, including all of China’s big three wireless network operators – China Mobile, China Telecom and China Unicom.

South Korea’s KTLG Uplus, Singapore’s M1, Australia’s Telstra, Sri Lanka’s Dialog Axiata and Mobitel, Taiwan’s Far EasTone and Chunghwa Telecom, Japan’s KDDI, Thailand’s True Corp and Vodafone Group have also adopted the technology.

NB-IoT deployments are currently a lot more common than LTE-M, although some operators including Singtel and Australia’s Telstra have deployed both technologies.  AT&T, Verizon, and Sprint have all announced LTE-M.  T-Mobile has only announced support for NB-IoT.

Note that both NB-IoT and LTE-M operate over licensed spectrum, which is much more reliable than unlicensed spectrum used in Sigfox and LoRa.  Those latter two LPWANs are much more widely deployed then NB-IoT and LTE-M combined.

……………………………………………………………………………………………………………………………

Sequans Combo Module:

During an IoT World panel session on Tuesday May 15th, France chip design house Sequans Communications announced that both Verizon and AT&T would be selling their combined NB-IoT/LTE-M module for $7.50.  Verizon has certified Sequans” Monarch SiP (system-in-package) LTE-M/NB-IoT connectivity solution.  This module integrates Sequans’ Monarch LTE baseband platform with an RF front-end module in the world’s smallest form factor. Monarch SiP was introduced in late February and is now listed on Verizon’s Open Development website as an approved module.  Complete details are available here.

……………………………………………………………………………………………………………..

NB-IoT Silicon:

In a recent blog post, Nick Hunn claimed there are 13 companies (now 17) that have announced NB-IoT chips.

If you count up real NB-IoT deployments, it’s still early days. There are probably fewer than 10 million chips deployed. That’s the figure from Huawei, who is certainly leading the field. How many of those are actually connected and sending data back is questionable – the last year has largely been an exercise in getting things to work and spinning the PR. Nevertheless, Huawei is predicting that by the end of 2018 the number of chip shipments will reach 150 million, which, given the focus on NB-IoT within China, may well happen. The big question is what will happen in the rest of the world. To understand that, it’s interesting to look at the different companies which will be producing silicon.

The thirteen companies I’m aware of (please let me know if you know of any others) are HiSilicon (part of Huawei), Sanechips (a division of ZTE), RDA, Mediatek, Altair (owned by Sony), Sequans, Nordic Semiconductor, Goodix, Riot Micro, Qualcomm and Nesslab, along with ARM and ASTRI/CEVA. ARM and the ASTRI / CEVA partnership are IP vendors, but appear to be at a state where they are already behind some of the offerings, so are worth including, as if anyone plans to ship in volume, they’re an obvious destination. ARM is further differentiating itself by offering a wider-ranging IoT service including device management and aspects of provisioning. I need to apologise for missing GCT, which brings it up to fourteen. And since writing this I’ve been made aware of a further three – Pinecone Electronics (who have Xiaomi as an investor and appear to be building on ASTRI’s IP), Extra Dimensions Technology – a Beijing startup and Eigencomm – a Shanghai startup. That further highlights the China centric concentration and reflects the amount of Government support being put in to make China the leader in IoT. So we have a sweet seventeen, with probably more to come.

………………………………………………………………………………………………………………………….

Mobile IoT for the 5G Future

Image courtesy of GSMA

………………………………………………………………………………………………………………………….

GSMA says the technologies will coexist with other 5G components.  Also, that 3GPP is working to allow LTE-M and NB-IoT to be placed directly in a 5G new radio frequency band, and is investigating options for the 5G core network to support LTE-M and NB-IoT radio access networks.

LoRaWAN gains momentum: NEC LoRaWAN server + New Zealand nationwide network

1.   NEC has launched a new network server that complies with LoRaWAN (MAC and PHY specifications from the LoRa Alliance) to help telecoms carriers accelerate the creation of new IoT services. The new server implements device identification, data rate control and channel allocation for sensor devices complying with LoRaWAN through the LoRaWAN gateway. It also mediates data processing from each sensor device to the application server.  As the LoRaWAN network server features a function for conducting flexible multi-tenant and multi-device control assuming a variety of service provision formats of communication carriers, it is capable of providing LoRaWAN network services to numerous companies and service providers.

LoRaWAN Network Server Connection–Image by NEC Corp.

…………………………………………………………………………..

In addition, its WebAPI capability makes it interoperable with a wide range of service applications using LoRa. This facilitates the utilization of data collected from sensor devices.

“This new server enables new IoT services to be flexibly provided to telecommunications carriers in combination with gateways and end-devices,” said Shigeru Okuya, senior vice president of NEC.

“NEC aims to provide LoRaWAN compliant solutions to companies around the world in the coming years as part of accelerating the creation of new IoT services and improving user convenience,” he added.

“NEC’s network server integrated with Semtech’s LoRa (PHY) Technology will give operators a competitive advantage that will contribute to society,” said Marc Pegulu, General Manager and Vice President of Semtech’s Wireless and Sensing Products Group.

“LoRa Technology offers long-range, low-power capabilities for next-generation IoT applications in vertical markets, including smart cities, smart building, smart agriculture, smart metering, and smart supply chain and logistics.”

The new NEC LoRaWAN servers will start shipping to IoT WAN connectivity providers in December.

http://www.nec.com/en/press/201711/global_20171115_01.html

https://www.telecomasia.net/content/nec-unveils-lorawan-compliant-network-server

2.    New Zealand Nationwide LoRaWAN by Spark

New Zealand’s Spark has contracted French IoT network solutions specialist Kerlink to support a nationwide LoRaWAN rollout in the twin island nation.

Spark, the leading digital services provider in New Zealand, has already deployed the low power wide area (LPWA) network in parts of the country, and has signed on initial customers including farmer co-operatives Farmlands and Ballance Agri-Nutrients.

These companies are using the network to provide farmers with real-time information about their operations through an array of sensors.

“Spark already has created use cases that will demonstrate the LoRaWAN network’s energy-efficient, geolocation connectivity that is well suited for both the wide-open spaces and urban centers of New Zealand,” Kerlink Asia Pacific sales director Arnaud Boulay said.

The vendor is providing IoT stations that support bidirectional data exchange and geolocation capability and operate on the 923-MHz industrial, scientific, and medical (ISM) radio band.

Other early adopters include the National Institute of Water and Atmospheric Research (NIWA), and Spark is targeting customers in key sectors such as health, safety, transportation, asset tracking and smart cities.

Kerlink is a co-founder and board member of the LoRa Alliance, and has this year launched nationwide rollouts in India with Tata Communications and in Argentina.

Spark already has created use cases that will demonstrate the LoRaWAN networks energy-efficient, geolocation connectivity that is well suited for both the wide-open spaces and urban centers of New Zealand.

http://www.4-traders.com/KERLINK-27472140/news/Kerlink-Supports-Sparks-Nationwide-IoT-Network-Rollout-In-New-Zealand-25559327/

https://www.telecomasia.net/content/spark-deploying-nationwide-lorawan-network

Highlights of IDTechEx: IoT Connectivity Sessions and Exhibits: November 15-16, 2017

Introduction:

The Internet of Things (IoT) will connect existing systems and then augment those by connecting more things, thanks to wireless sensor networks and other technologies. Things on the ‘edge’ form mesh networks and can make their own automated decisions.  This article reviews key messages from conference technical sessions on IoT connectivity and describes a new Wireless Mesh Sensor network which is an extension of IEEE 802.15.4.

NOTE:  This post will be updated with illustrations and comments once I can get files converted to jpeg or jpg

 

Sessions Attended:

1. Overcoming Adoption Barriers To Achieve Mass IIoT Deployment, Iotium

Early adopters are realizing the complexities involved in scalable mass deployment of Industrial IoT. These includes deployment complexities, security issues starting from hardware root of trust to OS, network, cloud security and application vulnerabilities, and extensibility. This session will focus on these 3 areas in-depth to help you successfully deploy your own IIoT strategy.

2.  Overcoming The Connectivity Challenge Limiting IoT Innovation, Helium

The hardware and application layers of IoT systems are supported by robust, mature markets, with devices tailored for any use case and pre-built infrastructure platforms from Microsoft, Google and AWS.   But the connectivity layer, without which the entire system is useless, still has numerous challenges. It takes too much knowledge and time to get data from sensors to apps that most staffs don’t have.   The speaker discussed a streamlined, secure approach to connectivity that will make building a wireless IoT network as easy as designing a mobile app, thereby removing the greatest barrier to mass IoT adoption.

3.  Whitelabel The Future: How White Label Platforms Will Streamline The IoT Revolution, Pod Group

As expectations tend towards personalized, data-driven services, responding immediately to market changes is becoming a key differentiator, creating the need for mutual insight on both sides of the market. Whitelabelled platforms are an effective intermediary, allowing unprecedented levels of customer interaction and paving the way for truly end-to-end IoT systems.

Barriers to achieving a sustainable IoT business model:

-Businesses must have flexible resources and structures:
a] lacking tools to implement (new technology/billing)
b] organizational changes (retraining staff/expertise at top level)

-55% of large enterprises are not pursuing IoT (Analysys Mason)

-Digital proficiency lacking in 50% of companies (Price Waterhouse Cooper)

-IoT platforms can introduce users to systems as a whole & streamline management

There are several different types of IoT platforms:

-IoT Application Enablement Platform – in-field application (eg. device) management
-Connectivity Management Platform (CMP) – management of network connections
-Back-end Infrastructure as a Service (IaaS) – hosting space and processing power
-Hardware-specific Platform – only works with one type of hardware

Many platforms tied to specific provider/device:

– ‘Agnostic’ platforms ideal to integrate different types & retain adaptability (eg. connectivity management integrating device mgmt. & billing capabilities).

-CMPs offer a range of services: managing global connections, introducing providers to clients, integration with hardware vendors, etc.

-CMPs focus on centralized network management- not on building new services.

-Application Enablement Platforms focus on device management/insight–billing hierarchy enables new business services with additional layers, e.g. analytics.

What will the IoT landscape look like in the near future?

-Various connectivity technologies competing, platform technology and open-source driving software/service innovation.

-Hybrid platform offers ease of management, solid foundation for building recurring revenue from value-added services – ensures business is scalable and able to roll-out services quickly.

-Capable platform shifts focus from day-to-day management to building new bus. models and recurring rev. streams..

-Whitelabel platforms help to implement new business models throughout business, consolidate management of legacy and future systems, and build recurring revenue from end-to-end value-added services.

Choose right platform for your business – ease-of-use, billing hierarchies, multi-tech integration key to generating recurring revenue.

With a strong platform in place to future-proof devices and manage customer accounts and business, enterprise can be part of full IoT ecosystem, gaining value from every stage.

 

4.  From Disappointing To Delightful: How To build With IoT, Orange IoT Studio

Many engineers, designers and business folks want to work with IoT devices, but don’t know where to begin. Come learn which mistakes to avoid and which best practices to copy as you integrate with IoT or build your own IoT products. This presentation examines the consistent, systematic ways that IoT tends to fail and delight. The talk explained what makes IoT unique, and examined why it’s not at all easy to classify IoT platforms and devices.

5. Many Faces Of LPWAN (emphasizing LoRaWAN), Multi-Tech Systems 

Until recently, most M2M and Internet of Things (IoT) applications have relied on high-speed cellular and wired networks for their wide area connectivity. Today, there are a number of IoT applications that will continue to require higher-bandwidth, however others may be better suited for low-power wide-area  network options that not only compliment traditional cellular networks, but also unlock new market potential by reducing costs and increasing the flexibility of solution deployments.

Low-Power Wide-Area Networks (LPWAN)s are  designed to allow long range communications at low bit rates.  LPWANs are ideally suited to connected objects such as sensors and “things” operating on battery power and communicating at low bit rates, which distinguishes them from the wireless WANs used for IT functions (such as Internet access).

Many LPWAN alternative specifications/standards have emerged – some use licensed spectrum such as ITU-R LTE Cat-M1 and 3GPP NB-IoT, while other alternatives such as LoRaWAN™ are based on as specification from the LoRA Alliance and uses unlicensed industrial, scientific, and medical (ISM) radio band/spectrum.

IoT has many challenges – from choosing the right device, to adding connectivity and then managing those devices and the data they generate. Here are just a few IoT connectivity challenges:

  • Long battery life (5+ yrs) requires low power WAN interface
  • Low cost communications (much lower than cellular data plans)
  • Range and in-building penetration
  • Operation in outdoor and harsh environments
  • Low cost infrastructure
  • Robust communications
  • Permits mobility
  • Scalable to thousands of nodes/devices
  • Low touch management and provisioning – Easy to attach assets
  • Highly fragmented connectivity due to a proliferation of choices

The following charts, presented by Mike Finegan are courtesy of Multi-Tech:

Mike presented several LPWAN use case studies, including:  tank monitoring in Mt. Oso, CA; point of sales terminals, kiosks, vending machines; oil and gas; distributed energy resources; agriculture; and a real time control school traffic sign (T-Mobile using NB-IoT equipment from MultiTech (the first public NB-IoT demo in North America).

Mr. Finegan concluded by emphasizing the importance of security functions needed in an IoT Connectivity Platform.  A “trusted IoT platform” should reduce attack vectors, provide secure and reliable end to end communications, and device to headquarters management services.

6. What Makes a City Smart? Totem Power

The framework necessary to build holistic infrastructure that leverages capabilities essential to realizing the full potential of smart cities – concepts including curbside computing power, advanced energy resiliency and ubiquitous connectivity.

An interesting observation was that fiber trenches being dug to facilitate 5G backhaul for small cells and macro cells could accommodate electrical wiring for power distribution and charging of electronic vehicles within the city limits.

………………………………………………………………………………………………

At it’s booth, Analog Devices/ Linear Technology displayed an exhibit of SmartMesh® – a Wireless Mesh Sensor Network that was based on a now proprietary extension of IEEE 802.15.4 [1]. SmartMesh® wireless sensor networking products are chips and pre-certified PCB modules complete with mesh networking software; enabling sensors to communicate in tough Industrial Internet of Things (IoT) environments.

Note 1. IEEE 802.15.4 is a standard which defines the operation of low-rate wireless personal area networks (LR-WPANs) via PHY and MAC layers.  It focuses on low-cost, low-speed ubiquitous communication between devices.

……………………………………………………………………………………………………….

The Industrial Internet of Things (IoT) wireless sensor networks (WSNs) must support a large number of nodes while meeting stringent communications requirements in rugged industrial environments. Such networks must operate reliably more than ten years without intervention and be scalable to enable business growth and increasing data traffic over the lifetime of the network.

More information on SmartMesh® is here.

……………………………………………………………………………………………….

References:

https://www.idtechex.com/internet-of-things-usa/show/en/

https://www.idtechex.com/internet-of-things-usa/show/en/agenda

http://www.linear.com/dust_networks/

 

2017 Telecom Council’s TC3 Summit: SPIFFY Award Winners + Start-up Success Stories

2017 SPIFFY Awards:

Seven pioneering start-up companies were recognized by the Service Provider Innovation Forum (SPIF) at the 10th Annual SPIFFY Awards held Wednesday evening November 1st at TC3 Summit.

Since 2001, the Telecom Council has worked to identify and recognize companies who represent a broad range of cutting-edge telecom products and services. From there, dozens of young companies are presented each month to the Service Provider Innovation Forum (SPIF), ComTech Forum, IoT Forum, and Investor Forum.

SPIF members, who represent cutting-edge telcos from over 50 countries and who serve over 3B subscribers, selected seven companies from hundreds of presenting communication startup companies and 30 SPIFFY nominees as best-in-class in their respective categories. Each winner, who is set apart for their dedication, technical vision, and interest from the global service provider community, is a company to watch in the telecommunication industry.

The winners below represent the best and brightest in their respective categories:

  • The Graham Bell Award for Best Communication Solutions – Sightcall :  a cloud API that enables any business to add rich communications (e.g. video), accessible with a single touch, in the context of their application.
  • Edison Award for Most Innovative Startup – DataRPM: cognitive preventive maintenance platform.
  • San Andreas Award for Most Disruptive Technology – Veniamnetworking solution for future autonomous vehicles; mobile WiFi done right.
  • Core Award for Best Fixed Telecom Opportunity – Datera: storage and data management for service providers, private cloud, digital business via “Datera elastic data fabric software.”
  • Zephyr Award for Best Mobile Opportunity – AtheerAir: augmented reality solutions for industrial enterprises.
  • Ground Breaker Award for Engineering Excellence – Cinovavirtual reality streaming at practical bit rates using Cinova’s cloud server technology.
  • Prodigy Award for the Most Successful SPIF Alumni – Plexstreaming media server and apps to stream video, audio and photo collections on any device.

This year’s entrepreneurs had a chance to vote on the operators as well, to give a shout out to those telcos who were supportive, approachable, and helpful to young and growing telecom companies. The entreprenneurs chose Verizon.

  • Fred & Ginger Award for the Most Supportive Carrier – Verizon.

The SPIFFY nominees attended the awards ceremony along with 50 global fixed and wireless communications companies and over 300 industry professionals. Photos of the event can be found on Telecom Council’s blog and Instagram pages.  Note that none of this year’s SPIFFY award winners, with the possible exception of Veniam, actually provide a connectivity (PHY, MAC/Data Link layer) solution.

……………………………………………………………………………………………………………………………………….

Author’s Notes on three impressive start-ups that presented at TC3 on November 1st (only day I attended 2017 TC3):

1.  In a session titled “Closing the Rural Broadband Gap,” Skyler Ditchfield, CEO of GeoLinks, provided an overview of his company’s success in providing high-speed broadband to schools and libraries using fixed wireless technologies, specifically microwave radio operating in several frequency bands.  The company’s flagship service is ClearFiber™, which offers customers fixed wireless broadband service on the most resilient and scalable networkSkyler described the advantages of their 100% in house approach to engineering, design, land procurement, construction and data connectivity. GeoLinks approach offers gigabit plus speeds at a fraction of the cost of fiber with lower latency and rapid deployment across the country.

A broadband fixed wireless installation on Santa Catalina island was particularly impressive.  Speeds on the island (which GeoLinks says is 41 miles offshore) are typically 300 Mbps, and the ultra-fast broadband connection provides support for essential communications services, tourism services, and commerce.  GeoLinks successfully deployed Mimosa Network´s fiber-fast broadband solutions to bring high-speed Internet access to the island community for the first time in its history.  Connecting the island to the mainland at high speeds was very challenging. GeoLinks ultimately selected Mimosa for the last mile of the installation, deploying Mimosa A5 access and C5 client devices throughout the harbor town of Avalon.

Another ClearFiber™ successful deployment was at Robbins Elementary school in California.  It involved 19 miles of fixed broadband wireless transport to provide the school with broadband Internet access.

Skyler said that next year, GeoLinks planned to deliver fixed wireless transport at 10G b/sec over 6 to 8 miles in the 5Ghz unlicensed band- either point to point OR point to multi-point. The company is considering 6GHz, 11GHz, 18Ghz and 20Ghz FCC licensed bands.  He said it would be important for GeoLinks to get licensed spectrum for point to multi-point transmission.

More on GeoLinks value proposition here and here.   And a recent blog post about Skyler Ditchfield who told the TC3 audience he grew up fascinated by communications technologies.   This author was very impressed with Skyler and GeoLinks!

2. In a panel on “Startup Success Stories,” Nitin Motgi, founder and CEO of Cask (a “big data” software company) talked about how long it took to seal a deal with telcos.  It’s longer than you might think!  In one case, Nitin said it was 18 months from the time an unnamed telco agreed to purchase Cask’s solution (based on a proof of concept demo) till the contract was actually signed and sealed. Nitin referred to the process of selling to telcos as “whale hunting.”  However, he said that if you succeed it’s worth it because of the telco’s scale of business.

3. Tracknet Co-Founder and CEO Hardy Schmidbauer presented a 5 minute “fast pitch” to the Telecom Council Service Provider Forum.  He talked about his company’s highly scalable LPWAN/ IoT network solutions:   “TrackNet provides LoRaWAN IoT solutions for consumers and industry, focusing on ease of use and scalability to enable a “new era” of exponentially growing LPWAN deployments.”   The company is a contributing member of the LoRa Alliance and the TrackNet team has been instrumental in specifying, building, and establishing LoRaWAN and the LoRa Alliance for more than five years.  The founding Tracknet team includes veterans from IBM and Semtech who were instrumental in the development of LoRa and LoRaWAN.

With “Tabs,” Tracknet combines a WiFi connected IoT home and tracker system with LoRaWAN network coverage built from indoor Tabs hubs.

………………………………………………………………………………………………………………………………………….

About the Telecom Council: The Telecom Council of Silicon Valley connects the companies who are building communication networks, with the people and ideas that are creating them – by putting those companies, research, ideas, capital and human expertise from across the globe together in the same room. Last year, The Telecom Council connected over 2,000 executives from 750 telecom companies and 60 fixed and wireless carriers across 40 meeting topics. By joining, speaking, sponsoring, or simply participating in a meeting, there are many ways telecom companies of any size can leverage the Telecom Council network. For more information visit: https://www.telecomcouncil.com.

Reference:

http://blog.telecomcouncil.com/blog/2017-spiffy-award-winners-announced-telecom-councils-annual-service-provider-forum-ceremony/

 

Image result for pic of telecom council TC3 2017

…………………………………………………………………………………………………………………………………………………………

Forward Reference:

A follow up TC3 blog post will provide an update on project CORD (Central Office Re-architected as a Data Center) from the perspective of the Open Network Foundation (ONF) with panelists from AT&T and Verizon.

LoRaWAN and Sigfox lead LPWANs; Interoperability via Compression

Backgrounder:

The Low Power Wide Area Network (LPWAN) market is focused on IoT WAN connectivity for devices (endpoints) that consume low power, send/receive short messages at low speeds, and have low duty cycles.   There are two categories of LPWANs:

1] Cellular (e.g. NB-IoT and LTE Category M1) WANs using licensed spectrum.

2] Wireless WANs operating in unlicensed frequency bands.

While cellular may be the ultimate winner, Sigfox and LoRAWAN currently have a lot more market traction and are growing very fast.  Other non-cellular LPWANs (Ingenu, Weightless SIG, etc.) are also getting some attention, but if there are too many commercially available LPWANs the market will be segmented and fractured.

Overview of LoRaWAN and Sigfox network:

Let’s look at the two most popular unlicensed band LPWANs:

1.  LoRaWAN:

  • LoRaWAN is specified by the LoRa Alliance which includes 47 network operators.

  • The LoRa Alliance states on its website: “LoRaWAN™ is the open global standard for secure, carrier-grade IoT LPWA connectivity. With a certification program to guarantee interoperability and the technical flexibility to address the multiple IoT applications be they static or mobile we believe that LoRaWAN can give all THINGS a global voice.”
  • For the Physical layer (PHY), LoRa uses a modulation scheme called chirp spread spectrum (CSS) and a radio both developed and sold or licensed by Semtech Corporation.
  • About two years ago, Semtech licensed its technology to Microchip and  NXP (like ARM, Semtech now licenses to other semiconductor companies).  As a result, the core LoRa hardware (PHY layer) is no longer provided by a single global chip manufacturer.
  • LoRaWAN defines the media access control (MAC) sublayer of the Data Link layer, which is maintained by the LoRa Alliance. This distinction between LoRa and LoRaWAN is important because other companies (such as Link Labs) use a proprietary MAC sublayer on top of a LoRa chip to create a better performing, hybrid design (called Symphony Link by Link Labs).
  • Many of the LoRa Alliance companies building products are focusing on software defined enhancement and use the LoRaWAN defined MAC.
  • LoRaWAN will most likely be best used for “discrete” applications like smart buildings or campuses, where mobile network connectivity is not needed.

……………………………………………………………………………………………………………………….

2.  Sigfox:

  •  Sigfox has designed its technology and network to meet the requirements of mass IoT applications; long device battery life-cycle, low device cost, low connectivity fee, high network capacity, and long range.
  • Sigfox has the lowest cost radio modules(<$3, compared to ~$10 for LoRa, and $12 for NB-IoT).
  • recent announcement from Sigfox noted the addition of a new service called “Admiral Ivory,” that makes possible to connect devices with hardware components costing as little as $0.20.
  • An overview of Sigfox’s network technology is described here.  It consists of: Ultra Narrow Band radio modulation, a light weight protocol, small frame size/payload, and a star network architecture.
  • The Sigfox network is currently deployed in 36 countries, 17 of which already have national coverage.
  • In February, Sigfox reached an agreement with mobile network operator Telefonica to integrate Sigfox’s low-powered connectivity into the Telefonica’s managed connectivity platform.  By complementing Telefónica’s cellular connectivity offerings, with Sigfox’s LPWAN connectivity solution, customers can choose the most appropriate type of connectivity or combine them, implementing use cases and creating new service opportunities that otherwise may not have been possible.
  • Additionally, Telefónica´s managed connectivity platform will integrate Sigfox’s cloud, which gives the company the ability to develop its own end-to-end IoT solutions, based on Sigfox’s connectivity solution and including device integration, as well as data collection and management.
  • While Sigfox is a proprietary IoT network architecture, the company has provided their intellectual property library free of charge and royalty-free to semiconductor companies which have implemented chipsets with dedicated Sigfox interfaces or multi-mode capabilities. The list of chipsets/modules supporting Sigfox (+ multimode) includes:  Pycom (+ WiFi, BLE=BlueTooth Low Energy), Texas Instruments (+ BLE),  STMicroelectronics (+ BLE), Microchip/Atmel, Analog Devices (+ BLE), NXP,  OnSemiconductor (SiP), SiLabs, M2Com, GCT Semiconductor (+ BLE, CatM1, NB-IoT, EC-GSM, GPS), Innocom, and Wisol.
  • The current Sigfox ecosystem is composed of several chipset vendors, device makers, platform providers and solution providers.
  • Here’s a graphic from the Sigfox website on their expanding network footprint:

Sigfox boosts its IoT global footprint, achieving national coverage in 17 countries, and expands into four new countries

…………………………………………………………………………………………………….

Sigfox’s LPWAN Interoperability using Internet Compression Technology:

In a phone conversation with Sigfox standardization expert Juan Carlos Zuniga last week, I learned that Sigfox plans to achieve LPWAN interoperability at the Application layer, rather than building multi-mode base stations with different radio access networks.  Here’s a glimpse on how that might happen:

At the IETF 98 Bits-n-Bites event, March 30th in Chicago, Sigfox demonstrated IoT interoperability with internet compression technology. which enables LPWAN applications to run transparently over different IoT radio access network (RAN) technologies.

To achieve this milestone and enable IP applications to communicate over its network, Sigfox and Acklio implemented Static Context Header Compression (SCHC) -a compression scheme being standardized by the IETF IPv6 over LPWAN working group*, which Juan Carlos participates in.  SCHC allows reducing IPv6/UDP/CoAP headers to just a few bytes, which can then be transported over LPWAN network small frame size for low-power, low-cost IoT applications.

…………………………………………………………………………………………………….

*  The focus of the IPv6 over LPWAN working group is on enabling IPv6 connectivity over four different Low-Power Wide-Area (LPWA) technologies: Sigfox, LoRa WAN, WI-SUN and NB-IOT (from 3GPP).

…………………………………………………………………………………………………….

The demonstration platform was based on an Acklio compression protocol stack running on Sigfox-enabled devices and cloud-based applications over the live Sigfox network in Chicago. Two scenarios were demonstrated: 1] CoAP requests to legacy IP LPWAN devices, and 2] CoAP interoperability over the live Sigfox and cellular networks in Chicago with IP enabled endpoint devices.

“We are thrilled with this latest milestone in our quest to support and promote interoperability in the IoT,” said Juan-Carlos Zúñiga, senior standardization expert at Sigfox and co-chair of the IETF IntArea working group. “It is critical that the industry rallies together to adopt open internet standards to unlock the true potential of the IoT.”

Compression based technology for LPWAN application interoperability builds on Sigfox’s commitment to supporting the development of IoT interoperability as an active member of standards development organizations including the IETF, ETSI and IEEE 802.  And the number of chip companies providing Sigfox network interfaces (see above list) is equally impressive.

References:

https://www.iotforall.com/a-primer-for-loralorawan/

https://www.sigfox.com/en/news/sigfox-pioneers-internet-things-interoperability-further-accelerate-mass-market-adoption

http://techblog.comsoc.org/2017/10/03/sigfox-boosts-its-iot-global-footprint-achieving-national-coverage-in-17-countries/

http://techblog.comsoc.org/2016/05/23/iot-world-summary-part-iii-too-many-wireless-wan-lpwan-standards-specs/

 

………………………………………………………………………………………………………..

Juan Carlos will be following up with a blog post on LPWAN application layer interoperability as well as a more detailed description of the IETF work on LPWANs.

 

Comparison of Telit, GCT Semiconductor & Sequans IoT Multi-Mode Network Chips

Telit, an Israeli based semiconductor company specializing in Internet of Things (IoT) silicon, today announced that its LE910B1-NA, LE910B1-SA, LTE Category 1 (Cat 1) and LE910B4-NA, LTE Category 4 (Cat 4) received certification for operation on AT&T’s LTE nationwide network.  The aforementioned modules also support Voice over LTE (VoLTE).

Telit also received certification for its 600 Mbps, LTE Category 11 (Cat 11) LM940 global (single SKU) PCI Express Mini (mPCIe) data card targeted at segments including network routers and gateways, and the mobile computing industry.

Certification enables IoT integrators and providers to immediately integrate and test their devices with the certified modules and data card and start leveraging the reliability and coverage of AT&T’s LTE Cat 1, Cat 4-VoLTE and Cat 11 services for the IoT.

For more information on the LE910B1/4-xA:

https://www.telit.com/products/cellular-modules/standard-industrial-grade/xe910-family/#LE910-Cat1-Series.

For more information on the LM940 Cat 11 data card:

http://info.telit.com/modules-lm940-mini-card.

“Voice over LTE is an absolute necessity for the IoT particularly for the American market where operators need to turn off spectrum-inefficient circuit switch voice technology. Our existing customers using 2G, 3G, and non-VoLTE LTE modules from the xE910 family can now simply drop in the VoLTE variants, go through required testing with our help and start deploying voice capable products endowed with a very long life,” said Yosi Fait, Interim CEO, Telit.

“The LM940, now certified for immediate activation, remains the only global product for the router and gateway segment to allow OEMs to leverage 3x carrier aggregation capabilities currently available from AT&T,” he added.

The LE910B1/4-xA module is a member of Telit’s best-selling xE910 family and can easily be applied as a pin-to-pin replacement for existing devices based on the family’s modules for 2G, 3G, LTE Categories 1, 3 and 4. With the company’s design-once-use-anywhere philosophy, developers can cut costs and development time by simply designing to the xE910 LGA common form factor, giving them the freedom to deploy technologies best suited for the application’s environment.

The LM940 boasts an exceptionally power efficient platform and is the ideal solution for commercial and enterprise applications in the network appliance and router industry, such as branch office connectivity, LTE failover, digital signage, kiosks, pop-up stores, vehicle routers, construction sites and more. The data card includes Linux and Windows driver support.

Telit also features the broadest portfolio of certified LTE IoT Category modules in the industry.

For more information about the Telit portfolio of LTE modules: https://www.telit.com/products/cellular-modules/

………………………………………………………………………………

Last week, GCT Semiconductor [1] announced an LTE device which will also support the (proprietary) Sigfox wireless IoT interface. The GDM7243I chip features low power consumption, which will allow it to be used for tracking devices to connect using the Sigfox wireless IoT network for several years without the need for frequent battery re-charging.

Note 1.  GCT Semiconductor’s engineering development team is in South Korea. Marketing and sales are in San Jose, CA.

“We’re pleased to be working closely with Sigfox to bring this capability to market and support ultra-long battery life and global coverage for our IoT customers,” said John Schlaefer, CEO of GCT Semiconductor, speaking at Sigfox World IoT Expo 2017 in Prague, Czech Republic.

GDM7243I based tracking devices operate on the Sigfox network for location tracking but will switch to the cellular network as required.

Hybrid IoT devices can connect to the Sigfox wireless IoT network and operate in low-power mode to send and receive notifications only.  The Sigfox network can also provide backup connectivity to IoT hybrid devices in case of cellular network coverage limitations, congestion, breakdown, or jamming of security/alarm systems.

Author’s Note:

GCT’s hybrid chip which supports LTE Category M1/Narrowband IoT )NB-IoT/EC-GSM and Sigfox’s pwireless IoT WAN technology is GREAT FOR IoT Endpoints, which could use it to connect to any LTE M1, NB-IoT or or Sigfox’s network.
However, it doesn’t mean Sigfox base stations/network equipment will support anything other than Sigfox’s own wireless IoT WAN spec.  In an interview this Thursday, we will ask Sigfox’s standardization expert about the company’s IoT WAN roadmap and which standards, if any, they’re considering to support.
……………………………………………………………
French chip company Sequans has their StreamliteLTE™ product line which is optimized for M2M devices and IoT connected devices. Sequans  introduced the world’s first Cat M1/NB1 single chip solution based on 3GPP Release 13 narrowband IoT (NB-IoT standard, published in June of 2016.  The company then became a chosen technology partner of leading telcos and equipment companies, including Verizon, Gemalto, Foxconn, and Skyworks, establishing itself as a leader in LTE for IoT.

The Calliope LTE Platform for IoT is a member of Sequans’                  StreamliteLTE™family of LTE chipset products. Calliope is designed specifically for wearables and other Category 1 M2M and IoT devices. Calliope comprises baseband and RF chips, an integrated IoT applications processor running Sequans’ carrier-proven LTE protocol stack, an IMS client, and a comprehensive software package for over-the-air device management and packet routing. It includes Sequans’ powerful interference rejection technology, Sequans AIR™.

Calliope can add Cat 1 LTE connectivity to M2M and IoT modules and is also suitable for wearables and M2M devices for metering, home automation, and automotive applications.

Highlights

  • Certified by Verizon Wireless, AT&T Wireless, NTT Docomo and T-Mobile
  • Throughput: up to Category 1 – 10 Mbps DL/ 5 Mbps UL
  • Ultra low power consumption
  • 3GPP Release 10; software-upgradable to Release 11
  • FDD and TDD, up to 20 MHz LTE channels
  • Embedded application CPU
  • Wafer-level packaging
  • Supports VoLTE and location based services
  • Host environments: Android, Android Wear, Linux, Windows, Real Time OS
  • Versatile interfaces to host system: UART, USB, HSIC
  • Includes Sequans AIR™ interference cancelation technology
  • Certified for VoLTE by Verizon Wireless

For more info:

Calliope LTE Platform

 

Sigfox boosts its IoT global footprint, achieving national coverage in 17 countries

At Sigfox World IoT Expo last week in Prague-Czech Republic, Sigfox announced that its network now spans 36 countries, as part of its mission to offer a consistent level of connectivity quality and service anywhere in the world.

Here are the highlights of the Sigfox conference:

“We’re excited to work with all of our new partners, this move marks yet another key milestone towards Sigfox’s vision of a global IoT network. We are looking forward to collaborating with our new Sigfox operators to help their local ecosystems to seamlessly scale IoT solutions wherever the Sigfox network is present in the world. Together, we’re building a future that will be better to live in,”  said Rodolphe Baronnet-Frugès, Executive Vice President of Operators at Sigfox.

Sigfox operators are not only contributing to accelerate IoT development in their local markets, they are also committing to deploy and operate the network infrastructure and offer national coverage in their country. Up to now, almost 100 million euros have been invested by Sigfox operators to offer a unique access to the Sigfox IoT services, with the exact same quality of service.

This unique global offer is enriched with Sigfox new service Monarch, now allowing IoT devices to recognize and automatically adapt to every local communications standard in the world without roaming. By enabling ‘globe trotter’ assets that can seamlessly adapt as they move across borders, Monarch could be a game-changer for logistics, freight, and consumer goods industries.

……………………………………………………………………………………….

In Ireland, Sigfox Operator VT signed a €1-mill IoT subscription with Dunraven Systems, a market leader in the design and development of ultrasonic fuel tank monitors.

………………………………………………………………………………………..

In addition to its core IoT connectivity service, Sigfox offers a range of services to make even more simple to use Sigfox’s technology, to deploy and to adopt mass IoT solutions. These services allow to connect billions of wireless devices that are not yet connected to the internet.

Image result for SIGFOX image

Above illustration courtesy of Sigfox

………………………………………………………………………………………………………………..

This potential game-changing development has been made possible by the cognitive capabilities of the Sigfox network and its Software Defined Radio technology, where all the network and computing complexity is managed in the Cloud rather than on the device. This enables Sigfox to constantly improve its network features and make them available by simple software upgrade.

……………………………………………………………………………………………..

A key question for Sigfox is whether they’ll also support the new LPWAN standards and specs (LTE category M1, NB-IoT, LoRA WAN, etc).  We’ve asked the company and are eagerly awaiting their reply.  Stay tuned.

 

 

Recent Posts