Gartner Group Innovation & Insight: Cutting Through the 5G Hype
Executive Summary:
Most 5G deployments will initially focus on islands of deployment, without continuous national coverage through 2022. Enterprise architecture and technology innovation leaders must adapt digital business initiatives to the available network services.
Key Findings:
-
Despite service provider hype, most 5G rollouts will initially focus on islands of deployment. Broad availability of full-function public 5G from CSPs is unlikely before 2023, putting some digital business plans at risk — unless private networks are rolled out.
-
Early public 5G deployments will be spotty in coverage, but will satisfy some enterprise use cases such as high-speed fixed wireless access.
-
Enterprises may choose to deploy private 5G networks to address specific needs such as upgrading factory, stadium or warehouse networks. This may leverage Wi-Fi for access and 5G for the backbone.
-
Application use-case requirements (such as latency) must be clearly defined, so alternatives to 5G can be considered where applicable. In many cases, Proto-5G (an enhanced 4G) will be good enough to satisfy application use cases.
Recommendations:
-
Incorporate realistic networking assumptions for business plans by working with business leaders and network service providers to identify the availability of required advanced wireless services such as Proto-5G and 5G.
-
Address current use-case requirements by identifying where 5G alternatives such as Proto-5 G can be leveraged when and where 5G is unavailable or too expensive.
Strategic Planning Assumption:
Analysis:
Adding to the confusion about 5G availability is the fact that many CSPs are claiming that everything they deploy is 5G. However, what they deploy may be little more than rebranded or advanced LTE, or a subset of 5G that is deployed in a very limited footprint.
-
5G deployments will take more than twice as long as 4G/LTE because higher-frequency radio spectrum is required. This will force deployment of large numbers of new cellular radios.
-
Spectrum allocation is progressing slowly.
-
4G/LTE is successful and profitable.
-
There are no killer applications to pay for the required investment.
Network-based CSPs in North America, Greater China and Japan will launch projects to complete 90% of nationwide 5G population coverage by 2023. CSPs in Western Europe will achieve similar coverage by 2026, while other regions will not achieve the same coverage until after 2026.
Figure 1. Estimated Timing of 5G Network Launches
Source: Gartner (December 2018)

Definition:
The official ITU specification, International Mobile Telecommunications-2020, targets maximum downlink and uplink throughputs of 20 Gbps and 10 Gbps, respectively; latency below 5 ms endpoint to RAN; and massive scalability, although initial deployments may be less ambitious. New system architecture includes core network slicing and edge computing.
Description:
Figure 2. Three Technology Pillars of 5G
Source: Gartner (December 2018)
…………………………………………………………………………………………………………………………………………………………………………….
-
eMBB: High-throughput data transfer, with maximum speeds of 20 Gbps for downlink (although initial deployments will fall between 4 Gbps and 8 Gbps) and 10 Gbps for uplink.
-
mMTC: Targets support of up to 1 million low-power nodes per square kilometer.
-
URLLC: End-to-end cellular network latency of 5 ms or less.
The Evolution of 4G Versus the Promise of 5G:
Table 1: Proto-5G (Enhanced 4G) Compared to Existing 4G and 5G Wireless Access in the Future
Feature
|
4G
|
Proto-5G
|
5G Wireless Access
|
---|---|---|---|
Requirement and Target
|
Up to several hundred Mbps downlink throughput
About several tens of ms latency
|
More than 500 Mbps downlink throughput
About 10 ms latency IoT connectivity support
|
More than 10 Gbps downlink throughput
About 1 ms latency URLLC support
|
Frequency
|
Licensed (less than 6GHz)
|
Licensed and unlicensed (less than 6GHz)
|
Millimeter waves, in addition to Proto-5G’s frequency bands
|
Device IoT Support
|
LTE user equipment Cat. 1
|
LTE user equipment Cat. 0, M1 and NB-IoT
|
To be discussed in the technology standards
|
LTE = Long Term Evolution; URLLC = ultrareliable and low-latency communication
|
Benefits and Uses:
In a shift from traditional cellular deployments, organizations will benefit from private network deployments that replace or augment campus Wi-Fi networks and wired in-building networks for applications such as factory automation and surveillance.
Figure 3. Expected Use for 5G-Capable Networks
Source: Gartner (December 2018)

Figure 4. Use Cases for Deploying 5G-Capable Networks for Operational Efficiency
Source: Gartner (December 2018)

Figure 5. Migration to 5G Will Enable Emerging Edge Computing Applications
Source: Gartner (December 2018)

Source: Gartner (December 2018)

Adoption Rate:
As a result, Gartner expects most 5G deployments to initially focus on islands of deployment, without continuous national coverage, typically reaching less than full parity with existing 4G geographical coverage by 2022 in developed nations.
Table 2: Representative Sample of 5G Deployments and Expected Use Cases to Be Supported
Country
|
CSP
|
Launch Target
|
Use Cases and Demos
|
---|---|---|---|
U.S.
|
Verizon
|
October 2018 and broader rollout in 2019
|
|
AT&T
|
AT&T plans to be the first U.S. company to introduce mobile 5G service in 12 cities in 2018.
|
|
|
T-Mobile
|
Build out 5G in 30 cities in 2018 and 2020 l for full nationwide coverage
|
|
|
Sprint
|
5G commercial services and devices by 1H19
|
|
|
South Korea
|
SK Telecom
|
Commercial launch March 2019
|
|
KT
|
Official 5G provider of the Pyeongchang Winter Olympics
Commercial launch March 2019
|
|
|
LG U+
|
Commercial launch March 2019
|
|
|
Japan
|
NTT DOCOMO
|
NTT DOCOMO will start 5G preservice in September 2019 and launch commercial service in spring 2020.
|
|
KDDI
|
Commercial launch in 2019 and massive deployment from 2020
|
|
|
SoftBank
|
Commercial launch in 2019
|
|
|
China
|
China Mobile
|
Commercial 5G services in 2020
|
|
China Telecom
|
Commercial 5G services in 2020
|
|
|
China Unicom
|
Commercial 5G services in 2020
|
|
|
Europe
|
EE in the U.K.
|
In late 2019
|
|
Deutsche Telekom in Germany
|
Strong preparation course for 5G rollout in 2020
|
|
|
Telia in Finland
|
Target 2019 for commercial rollout of 3.5GHz
|
|
|
Vodafone in the U.K.
|
Vodafone is gearing up for a full commercial launch of 5G services in mid-2019 and expects to have about 1,000 5G mobile sites in service by 2020.
|
|
|
Telefónica in Spain
|
2020
|
|
|
TIM in Italy
|
First 5G use cases made available in June 2018, and full rollout in Bari and Matera to be completed during 2019.
|
|
|
Swisscom in Switzerland
|
Swisscom plans to introduce 5G at select sites in 2018. Extensive coverage can be expected in 2020.
|
|
|
Middle East
|
Etisalat in UAE
|
Per a 14 May 2018 announcement, fixed devices and services will be available from September 2018 with the service gradually extended across the UAE.
|
|
Ooredoo in Qatar
|
Per a 14 May 2018 announcement, the first Ooredoo 5G site was launched, just days after Ooredoo’s new 5G Commercial Core Network was activated.
|
|
|
STC in Saudi Arabia
|
Per a 16 May 2018 announcement, the company will continue building the network gradually in Saudi Arabian cities until the 5G-capable devices are available during 2019.
|
|
|
eMBB = enhanced mobile broadband; IoT; Internet of Things; N/A = not available; UAE = United Arab Emirates; VR = virtual reality
|
Risks:
-
Service provider hype will convince business leaders that 5G is broadly available well ahead of actual deployments.
-
Differences in Proto-5G technologies will lead to inconsistent solutions across providers and regions.
-
CSP capital expense budgets are constrained, which will slow deployments in all but the highest-demand locations and for the applications that generate immediate service provider revenue.
-
Full-featured 5G requires a 4x increase in antenna density and an upgrade of the entire antenna to radio access node network, which will be challenging in cities due to existing buildings and lack of rights of way.
Acronym Key and Glossary Terms:
AR |
augmented reality
|
CSP |
communications service provider
|
ITU |
International Telecommunication Union
|
LTE |
Long Term Evolution
|
ms |
millisecond
|
RAN |
radio access network
|
URLLC |
ultrareliable and low-latency communication
|
VR |
virtual reality
|
8 thoughts on “Gartner Group Innovation & Insight: Cutting Through the 5G Hype”
Comments are closed.
Operators are expected to invest over $200 billion in capex on their 5G networks between 2018 and the end of 2023, and much more beyond that. Developed markets such as the USA and South Korea are taking the early lead regarding 5G rollout and service launch, but it will be China that comes to dominate capital expenditure within five years.
Heavy Reading’s latest report, Mobile Operator 5G Capex Forecasts: 2018-2023, seeks to provide insight into how much might be spent, and where and when. It provides estimates and forecasts 5G capex by mobile operators (including investments made by those mobile operators in the fixed transport infrastructure to serve those networks), as well as breakdowns of investment by region, and by network segment (RAN, transport, core and civils). The estimates are underpinned by forecasts for 5G subscribers and 5G macro and microcell sites.
— Simon Sherrington, Contributing Analyst, Heavy Reading
https://www.lightreading.com/mobile/5g/vendors-ready-themselves-for-5g-capex-influx/a/d-id/748505?
In my opinion, the pre-IMT 2020 standard 5G networks (both mobile and fixed “fake 5G”) will have few takers in 2019 and network operators deploying them will lose a lot of money.
Those “fake 5G” networks will all have to be redesigned and re-architected after the ITU-R and ITU-T 5G standards have been completed in late 2020 or early 2021 (3GPP Rel 16 3 month slip). It could be a forklift upgrade, depending on the final IMT 2020 standard for Radio Interface Technology (RIT) chosen by ITU-R WP 5D and the non radio related IMT 2020 standards being progressed by ITU-T.
5G Wireless has grown to encompass a plurality of technologies, among them separate classes of wireless antennas for delivering different categories of wireless fixed and mobile services. Telecom industry experts are now concerned that the US’ two largest carriers may be simply rebranding faster 4G Wireless and home Internet services, particularly to trigger the revenue boots they need to fund the multiple infrastructure transitions necessary to make 5G happen.
The “5G Evolution” plan involves AT&T’s introduction of a technology built on top of the existing 4G LTE platform, called LTE-License Assisted Access (LTE-LAA). It’s a mechanism for increasing 4G bandwidth by dynamically allocating channels in the 5 GHz band of the spectrum. And there’s where the confusion begins, because the similarity of “5 GHz” and “5G” are, at best, coincidental — or perhaps, as the legendary former marketing chief of Apple, Jean-Louis Gassée, called it this week, “markitecture.”
Consider the following:
None of the transmission equipment is actually the same. The key purpose of 5G, as it was originally conceived and tested in the US, Europe, and China, is to replace the world’s transmission system with one that is easier and much less costly to maintain than 4G. 5G networks may eventually utilize 4G towers, but not 4G or 3G transmitters.
None of the phones are the same. On the customer side of the equation, since the architecture of mobile devices’ chassis is geared around their antennas, 5G phones — the kind capable of receiving very-high-bandwidth, millimeter-wave (mmWave) transmissions — will be different phones.
In the near-term, Wi-Fi could suffer. Though both telcos and Wi-Fi industry leaders talk about co-existence, the de facto agreement their respective technologies lead to is one where LTE-LAA signals muscle into territories where 802.11ac signals reside, and Wi-Fi politely make room for them. LTE signals are obviously stronger, designed to cover much greater distances. While existing Wi-Fi routers are designed to manage signal contention, their own ability to make room for their own channels could be degraded.
The 5G technologies that make headway at CES 2019 will not include LTE-LAA. Smartphone and device manufacturers perceive their own evolutionary path to 5G, which involves helping along the obsolescence of 4G — leading customers to make the leap off the old networks. Although carriers may urgently need to maximize their 4G revenue streams in order to afford their own 5G transitions, manufacturers such as Apple (which used to avoid CES, but won’t this year) now desperately need 5G to establish the baseline for their next generations, in a market which many experts are perceiving as already saturated and in danger of commoditization.
Even with these clear and contentious boundaries between wireless technologies, AT&T confirmed last month it plans to upgrade the software of some of its customers’ existing phones this spring, in areas where its 4G transmitters are being upgraded with LTE-LAA, to register a “5G E” icon instead of a “4G” icon.
AT&T offers this official explanation: “We’re laying the 5G network foundation with 5G Evolution and LTE-LAA. In technology terms, that means we’re upgrading cell towers with LTE Advanced features like 256 QAM, 4×4 MIMO [antenna multiplexing], and 3-way carrier aggregation. These technologies serve as the runway to 5G by boosting the existing LTE network and priming it for the future of connectivity. We can enable faster speeds now, and upgrade to 5G when it’s ready.”
https://www.zdnet.com/article/ces-2019-are-the-newly-launched-5g-services-truly-5g-wireless/
Are consumers willing to pay (more) for 5G?
Two recent studies highlighted consumers’ willingness to pay a premium for 5G service, but devices, and whether 5G actually provides a new kind of customer experience, could prove to be sticking points.
Matrixx Software recently surveyed more than 4,000 mobile users in both the U.S. and the U.K. to ask about the value that users place on next-generation networks. Matrixx concluded that “respondents revealed a willingness to open their wallets if 5G delivers an enhanced connectivity experience.”
“The feedback from consumers paints a very clear picture for operators — ‘deliver a 5G experience worth the attention, and we’ll gladly pay for the privilege of using it,’” said Dave Labuda, founder, CEO and CTO of Matrixx Software. He added that “5G presents a real opportunity to deliver a powerful value-add to the consumer,” but went on to say that “Speed to network isn’t the whole battle. The operator who wins the 5G race will be the one to deliver an entirely new experience that trumps what is available to consumers today.”
Matrixx’s survey also found that 16% of those surveyed were not willing to pay more for 5G — either because their current service was good enough; they figured that carriers would eventually provide 5G anyway; they simply couldn’t afford to pay more; or they felt that the potential benefits didn’t justify the added cost.
Both the Matrixx survey and a PwC survey from last fall found that consumers were, at least at some level, dissatisfied with current mobile and/or home network services and are hoping 5G can resolve their issues. The Matrixx survey found that with “nearly 70 percent of mobile users surveyed across both continents [complained]that 4G connectivity is too slow, isn’t available everywhere, and connections are not reliable in heavy traffic areas.”
The PwC survey, conducted last fall across a statistically representative sample of 1,000 Americans between the ages of 18-64 who have access to the internet, found that despite relative overall satisfaction with home and mobile services, there is “mounting frustration with overall reliability, speed and cost” of current offerings. In particular, PwC that more consumers were “completely satisfied” with their mobile internet experience than their in-home one and that faster internet access via 5G was the primary reason that users were willing to pay more for 5G.
PwC reported that 33% of respondents said they would pay more for 5G in the home, while 31%
would do the same for mobile. On average, end users were willing to pay an extra $5.06 per month for 5G service to the home and an extra $4.40 per month for mobile 5G.
Matrixx’s survey showed an overall promising picture of willingness to pay — and pay more — for 5G, if carriers can deliver a better consumer experience. The company found that of the 33% of consumers who were confident that 5G would solve their connectivity issues, 87% planned to upgrade to a 5G device and 78% were willing to pay more for such devices; 88% indicated willingness to pay more for 5G network access; and 76% said that they would switch carriers to get 5G service.
PwC, meanwhile, found that seven out of ten respondents said that if they needed a new device to utilize 5G, they would wait until they were eligible for an upgrade rather than buying a new device as soon as it was available.
References:
https://www.businesswire.com/news/home/20190124005263/en/5G-Customers-Pay-Promise/
https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/promise-5g.html
https://www.rcrwireless.com/20190124/5g/are-consumers-willing-to-pay-more-for-5g
5G EXPOSED
https://www.5gexposed.com/usa/
Thanks for summarizing Gartner’s 5G market assessment. You are a very intelligent person and I most appreciate reading the IEEE Techglog each day!
This is one awesome article. Thanks for sharing this Garnter piece along with all the other false 5G statements and promises, e.g. 5G standards are complete, ultra low latency and ultra high reliability are available now in 5G base stations and endpoints, so is 5G signaling and 5G Core network, virtualized RAN, security, net management, etc. All lies!
wonderful article