Huawei’s “All Bands Go to 5G” Strategy Explained; Partnership with China Telecom Described

Huawei unveiled its “All Bands Go to 5G” strategy for the evolution towards a 5G wireless network at its  Global Mobile Broadband Forum 2018 in London last week. This strategy provides suggestions for future development of the wireless network in three key aspects: simplified site, simplified network, and automation.

Huawei graphic

Huawei Launches the Evolution Strategy for 5G-oriented Wireless Target Network

……………………………………………………………………………………………………………………………………………………………………………

I. Global commercial use of 5G networks has now entered the fast lane.

Massive wireless connectivity has become an inevitable trend.  Data traffic on global mobile broadband (MBB) networks has increased rapidly. By 1st half of 2018, the data of usage (DOU) for a number of global operators has exceeded 10 GB, and that in certain Middle East regions has even reached 70 GB. Releasing data traffic helps to promote a positive MBB business cycle in the global wireless industry and ushers in a new era of traffic operation.

By October 2018, new fixed wireless access (FWA) services have been put into commercial use on about 230 networks. About 75 million families can now enjoy the benefits of FWA-based home broadband (HBB) services. In the future, the larger bandwidth capability of 5G will provide fiber-like HBB user experience and enable diverse home entertainment applications such as 4K/8K UHD video and AR/VR. At the same time, new IoT connections are becoming a new source of potential growth for operators. LTE NB-IoT is undergoing rapid development and has seen 58 commercial networks around the world, with industry applications providing millions of connections such as smart gas, water, white goods, firefighting, and electric vehicle tracking. 5G technologies will offer more reliable connection capabilities with shorter latency. Massive wireless connectivity has become an inevitable trend.

The development of the global 5G industry is accelerating in 2018. According to the 5G spectrum report published by GSA in November 2018, the UK, Spain, Latvia, Korea, and Ireland have officially released spectrum resources dedicated for 5G by August 2018. In addition, 35 countries have scheduled related plans. The 5G industry supply chain is steadily growing more and more mature.

Huawei claims to have released 5G commercial CPEs in 2018 (???), and multiple 5G smartphones will be launched in 2019. According to the report released by GSMA, 182 global operators are conducting tests on 5G technologies and 74 operators have announced plans for 5G commercial deployment. Global commercial use of 5G networks has now entered the fast lane, according to Huawei (but not this author).

5G development will enable more commercial application scenarios and promote the continuous development of a digital society. Under such circumstances, Huawei has proposed a new eMBB (enhanced Mobile Broad Band) industry vision for Cloud X featuring smart terminals, broad pipes, and cloud applications. For example, Huawei has shifted the most complex processes of rendering, real-time computing, and service content to the cloud. Thanks to transmission data streams using large bandwidth and ultra-low latency on the 5G network, as well as encoding and decoding technologies that match the cloud and terminals, applications such as Cloud AR/VR can be deployed anywhere anytime, according to the company.

Huawei believes that AI technologies can be adopted in the communication industry. AI-based automation of network planning, deployment, optimization, and service provisioning will enable network O&M to be simplified, unleash network potential, and make networks more intelligent.

II. “LTE Evolution+5G NR” is gaining industry’s consensus for 5G wireless networks.

In the 5G era, wireless spectrum evolution is divided into two phases:

Phase 1: Sub-3 GHz spectrum resources evolve to LTE and 5G non stand alone (based on 3GPP release 15 NR) high frequency bands are introduced.

Phase 2: Sub-3 GHz spectrum resources evolve to 5G NR. “LTE Evo+NR” is realized on the target network.

Therefore, target network evolution in the 5G era can be summarized as “LTE Evolution+5G NR.” In the process of achieving this goal, the global wireless network faces the following challenges:

1.  OPEX increases year by year. From 2005 to 2017, global operators’ OPEX/revenue percentage is increased from 62% to 75%. In the future, the coexistence of 2G, 3G, 4G, and 5G will increase the complexity of network O&M. In particular, site TCO is high. Site deployment still faces several issues such as difficult site acquisition, high engineering costs, and high site rentals.

2. 4G-LTE basic services fall back to 2G or 3G. Generally, insufficient 4G network coverage causes VoLTE services to fall back to 2G or 3G, deteriorating voice experience. NB-IoT/eMTC services also require better 4G network coverage. As a result, it is difficult for operators to shut down 2G and 3G networks.

–>The coexistence of four RAN technologies leads to more complex network operation and presents difficulties in reducing OPEX.

III. 5G-oriented simplified networks are built to effectively meet challenges and promote 5G business success.

Peter Zhou, CMO of Huawei Wireless Network Product Line, illustrated the evolution strategy for 5G-oriented wireless target network. This strategy aims to help operators resolve the preceding challenges and commercialize 5G. The evolution strategy includes three key aspects: simplified site, simplified network, and automation.

Simplified site enables full outdoor base stations and facilitates site acquisition, deployment, and TCO saving.

Along with the development of Moore’s Law, the 7 nm technology has enjoyed widespread commercial adoption throughout the chip manufacturing industry, and BBUs are becoming more and more integrated. In recent years, lithium battery technology has seen rapid development, and the energy density of lithium batteries is far more superior to that of lead-acid batteries. The development of new technologies makes full outdoor wireless base stations a reality. Peter Zhou pointed out, “Using componentized outdoor BBUs, blade power modules, and blade batteries, full outdoor macro base stations can be deployed on poles without shelters or cabinets. This greatly reduces the upgrade cost of existing sites, decreases the difficulty and cost of obtaining new sites, and helps operators reduce TCO by 30% and above.”

Antenna reconstruction is required for 5G deployment on the C-band. Currently, 70% urban sites cannot deploy new antennas due to insufficient antenna space. In order to resolve this problem, Huawei proposes the “1+1” antenna solution. That is, one multi-band antenna is used to support all sub-3 GHz bands, and one Massive MIMO AAU is used to support C-band NR. In total, two antennas are able to support all operator’s frequency bands. This solution greatly simplifies site space, reduces site OPEX, and realizes 5G NR deployment with insufficient antenna space.

Simplified network realizes the construction of an LTE full-service foundation network and ensures “Zero Fallback” for three basic services.

In the 5G era, the coexistence of multiple RAN technologies (2G/3G/4G/5G) results in complex networks and high O&M costs. Therefore, basic voice, IoT, and data services need to be migrated to the LTE network so that the LTE network becomes the bearer network for basic services and 2G and 3G networks enter the life cycle development phase. Huawei’s Peter Zhou emphasized that, “The LTE network needs to be built as a full-service foundation network to achieve ‘Zero Fallback’ for basic services such as voice, IoT, and data. Therefore, LTE must be planned based on the coverage of basic services rather than the traditional population coverage.”

“Simplified site, simplified network, and automation help operators reduce TCO, simplify the network architecture, reduce operation costs, and fully unleash the network potential. This lays a solid foundation for the successful commercial use of 5G networks and helps the industry to identify the goal and direction for future network evolution. Huawei also wishes to work more closely with industry partners to innovate continuously, build a 5G business ecosystem, and finally achieve a better connected digital society.”

……………………………………………………………………………………………………………………………………………….

Separately, China Telecom announced it had partnered with Huawei for  investment in 5G innovation and has begun researching how to commercialize 5G technology. Both parties intend to leverage their advantages to develop the 5G service innovation base, build an industry ecosystem alliance, and research the usage scenarios and business models of 5G services. Huawei Wireless X Labs in Shenzhen, simulates 5G technologies and usage scenarios, and works with upstream and downstream industry partners to jointly develop industry standards and plans. China Telecom leverages the resources of 5G trial networks and existing industry customers to develop new 5G applications, driving the development of the entire 5G industry and improving China Telecom’s influence in the 5G field.

Application Models

Based on the first of six 5G trial network, China Telecom Shenzhen is exploring 5G application models. During the 5G Unmanned Aerial Vehicle (UAV) flight test and inspection demonstration, remote control personnel experienced VR capabilities and remote HD video transmission over a low-latency 5G network. Both the maiden test flight and inspection were completed successfully, demonstrating the ability of 5G to support UAV applications. This means that aerial photography, unattended inspection, logistics transportation, security identification, and other industrial applications will be driven by the rapid development of 5G in the telecom sector, creating a strong foundation for China Telecom to explore new vertical industries. In tests on Gbps-level experience buses, 5G provided an average speed of more than 1 Gbps and a peak rate of 3 Gbps, allowing passengers to experience mobile 4K IPTV, 16-channel HD video streams, and VR applications while traveling. This paves the way for China Telecom’s plans of 5G and IPTV convergence.

To achieve its goal of connecting 50 5G sites by the end of 2018 while constructing its transport network, China Telecom Shenzhen upgraded its existing IP RAN to deploy and verify 5G technologies, enabling the co-existence of both 4G and 5G. In addition, the operator gained valuable engineering experience and developed scenario-based solutions for subsequent 5G construction.

Addressing 5G challenges for the smooth evolution of live networks

While bringing a wide variety of services, 5G also brings challenges in terms of bandwidth, latency, connections, and the slicing of transport networks. GNodeBs, however, deliver five to ten times more bandwidth than eNodeBs. 5G services such as Internet of Vehicles (IoV) require the latency to be one-tenth of what they are with 4G. In terms of connections, the cloudification of wireless and core networks brings full-mesh connections, requiring flexible scheduling on the transport network. In addition, 5G’s differentiated services require network slicing, with a focus on isolation and the automated management of network slices on transport networks. To cope with these challenges, China Telecom Shenzhen assessed the existing IP RAN, opting to upgrade and expand core and aggregation devices and replace specific access devices for 5G transport. To quickly deploy 5G services and fully reuse the existing network, China Telecom Shenzhen implemented the smooth evolution solution for the transport network in pilot areas.

Network upgrade for co-existence of 4G and 5G

The co-deployment of eNodeB and gNodeB is the optimal choice for transport networks, and China Telecom Shenzhen verified different co-existence solutions. Access ring devices can be upgraded and expanded to satisfy the requirements of 50GE ring networking and allow 4G and 5G services to share the same access ring. When access devices need to be replaced, China Telecom Shenzhen can establish a new 5G access ring, which can share the core and aggregation layer to achieve unified service bearing.

E2E large capacity to meet HD video transmission requirements

As China Telecom continues to explore 5G services, the convergence of 5G and IPTV has become its focus. To meet the requirements of 4K IPTV video transmission using 5G, the transport network must have large bandwidth transmission capabilities. China Telecom Shenzhen upgraded the access layer from an eNodeB GE ring to a 50GE ring, and upgraded the core and aggregation layer from a 10GE network to a 100GE network, allowing high-bandwidth connections between base stations and the core network.

References:

https://globenewswire.com/news-release/2018/11/26/1657057/0/en/Huawei-Launches-the-Evolution-Strategy-for-5G-oriented-Wireless-Target-Network.html

https://www.lightreading.com/partner-perspectives/5g-field-trials-show-the-power-of-applications-/a/d-id/747787?

http://techblog.comsoc.org/2018/11/23/huawei-has-22-commercial-5g-contracts-u-s-government-warns-allies-about-the-company/

http://techblog.comsoc.org/2018/11/06/gsma-5g-spectrum-guide-vs-wrc-2019/

Oracle Confirms Research: China Telecom Misdirected U.S. Internet traffic thru China

China Telecom is the largest fixed line operator in China, state owned, and bidding to become the third telecommunications network operator in the Philippines.  Two weeks ago, researchers found that the company has been hacking into internet networks in the United States and hijacking data from countless users, a study has found.

The research, conducted jointly by scholars from the US Naval War College and Tel Aviv University, discovered that the China government, acting through China Telecom, has been engaged in data hacking even though it had entered into a pact with the U.S. in 2015 to stop cyber operations aimed at intellectual property theft.

Oracle’s Internet Intelligence division has just confirmed the findings of the academic paper published two weeks ago that accused China of “hijacking the vital internet backbone of western countries.”

Doug Madory, Director of Oracle’s Internet Analysis division (formerly Dyn), confirmed that China Telecom has, indeed, engaged in internet traffic “misdirection.” “I don’t intend to address the paper’s claims around the motivations of these actions,” said Madori. “However, there is truth to the assertion that China Telecom (whether intentionally or not) has misdirected internet traffic (including out of the United States) in recent years.  I know because I expended a great deal of effort to stop it in 2017,” Madori said.

china-telekom-bgp-hijack.png

Image Courtesy of Oracle

……………………………………………………………………………………………………………….

Madori then goes on to detail several of China Telecom’s BGP (Border Gateway Protocol) route “misdirections,” most of which have involved hijacking US-to-US traffic and sending it via mainland China before returning it to the U.S.

Verizon APAC errors had a knock-on effect, Madori explained: “Verizon APAC … were announcing [routes] to the internet on behalf of their customers. A couple of AS hops away, China Telecom was mishandling them – announcing them in a manner that would cause internet traffic destined for those IP address ranges to flow back through China Telecom’s network.”

………………………………………………………………………………………………………………………………..

Indeed, the researchers found that China Telecom uses BGPs in order to carry out their data intrusions.  Created in the early 1980s, BGP protocols do not feature any security controls, often resulting in misdirected traffic through “bad BGPs”. The majority of these cases are attributed to configuration mistakes.

However, researchers found that China Telecom has been deliberately hijacking BGP routes to send legitimate traffic through malicious servers.

They described the state-owned telco as “one of the most determined BGP hijackers in the international community.”

In order to validate their findings, the researchers built a route tracing system to monitor BGP announcements, allowing them to distinguish between normal, accidental patterns and deliberate ones.

They concluded that China Telecom was responsible for patterns of BGP behavior that “suggest malicious intent, precisely because of their unusual transit characteristics -namely the lengthened routes and the abnormal durations.”

“[China Telecom] has already relatively seamlessly hijacked the domestic US and cross-US traffic and redirected it to China over days, weeks, and months,” the researchers said.

“The prevalence of and demonstrated ease with which one can simply redirect and copy data by controlling key transit nodes buried in a nation’s infrastructure requires an urgent policy response,” they warned.

………………………………………………………………………………………………………………………………………….

The routing snafu involving domestic US Internet traffic coincided with a larger misdirection that started in late 2015 and lasted for about two and a half years, Oracle’s Madory said in a blog post published Monday. The misdirection was the result of AS4134, the autonomous system belonging to China Telecom, incorrectly handling the routing announcements of AS703, Verizon’s Asia-Pacific AS. The mishandled routing announcements caused several international carriers—including Telia’s AS1299, Tata’s AS6453, GTT’s AS3257, and Vodafone’s AS1273—to send data destined for Verizon Asia-Pacific through China Telecom, rather than using the normal multinational telecoms.

………………………………………………………………………………………………………………………………………….

Ahead of the third telco player’s selection Wednesday (November 7), Senators Grace Poe and Francis Escudero already voiced concerns about the possible threats to national security and data privacy in case China Telecom becomes the winner of the bidding.

………………………………………………………………………………………………………………………………………….

References:

http://bilyonaryo.com.ph/2018/11/06/think-tank-unmasks-how-china-telecom-is-hacking-us-networks-hijacking-users/

https://internetintel.oracle.com/blog-single.html?id=China+Telecom%27s+Internet+Traffic+Misdirection

https://www.zdnet.com/article/oracle-confirms-china-telecom-internet-traffic-misdirections/

https://arstechnica.com/information-technology/2018/11/strange-snafu-misroutes-domestic-us-internet-traffic-through-china-telecom/

https://www.theregister.co.uk/2018/11/06/oracles_netwatchers_agree_china_telecom_is_a_repeat_bgp_offender/

China Telecom: IoT partnerships with 3 network operators; Huawei NB-IoT award from GSMA

China Telecom’s 3 New IoT Partnerships:

China Telecom has entered three new partnership agreements aimed at accelerating the development of services based on an Internet of Things (IoT) open platform.

The operator has announced an expanded partnership with HKT to cover the development of a common IoT open platform to serve the operators’ customers in the combined geographical footprints of mainland China and Hong Kong.

With the arrangement, each network operator’s customers will be able to deploy IoT and M2M services on the other’s network.

The joint offering will allow seamless switching of IoT subscription between networks by integrating the two commonly-deployed embedded universal integrated circuit card platforms. The multi-domestic service is supported by the Ericsson Device Connection Platform (DCP).

China Telecom also announced a similar strategic partnership with Norway-based Telenor Group. That partnership will allow customers from China Telecom and Telenor Connexion to deploy IoT and Machine-to-Machine (M2M) services in each other’s network. It enables China Telecom’s multi-national enterprise customers with outbound IoT business to deploy their assets and offerings under Telenor Connexion’s networks in the European and other Asian Markets.

Similarly, Telenor Connexion’s global customers can enjoy the benefits of the rapidly growing Chinese market by leveraging on China Telecom’s IoT network resources and business capabilities. The seamless switching of IoT subscription between networks is achieved by the integration of the two commonly deployed eUICC platforms which are the key component of IoT collaboration across borders.

To recap, China Telecom’s multi-national enterprise customers will gain access to Telenor Connexion’s IoT networks in Europe and Asian markets, and will serve as Telenor Connexion’s preferred partner for connectivity in China.

…………………………………………………………………………..

A separate agreement with Orange Business Services will enable both companies to serve their respective enterprise customers through a combined footprint across three continents – Asia, Europe and Africa.

The network operators have also agreed to collaborate on the development of new service models supporting global IoT opportunities and to explore the potential of enhancing existing IoT capabilities and applying emerging technologies such as mobile IoT.

……………………………………………………………………………….
Huawei NB-IoT Solution Receives GSMA’s Best IoT Innovation for Mobile Networks Award 
Huawei’s NB-IoT solution received the “Best IoT Innovation for Mobile Networks” award issued by GSMA at the 2017 Mobile World Congress (MWC) Shanghai. As one of the industry’s most comprehensive NB-IoT solutions, Huawei’s NB-IoT solution was cited for its outstanding achievements and contributions in technological innovation, industry research, and applied practice.

GSMA functions to connect participants throughout the global mobile communications ecosystem, including almost 800 operators and over 300 enterprises. The association lays significant emphasis on addressing common concerns to best serve the interests of mobile operators worldwide. GSMA’s “Best IoT Innovation for Mobile Networks” award identifies and rewards Internet of Things (IoT) products, solutions, services, and new business models to highlight innovative breakthroughs based on new technological developments and standards of mobile networks.

Huawei’s NB-IoT solution comprises an NB-IoT terminal chipset, terminal operation system LiteOS, NB-IoT RAN and EPC, OceanConnect (a cloud platform for IoT management), and OpenLab that helps related enterprises develop IoT services and applications. The goal of the Huawei NB-IoT solution is to jointly build a better connected IoT solution and ecosystem with operators and partners from a diverse range of vertical industries. Huawei was the first to launch associated products after 3GPP released standards formulated for NB-IoT – one of multiple competing “standards” for Low Power WANs (LPWANs) targeted at the (non LAN) IoT market.

In 2016, Huawei began conducting NB-IoT trial applications in conjunction with mainstream network operators and partners. In early 2017, Huawei launched Boudica120, the world’s first commercial NB-IoT chip.

 

http://www.huawei.com/en/news/2017/6/GSMA-Best-IoT-Innovation-Mobile-Networks-Award

Highlights of IoT Developers Conference, April 26-27, 2017 in Santa Clara, CA

 

Recent Posts