Executive Summary: IMT-2020.SPECS defined, submission status (?), and 3GPP’s RIT submissions (2)

Introduction – IMT-2020.SPECS:

The forthcoming ITU-R recommendation (aka standard) “IMT-2020.SPECS” identifies the terrestrial radio interface technologies of International Mobile Telecommunications-2020 (IMT-2020) and provides the detailed radio interface specifications.  This new standard will NOT include IMT 2020 non-radio aspects, such as 5G Core, Signaling, Network Slicing, Network Management/Maintenance, Security/Privacy, Fault Detection/Recovery, Codecs, etc.

This new recommendation was developed by ITU-R WP5D (aka 5D) over the last four or five years. It consists of IMT 2020 (5G) Radio Interface Technologies (RIT) and Sets of Radio Interface Technologies (SRIT).

The final IMT-2020.SPECS is expected to be approved in late November 2020 at the ITU-R SGD meeting.

IMT 2020 RIT/SRIT submission status:

IMT 2020 RIT submissions from 3GPP/China/Korea [1.], TSDSI [2], DECT/ETSI, and Nufront are all being progressed by 5D.  The latter two submissions have defined their own version of 5G New Radio (NR) as they do NOT use 3GPP’s 5G NR.

->Hence, there are potentially three different 5G NRs (as the basis for the respective RIT submission) that will be standardized in IMT-2020.SPECS if the DECT/ETSI and Nufront submissions achieve final approval from WP5D.

Note 1.  ATIS found the China and Korea IMT 2020 RIT/SRIT submissions to be technically identical to 3GPPs.

Note 2.  The TSDSI submission uses 3GPP’s 5GNR but also ADDS functional capability to support Low Mobility Large Cell (LMLC).

5D has approved the 3GPP and TSDSI RIT/SRIT submissions to be progressed to the next step at their recent e-Meeting, but there is still confusion (at least for this author) as to whether the China and Korea submissions (which were stated to be technically identical to 3GPP submissions) will also be progressed. If they are, it will pose a version change nightmare IMHO. 5D posed additional work for both DECT/ETSI and Nufront RITs before they can be progressed to the next step at 5D’s October meeting.

………………………………………………………………………………………………………………………

Overview of IMT-2020.SPECS:

The radio interface specifications in IMT-2020.SPECS detail the feature and parameters of IMT-2020. This Recommendation indicates that IMT-2020 enables worldwide compatibility, international roaming, and access to the services under all three usage scenarios, including enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable and low latency communications (URLLC).

The capabilities of IMT-2020 include:
– very high peak data rate;
– very high and guaranteed user experienced data rate;
– quite low air interface latency;
– quite high mobility while providing satisfactory quality of service;
– enabling massive connection in very high density scenario;
– very high energy efficiency for network and device side;
– greatly enhanced spectral efficiency;
– significantly larger area traffic capacity;
– high spectrum and bandwidth flexibility;
– ultra high reliability and good resilience capability;
– enhanced security and privacy.

These features enable IMT-2020 to address evolving user and industry needs.  The capabilities of IMT-2020 systems are being continuously enhanced in line with user and industry trends, and consistent with technology developments.

Related ITU-R references:

– Recommendation ITU-R M.1036 Frequency arrangements for implementation of the terrestrial component of International Mobile Telecommunications (IMT) in the bands identified for IMT in the Radio Regulations

– Recommendation ITU-R M.2083 IMT vision -Framework and overall objectives of the future development of IMT-2020 and beyond

– Recommendation ITU-R M.1822 Framework for services supported by IMT

– Report ITU-R M.2320 Future technology trends of terrestrial IMT systems

– Report ITU-R M.2370 IMT traffic estimates for the years 2020-2030

– Report ITU-R M.2376 Technical feasibility of IMT in bands above 6 GHz

Report ITU-R M.2411 Requirements, evaluation criteria and submission templates for the development of IMT-2020

– Report ITU-R M.2410 Requirements related to technical performance for IMT-2020 radio interface(s)

– Report ITU-R M.2412 Guidelines for evaluation of radio interface technologies for IMT-2020

– Resolution ITU-R 56 Naming for International Mobile Telecommunications

– Resolution ITU-R 65 Principles for the process of development of IMT for 2020 and beyond

– Document IMT-2020/1 IMT-2020 Background 2020

– Document IMT-2020/2(Rev.2) Submission and evaluation process and consensus building for IMT-2020

– Document IMT-2020/20 Process and the use of Global Core Specification (GCS), references, and related certifications in conjunction with Recommendation ITU‑R M.IMT-[2020.SPECS]

……………………………………………………………………………………………………………………………………….

IMT-2020 Independent Evaluation Groups:

Under Step 4 of IMT-2020 process, candidate RITs or SRITs were evaluated by Independent Evaluation Groups (IEG) that registered with the ITU-R in conformance with the process. In this step, the candidate RITs or SRITs were assessed based on Reports ITU-R M.2411 and ITU-R M.2412.

Table 1

Index of documents related to IEG final Evaluation Reports
for the candidate technology submissions of IMT-2020 under Step 4

IMT-2020/38(Rev.1)

Summary of Step 4 of the IMT-2020 process for evaluation of IMT‑2020 candidate technology submissions

Registered
Independent Evaluation Group

Summary of IEG Evaluation Results

Based on or References IEG Contributions

Evaluation Reports History Documents

5G India Forum

IMT-2020/39(Rev.1)

5D/136 (Various)

IMT-2020/11(Rev.1)

5G Infrastructure Association

IMT-2020/40

5D/50 (3GPP)

5D/51 (DECT)

5D/52 (Nufront)

5D/53 (TSDSI)

IMT-2020/33(Rev.1)

Africa Evaluation Group

IMT-2020/41

5D/123 (DECT)

5D/124 (TSDSI)

5D/125 (Nufront)

IMT-2020/34(Rev.1)

ATIS WTSC IMT-2020

IMT-2020/42

5D/54 (document map)

5D/55 (3GPP RIT/SRIT- technical details document)

5D/56 (3GPP SRIT)

5D/57 (3GPP RIT)

5D/58 (China)

5D/59 (Korea)

5D/60 (DECT)

5D/61 (TSDSI)

IMT-2020/29(Rev.1)

Beijing National Research Center for Information Science and Technology (Bnrist EG)

IMT-2020/43(Rev.1)

5D/146 (Nufront)

IMT-2020/35

Canadian Evaluation Group

IMT-2020/44

5D/90 (Various)

IMT-2020/30(Rev.1)

ChEG Chinese Evaluation Group

IMT-2020/45

5D/69 (Various)

IMT-2020/10(Rev.2)

Chinese Industry and Research Alliance of Telecommunications (CIRAT)

IMT-2020/46

5D/129 (Nufront)

IMT-2020/36

Telecom Centres of Excellence, India

IMT-2020/47

5D/121 (3GPP)

5D/122 (TSDSI)

IMT-2020/9(Rev.2)

The Fifth Generation Mobile Communications Promotion Forum, Japan

IMT-2020/48

5D/95 (3GPP RIT)

5D/96 (3GPP SRIT)

5D/97 (Nufront)

IMT-2020/32(Rev.1)

Trans-Pacific Evaluation Group

IMT-2020/49

5D/94 (3GPP RIT & SRIT)

IMT-2020/8(Rev.2)

TTA 5G Technology Evaluation Special Project Group (TTA SPG33)

IMT-2020/50

5D/49 (3GPP RIT)

IMT-2020/31(Rev.1)

Wireless World Research Forum

IMT-2020/51

5D/120 (Nufront& TSDSI)

IMT-2020/37

The IEGs utilized the defined ITU-R evaluation methodology and criteria established in the relevant ITU-R Reports covering IMT-2020. ITU-R concluded that the IEGs had fulfilled their role in the process and that the inclusion of views from organizations external to the ITU‑R.

Considering the requirements, evaluation criteria and submission templates for the development of IMT-2020 included in Report ITU-R M.2411, the minimum requirements related to technical performance for IMT‑2020 radio interface(s) in Report ITU-R M.2410, and the guidelines for evaluation of radio interface technologies for IMT‑2020 are included in Report ITU‑R M.2412, the conclusions have been reached for each of the IMT-2020 RIT/SRITs submitted by 3GPP, China, Korea, TSDSI (India), DECT/ETSI, and Nufront.  Those detailed conclusions are beyond the scope of this article.

………………………………………………………………………………………………………………………………………..

Overview of 3GPP’s radio interface technologies (E-UTRA/LTE and 5G NR):

The IMT-2020 specifications known as 5G have been developed by 3GPP and consist of LTE and NR Releases 15, 16, and beyond.

In 3GPP terminology, the term Evolved-UMTS Terrestrial Radio Access (E-UTRA) is also used to signify the LTE radio interface. 5G is a Set of Radio Interface Technologies (RITs) consisting of E-UTRA/LTE as one component RIT and (5G) NR as the other component RIT. Both components are designed for operation in IMT defined spectrum.

5G fulfills all technical performance requirements in all five selected IMT-2020 test environments : Indoor Hotspot – enhanced Mobile Broadband (eMBB), Dense Urban – eMBB, Rural – eMBB, Urban Macro – Ultra Reliable Low Latency Communication (URLLC) and Urban Macro – massive Machine Type Communication (mMTC).

5G also fulfills the service and the spectrum requirements. Both component RITs, NR and E-UTRA/LTE, utilize the frequency bands below 6 GHz identified for International Mobile Telecommunication (IMT) in the ITU Radio Regulations. In addition, the NR component RIT can also utilize the frequency bands above 6 GHz, i.e., above 24.25 GHz, identified for IMT in the ITU Radio Regulations. The complete set of standards for the terrestrial radio interface of IMT-2020 identified as 5G includes not only the key characteristics of IMT-2020 but also the additional capabilities of 5G both of which are continuing to be enhanced.

ITU-R WP5D’s conclusion on 3GPP’s 5G SRIT and 5G RIT is shown in the table below:

Radio Interface Technologies:

NAME: (3GPP 5G:1 SRIT)

Proponents (submission in):

3GPP Proponent (IMT-2020/13)2

Determination whether the RIT or SRIT meets the requirements of Res. ITU‑R 65, resolves 6 e) and f), for the five test environments comprising the three usage scenarios

YES
(Requirements met for five test environments)

Inclusion in the standardization phase described in Step 8

YES

Radio Interface Technologies:

NAME: (3GPP 5G:3 RIT)

Proponents (submission in):

3GPP Proponent (IMT-2020/14)

China (People’s Republic of) (IMT-2020/15)

Korea (Republic of) (IMT-2020/16)

Determination whether the RIT or SRIT meets the requirements of Res. ITU‑R 65, resolves 6 e) and f), for the five test environments comprising the three usage scenarios

YES
(Requirements met for five test environments)

Inclusion in the standardization phase described in Step 8

YES

1 Developed by 3GPP as 5G, Release 15 and beyond (as indicated in Documents 5D/1215 and 5D/1216)

2 The NB-IoT part of IMT-2020/15 (China) candidate technology proposal is technically identical to the specifications for the NB-IoT part of IMT-2020/13 (3GPP SRIT).

3 Developed by 3GPP as 5G, Release 15 and beyond (as indicated in Documents 5D/1215 and 5D/1217)

…………………………………………………………………………………………………………………………………………………………………………..

The 3GPP 5G System (5GS) also includes specifications for its non-radio aspects, such as the core network elements (the Enhanced Packet Core (EPC) Network and 5G Core (5GC) Network), security, codecs, network management, etc. These non-radio specifications are not included in the so-called “Global Core Specifications (GCS)” of IMT-2020.

Support of Industry Verticals:

The E-UTRA/LTE and 5G NR component RITs from 3GPP support a diverse set of mobile broadband (eMBB) services and other so-called industry “verticals,” including URLLC, Industrial IoT, Automotive/V2X, Private Networks (NPN), and others. NR RIT supports in-band coexistence with NB-IoT and eMTC. For optimal support of specific verticals, the 5G NR RIT has been designed, or enhanced, with certain key features, or set of features.

A short summary of relevant NR RIT capabilities for a few industry verticals is provided below.

Ultra-Reliable and Low Latency Communications (URLLC) and Industrial IoT (IIoT): 

For support of Ultra-Reliable and Low Latency Communications services, some of the main features supported by the NR RIT are:
• Logical Channel Priority (LCP) restrictions
• Packet duplication with DC or CA
• New QCI table for block error rate 10*-5
• Physical layer short transmission time interval (TTI)

From 3GPP Rel-16 onwards, URLLC and Industrial IoT use cases are further facilitated by:
• NR PDCP duplication enhancements,
• Prioritization/multiplexing enhancements,
• NR Time Sensitive Communications (TSC) related enhancements,e.g. Ethernet header compression, and
• Precise time information delivery

Vehicle-to-everything (V2X) communications:

From 3GPP Rel-16, NR RIT includes support of Vehicle-to-everything (V2X), mainly by means of NR sidelink communication over the PC5 interface, partly leveraging what was defined for E-UTRA V2X sidelink communication.

Sidelink transmission and reception over the PC5 interface are supported when the UE is inside NG-RAN coverage, irrespective of which RRC state the UE is in, and when the UE is outside NG-RAN coverage.

………………………………………………………………………………………………………………………………………………………………..

IMT-2020 Consensus building and decision by 5D:

– IMT-2020/15 (China) candidate technology proposal is technically identical to the IMT‑2020/14 (3GPP RIT) candidate technology proposal and NB-IoT part of IMT‑2020/13 (3GPP SRIT) candidate technology proposal;

– IMT-2020/16 (Korea) candidate technology proposal is technically identical to the IMT‑2020/14 (3GPP RIT) candidate technology proposal;

Additionally, consensus building has been performed with the objective of achieving global harmonization and having the potential for wide industry support for the radio interfaces that are developed for IMT‑2020. (?????)

As a result of the consensus building in ITU-R among the seven technology proposals, the following groupings are agreed by ITU-R:

– The SRIT proposed in IMT-2020/13 including NB-IoT part to which China (People’s Republic of) (NB-IoT part of IMT-2020/15) is technically identical, is identified in ITU as “3GPP 5G SRIT”1, developed by the Third Generation Partnership Project (3GPP), for Step 7 and subsequent IMT-2020 development.

– The RITs proposed in IMT-2020/14, NR part of IMT-2020/15 and IMT-2020/16 are grouped into the technology identified in ITU as “3GPP 5G RIT”2, developed by the Third Generation Partnership Project (3GPP), for Step 7 and subsequent IMT-2020 development.

……………………………………………………………………………………………………………………………….

Future IEEE Techblog posts on 3GPP Rel 16 and IMT 2020:

This author has been in dialog with 3GPP leaders via the 3GPP Marketing Communications Manager to accurately assess 3GPP Rel 16 completed work items related to 5G (both radio and non-radio aspects).  In particular, we are very much interested in the 3GPP Rel 16 URLLC specification, performance simulation(s), and performance testing (not yet started).  Only after independent performance testing will we know if the URLLC test implementation meets the required performance parameters specified by 3GPP and/or Minimum requirements related to technical performance for IMT-2020 radio interface(s) [ITU M.2410].

The IEEE Techblog Editorial Team is soliciting guest blog posts related to 3GPP Rel 16 and/or issues with IMT-2020.SPECS as well as other topics listed here.

…………………………………………………………………………………………………………………………………………………………….

References:

5G Specifications (3GPP), 5G Radio Standard (IMT 2020) and Standard Essential Patents

3GPP Release 16 Update: 5G Phase 2 (including URLLC) to be completed in June 2020; Mission Critical apps extended

https://techblog.comsoc.org/?q=IMT%202020#gsc.tab=0&gsc.q=IMT%202020&gsc.page=1

 

 

No stopping Huawei: 1st half 2020 revenues rose 13.1%, to $64.9 billion despite U.S. led boycott; ~60% of biz from China!

Huawei Technologies Co Ltd, the #1 telecom equipment company #2 smartphone maker, reported a 13.1% rise in revenue in the first half of the year, showing slower growth as U.S. officials continue to pressure the company’s suppliers and customers.  Revenue rose to 454 billion yuan ($64.90 billion) in the first half of the year. ($1 = 6.9958 Chinese yuan renminbi or RMB).  That was compared to 401.3 billion yuan revenues the year before. Huawei’s growth rate was down from 23.2% in the first half 2019. Huawei said net profit margins were 9.2%, up from 8.7% in the first half 2019.

Reuters

FILE PHOTO: Huawei’s new flagship store is seen ahead of tomorrow’s official opening in Shanghai, following the coronavirus disease (COVID-19) outbreak, China June 23, 2020.

REUTERS/Aly Song/File Photo: REUTERS

……………………………………………………………………………………………………………………

The Chinese behemoth technology company posted the report a day before United Kingdom officials are expected to order the removal of Huawei gear from the nation’s telecommunications networks.

The results were published as Huawei fights a U.S.-led campaign to ban it from Europe’s 5G markets and choke off its supplies of components based on U.S. design expertise or manufacturing technology.  Speculation has risen that UK authorities will this week move to exclude Huawei from the country’s 5G market just months after saying they would restrict it to 35% of any radio access or fiber broadband network.

The UK government previously thought such restrictions – combined with a ban on Huawei in the intelligent “core” of any network – would mitigate the risk and minimize disruption to service providers reliant on Huawei technology.

But security watch dogs are now worried the latest U.S. sanctions would heighten risks and potentially threaten Huawei’s ability to continue serving UK operators.

While other European governments and operators have similar concerns, Huawei has been able to rely on a 5G rollout in China for sales growth.

Victor Zhang, the company’s head of government affairs, told UK officials last week that Huawei will this year erect about half a million base stations for Mobile, Telecom and Unicom, China’s three national operators.

The company has referred to the scale of the Chinese deployment in refuting suggestions it may run out of components early next year. With the current 35% cap on its UK role, it needs components for only about 20,000 UK base stations, which it can easily supply through existing inventory, said a Huawei spokesperson.

A breakdown of the figures released today indicates growth in all three of Huawei’s business lines.

At the carrier division, which develops network products for communications service providers, sales were up 9%, to RMB159.6 billion ($22.8 billion), despite coronavirus-triggered lockdowns in some of Huawei’s most important markets.

While Huawei did not provide a regional breakdown of the numbers, a Chinese splurge on 5G equipment is likely to have fueled the increase given the pressure elsewhere.

Last year, the Chinese market accounted for nearly 60% of Huawei’s entire business, a figure that proves any European restrictions would have only a limited effect on the company.

Huawei’s relatively small enterprise business managed a 15% increase in sales, to RMB36.3 billion ($5.2 billion), while its device-making consumer business – which last year blamed U.S, sanctions for wiping about $10 billion off sales – said revenues were up 16%, to about RMB255.8 billion ($36.6 billion).

“Our business depends on delivering what our customers need,” said Zhang in a prepared statement about the latest numbers. “These results show that they continue to choose Huawei when they want reliability, security and value.”

Zhang said: “Our priority here is to build a better-connected UK where everyone can benefit from 5G and fiber broadband, no matter where they live.”

BT and Vodafone, the UK operators most heavily reliant on Huawei’s products, have told UK officials they need at least five years to phase out the Chinese vendor.  Anything less and customers would face major disruption, including outages as equipment is replaced, said technology executives during a parliamentary committee last week.

…………………………………………………………………………………………………………..

Huawei’s rise in sales comes after more than a year of pressure from American officials on the company’s suppliers and customers. The company sells 5G networking equipment to carriers and smart phones and laptops to consumers.

American officials placed Huawei on a blacklist in May of last year, restricting sales to the company of U.S.-made goods such as semiconductors. Huawei built up inventories and also continued to design its own chips and have them manufactured by Taiwan Semiconductor Manufacturing Co Ltd and others.

“Huawei has promised to continue fulfilling its obligations to customers and suppliers, and to survive, forge ahead, and contribute to the global digital economy and technological development, no matter what future challenges the company faces,” the company said in a statement on Monday.

In May, U.S. officials announced new rules aimed at constricting Huawei’s ability to self-supply chips, an ability that is critical to its efforts to sell 5G networking gear.

The first half results showed faster growth than Huawei’s first quarter results released in April. For the first quarter, revenues rose by about 1% to 182.2 billion yuan, versus 39% growth posted a year previous. Net profit margin in the first quarter narrowed to 7.3% from about 8% a year earlier.

Huawei did not report unit shipments of phones. Research firm IDC reported Huawei was the second largest phone maker in the first quarter of 2020, with 17.8% market share, behind No. 1 Samsung Electronics Co Ltd and ahead of No.3 Apple Inc.

References:

https://www.usnews.com/news/technology/articles/2020-07-13/huawei-reports-131-rise-in-first-half-revenue

https://www.lightreading.com/asia/huawei-books-$1b-growth-in-h1-profit-despite-us-led-backlash/d/d-id/762360?

Bloomberg Opinion: China Is Winning the 5G Base Station Race

By Anjani Trivedi

China is building tens of thousands of 5G base stations every week. Whether it wins technological dominance or not, domestic supply chains may be revived and allow the country to maintain – and advance — its position as the factory floor of the world, even as Covid-19 forces a rethink in how globalization is done.

By the end of this year, China will have more than half a million of these 5G cell towers on its way to a goal of 5 million, a fast climb from around 200,000 already in use, enabling faster communication for hundreds of millions of smartphone users. By comparison, South Korea has a nearly 10% penetration rate for 5G usage, the highest globally. The much-smaller Asian country had 115,000 such 5G base stations operating as of April.

5G base stations are sprouting all over China. Photo Credit: China News Service/Visual China Group/Getty

……………………………………………………………………………………………………………………………………………….

The coronavirus shut down factories and industrial sectors, triggering a rethink of supply chains – away from China. What analysts are calling “peak” globalization and the rise of factory automation could shift production to higher-cost countries in North America and Southeast Asia. It will take a while, but the global dependence on China will come down, the thinking goes. Still, with trade ravaged by Covid-19, other countries and telecom operators will struggle to match China’s spending.

For China, there’s an opportunity to clear the way to forcefully implement its industrial policy agenda, without interference from criticism over subsidies and unfair competition. The so-called Central Comprehensively Deepening Reforms Commission, headed by President Xi Jinping, has approved a three-year plan to give state-owned enterprises yet more sway in the economy.

Beijing’s ambitious programs are still in the construction phase. Macro base stations are the nuts and bolts of building out 5G networks, and will exceed their 4G predecessors by almost 1.5 times. Capital expenditure could peak at $30 billion this year, according to Goldman Sachs Group Inc. analysts, up from $5 billion last year. Beijing wants more local governments and companies to get involved. Each station costs around 500,000 yuan ($71,361) and has a long value chain that includes electrical components, semiconductors, antenna units and circuit boards. The vast number of companies spawned by the project are all contributing to China’s push to get ahead.

For the industrial complex, the onset of 5G will enable greater connectivity between machines and much more data transfer and collection. Fifth-generation technology is expected to have a big impact through increasingly efficient and automated factory equipment, and tracking the movement of inventory and progress of production lines and assets. Manufacturing is expected to account for almost 40% of 5G-enabled industry output, according to  Bernstein Research analysts.

From sensors and data clouds, to chips and collaborative robots and computer-controlled machinery, a whole universe of little-known Chinese companies is coming to the fore. Memory chip maker Gigadevice Semiconductor (Beijing) Inc. has ridden the trend, as has Yonyou Network Technology Co., China’s version of Salesforce.com Inc. For some of these companies, government subsidies are a significant part of earnings, as my colleague Shuli Ren has noted. Stock prices have surged in recent months for firms like Shennan Circuits Co., which makes printed circuit boards, and Maxscend Microelectronics Co., a manufacturer of radio frequency chips. Some are seeing their market capitalization values balloon by billions of dollars as Beijing has upped the ante on new infrastructure.

As Covid-19 absorbs the world’s attention, Beijing’s steady focus on implementing this industrial policy may make China the manufacturer of parts that most countries will need – soon. In other words, it will yet again become the factory floor, mastering the production of all things 5G.

Article originally published at https://www.bloomberg.com/opinion/articles/2020-07-12/china-s-next-trillion-dollar-war-is-over-5g-manufacturing

References:

https://techblog.comsoc.org/?q=China%205G#gsc.tab=0&gsc.q=China%205G&gsc.page=1

https://www.cnet.com/news/5g-will-change-the-world-and-china-wants-to-lead-the-way/

https://www.voanews.com/east-asia-pacific/chinas-long-term-plan-shape-future-technology

https://www.livemint.com/news/world/world-waking-up-to-china-s-true-intentions-to-dominate-5g-us-official-11593171649885.html

5G Specifications (3GPP), 5G Radio Standard (IMT 2020) and Standard Essential Patents

by Yigang Cai, PhD

Introduction:

On July 3, 2020, 3GPP (the organization that generates all the specifications for cellular networks) announced that its Release 16 (R16) specification was frozen, and thereby declared the completion of the first evolution of “5G New Radio (NR).”  As 3GPP’s specs have “no official standing,” they must be transposed by SDOs, like ITU, ETSI, ATIS, TSDSI (India), etc.  The international standard for 5G Radio aspects is known as IMT 2020.specs, which includes the Radio Interface Technology (RIT) and Set of Radio Interface Technologies (SRIT) from various proponents, including 3GPP (IMT-2020/14, and /IMT-2020/13, respectively).

3GPP R16 is the first technical specification in the history of 3GPP that was reviewed and finalized through an e-meeting (due to the COVID-19 travel and meeting restrictions). The declared R16 completion was the result of collaboration and coordination amongst many global companies, government agencies and telecom regulators.

From the 3GPP website: “Rel-16 is now officially Frozen. Rel-15 and Rel-16 constitute the basis for 5G and this is a great achievement and recommended that delegates hold a personal celebration for this.”

The complete R16 spec not only enhances the functions of 5G, but also allows 5G to enter a new digital ecosystem. It takes into account factors such as cost and efficiency, so that the basic investment in wireless communications infrastructure can play a greater role and further help the digital transformation of the social economy.  Let’s examine 3GPP’s 5G NR in the context of R15 and R16:

  • “5G NR” in R15 was frozen in 2018. It strived to produce a “usable” specification for Physical (PHY) layer transmit/receive in 5G trials/pilots and early (pre-IMT 2020 standard) 5G networks.
  • In contrast, “5G NR” in R16 will achieve an “easy to use” and more robust 5G transmit/receive capability.
    3GPP R16 is a major release for the project as noted in an earlier IEEE Techblog post. It brings the specification organization’s ITU-R WP 5D submission “IMT-2020 Radio Interface Technology/Set of Radio Interface Technologies (RIT/SRIT)” to a more complete 5G system; what 3GPP calls “5G Phase 2.”

3GPP R16 is supposed to enhance Ultra-Reliable (UR) Low Latency Communications (URLLC), support V2V (vehicle-to-vehicle) and V2I (vehicle-to-roadside unit) direct connection communications, and support 5GS Enhanced Vertical and LAN Services as reported in the earlier IEEE Techblog article.  Please refer to References below for further information. CLICK on image below to enlarge it.

URLLC is 1 of 3 use cases for 5G/IMT 2020. It is intended for mission critical, precise, accurate, always ON/never down, real time communications that require low latency in the 5G access and core networks.

……………………………………………………………………………………………………………

Editor’s Note: ONLY the 3GPP “5G Radio Aspects” are included in the forthcoming IMT 2020 RIT/SRIT standard, which is expected to be approved in late November 2020 by ITU-R SG D. All the non-radio aspects, such as 5G Core Network, network slicing, network management, privacy and security, etc. will NOT be part of IMT 2020. However, those declared R16 completed work items are likely to be transposed by ETSI into international standards.

……………………………………………………………………………………………………………

Perspective on 5G Standard Essential Patents (SEPs):

The announcement of the 3GPP R16 freeze also means the “War of SEPs (Standard Essential Patents [1.]),” i.e. those patents that are related to 5G NR standards/specifications might come to the end of a critical stage. However, it’s likely that a new SEP war will start soon. But that is a subject for another day.

Note 1.  A standard essential patent (SEP) is a patent that claims an invention that must be used to comply with a technical standard or specification to be standardized by an accredited standards development organization (SDO).

…………………………………………………………………………………………………………………………………………………………………………..

During 5G NR specification development, industries and companies have competed in a 5G patent race and generated thousands of SEPs. A recent study, published in the IEEE Techblog, found that Huawei was the undisputed leader in 5G SEPs. Some companies tried to convince the world they are leading the SEP war. However, the news and hype about published SEPs has often misled the public.

From this author’s standards and patent experiences, there are some facts of 5G SEPs which have been neglected in the SEP war:

  • There is no one-to-one mapping between declared SEP and 5G standards feature. In fact, one standards contribution (e.g., WID, CR, WF or others in 3GPP) may be declared with one or multiple SEPs, or one SEP is declared in multiple contributions. SEP number declared does not match standards features.
  •  Many of SEP relevant standards contributions are not taken or baselined by standards bodies in standards specifications. Someone can do statistics what percentages (overall and/or per contributing company) of SEP relevant standards are agreed or approved in standards bodies.
  •  Some declared SEPs, including filed and published patents, may not be granted, or may even be rejected, after standards contributions are baselined.
  • One standards contribution may be co-authored/co-signed with multiple companies, it is very likely multiple companies filed multiple patents for the same standards contribution.

There is no doubt SEPs can accelerate 5G standards development and enhance standards feature quality. But, the war of SEPs also brings some confusions in 5G technology development, implementation, deployment and applications.

First of all, the patent war lead to industries creating numerous patents which actually may not be “essential.”  We all understand that a considerable percentage of those patents have no real value, i.e. they are not implementable or deployable and so not at all profitable.

Companies try to earn IPR revenues from SEPs and spend enormous efforts and finances focusing on creation of SEPs (for example, giving over the half of total IPR budget to SEP generation) because they probably believe licensing of granted SEPs can bring IPR revenue much quick. However, simple number of declared SEPs is much less important than innovation of critical 5G features and functions.

The 5G SEP war we have recently experienced concentrates on patent number; not patent quality. In fact, a feature critical invention can be much better and heavier than dozens of banal and non-essential SEPs which have been seen almost every aspect.

Conclusions:

Industry success relies on innovations, such as technique innovation, cultural innovation, and business innovation. There is no single high-tech company that has succeeded by starting numerous DEPs. Relying on licensing of granted patents cannot produce a great company. It does not mean patent productivities not important. Inventions in 5G should create more useful and reliable features, products, applications and capability to meet commerce and consumer needs (unfortunately, we have not seen many consumer-related 5G features so far).

5G and “5G Beyond” or “6G” (?) SEPs can strive for implementable and economic inventions, including investment and cost saving, energy saving and green communications. Innovations should drive ecosystem end-to-end solutions and use cases. Currently there are hundreds of 5G use cases that have been identified. Unfortunately, many of them (like the IoT use cases) can also be realized by existing 4G/LTE or enhanced WiFi.

Closing Note on URLLC (Ultra Reliable, ultra Low latency Communications):

URLLC is one of three use cases defined by ITU for the IMT 2020 standard and “5G” networks worldwide.  It is included for both the 5G RAN and 5G Core Network in 3GPP Release 16.  From a 3GPP report on URLLC:

“New 3GPP R16 URLCC use cases with higher requirements include: Factory automation Transport Industry, including the remote driving use case, and Electrical Power Distribution.  A 3GPP “Study on Physical layer enhancements for NR ultra-reliable and low latency communication (URLLC)” concludes that it is beneficial to support a set of enhancements to URLLC, and further establishes detailed recommendations as given in Section 9.2 in TR 38.824.”

However, URLLC 5G NR enhancements for the RAN is currently only 53% complete (as per the 3GPP website). That’s because no performance testing has been done yet to validate if the URLLC enhancement to 5G NR will meet 3GPP’s targeted performance requirements. We have been told by 3GPP marketing manager Kevin Flynn that such URLLC performance testing will be completed in three to six months, however there is no official 3GPP target completion date set at the time this article was published (July 10, 2020).

For URLLC to be successful, we first need standardized URLLC requirements (such as 1 millisecond synchronization accuracy, 0.5-to-1 millisecond air interface (in the RAN) latency, <5 milliseconds end-to-end latency (including the 5G Core Network), and six 9’s reliability) to be achieved on paper as clearly specified 5G NR enhancements.  Then the performance parameters must be verified/validated in duplicable performance tests (by independent testing agencies) and reliably implemented  in both 5G endpoint and network products.  Only then can new 5G system and use cases (e.g. mission critical and/or low latency applications. autonomous vehicles, etc) achieve economic benefits and gains.

Along with the IEEE Techblog Editorial Team, I’ve been carefully researching and studying all aspects of URLLC in 3GPP Release 16 and hope to provide you with a co-authored article which will provide more clarity on that topic.  Stay tuned!

……………………………………………………………………………………………………………………………

About Yigang Cai:

                                                                 Yigang Cai celebrating life!

……………………………………………………………………………………………………………………………………………………….

Yigang Cai, PhD is an IEEE Fellow (2018) and former Senior Research Scientist at Bell Labs. As a long time IEEE volunteer, Yigang served as IEEE ComSoc director of North American Region (NAR) (2012-2013), ComSoc global coordinator of Distinguished Lecturer Tour (DLT) (2010-2011), and ComSoc Chicago chapter chairman (2003-2006).

Dr. Cai is one of most prolific telecommunications industry inventors.  He received the Bell Labs Inventor Award three times (2008, 2010 and 2011), and was honored with a first-ever lifetime Alcatel-Lucent “Distinguished Inventor Award” (2013) with his inventive accomplishments and patent contributions throughout his career with the company. Yigang has filed a total of 1000+ patents globally, of which 665 are granted patents (including 193 U.S. granted patents).

Many of his inventions in wireless networks have been built into products and systems of 2G/3G/4G and 5G, and deployed worldwide. He is one of the pioneers and leaders in developing the principles and components of Machine Type Communications (MTC).  Dr. Cai generated many 5G inventions, including 5G New Radio (NR), 5G end-to-end architectures and use cases (both Access Networks and Core Networks), Network Slicing, MEC, 5G Machine Type Communications (MTC), and Device-to-Device Communications.

Yigang worked with Verizon Wireless to incorporate his work on Core Network MTC architecture, into 3GPP specifications. He was the first inventor in the area of radio interface physical resource sharing [between LTE and eMTC (Category M, or CatM)]. Dr. Cai filed dozens of patents related to that subject matter.  Feature software with those pending patents were developed and delivered to Verizon (2016) and AT&T networks in 2017 (over 40,000 base stations), and twenty some other operators worldwide.

Together with ComSocSCV Chair Emeritus Alan J Weissberger, Yigang published an IEEE Global Communications Newsletter (GCN) article on Substantial Progress in ComSoc North American Region which appeared in the December 2013 issue of IEEE Communications magazine.

…………………………………………………………………………………………………………………………………………………………………………………….

Editor’s Addendum :  3GPP R16 5G work items related to IMT 2020.specs and 5G Non-Radio Aspects:

The two ATIS contributions from 3GPP on the latter’s IMT 2020 RIT/SRIT (based on 3GPP documents PCG45_07 and PCG45_08), were submitted to ITU-R WP5D on 21 May 2020. They were discussed and accepted at the 5D meeting which ended 9 July 2020.  There were no other 3GPP/ATIS contributions related to IMT 2020 at that 5D meeting, which was the deadline for submission of material for inclusion in ITU-R Rec. M.[IMT 2020.SPECS].

Therefore, we do not know what the disposition will be of any other 5G radio related work items in 3GPP R16 that were completed after 21 May 2020.  In particular, the state of 3GPP’s 5GNR enhancements for URLLC.

We understand that the 5G NON-RADIO aspects of R16, e.g. 5G architecture, 5G core, network slicing, network management, security, etc. will NOT be sent to ITU-T.  Rather, they will likely be transposed and standardized by ETSI.

…………………………………………………………………………………………………………………………………………
References:

https://techblog.comsoc.org/2020/03/25/3gpp-delays-release-16-and-17-by-3-months/
https://techblog.comsoc.org/2019/10/06/3gpp-release-16-update-5g-phase-2-including-urllc-to-be-completed-in-june-2020/
https://techblog.comsoc.org/2020/03/24/5g-patent-war-are-nokias-3000-5g-patent-declarations-legit/
https://techblog.comsoc.org/2020/06/24/greyb-study-huawei-undisputed-leader-in-5g-standard-essential-patents-seps/
https://www.nokia.com/about-us/news/releases/2020/03/24/nokia-announces-over-3000-5g-patent-declarations/
https://telecoms.com/503274/5g-patent-chest-beating-is-an-unhelpful-distraction/
https://www.wsj.com/articles/qualcomm-5g-security-and-patent-wars-11576096074
https://www.statista.com/chart/20095/companies-with-most-5g-patent-families-and-patent-families-applications/
https://www.iplytics.com/wp-content/uploads/2020/02/5G-patent-study_TU-Berlin_IPlytics-2020.pdf
https://www.ericsson.com/en/blog/2019/10/5g-patent-leadership
https://www.kidonip.com/news/iplytics-patent-counting-fallacy/
https://www.epo.org/news-events/news/2020/20200312.html

Busting a Myth: 3GPP Roadmap to true 5G (IMT 2020) vs AT&T “standards-based 5G” in Austin, TX

Verizon and Ericsson proof-of-concept trial of Integrated Access Backhaul (IAB) for 5G mmWave network

Today, Verizon and Ericsson announced the successful test of an alternative wireless solution for fiber backhaul: a battery-powered millimeter wave (mmWave) cell site that can be rapidly deployed for wireless 5G network backhaul, while awaiting permanent fiber or power cabling to be installed.  The technology trialed can also be used for quick cell site deployments (without fiber backhaul) in emergency mobile communications with first responders.

For years, regulatory approvals, permitting, licensing for small cells coupled with long times for physical installation of fiber for cell backhaul builds, have slowed down 4G-LTE deployments. Given the dramatic increase in cell sites (macro and small) required to build out 5G (especially mmWave with its short range), this deployment bottleneck will get a whole lot worse.  Verizon refers to its mobile 5G network as  “5G Ultra Wideband.”

……………………………………………………………………………………………….

verizon 5g node

Verizon 5G mm Wave Cell being installed. Photo Credit: Verizon

The Verizon/ Ericsson trial used Integrated Access Backhaul (IAB) technology, which Verizon said last year would be a key tool to expanding its emerging (pre-standard) 5G mobile network.

Verizon IAB uses airlink (aka cellular) connections over mmWave spectrum instead of fiber for part of the wireless signals journey from the user to the (4G or 5G) core of the network. It dynamically allocates a portion of bandwidth for consumers to send data to base stations/small cells and another portion for the cells to connect with the core of the network.

Using mmWave with IAB for both parts of the connection (cell to/from device AND cell to/from 4G-5G core) obviates the immediate need for fiber backhaul.  However, when fiber has been installed and lit, it can replace the portion of the wireless network delivering data to the 4G/5G network core.   That’s because the millimeter wave spectrum allocated to wireless backhaul can be reallocated for cell to/from wireless device connections once the fiber backhaul infrastructure is in place.  That simultaneously boosts both device access speeds and network performance.

IAB is a smart use for millimeter wave spectrum, which prior to the 5G era was widely viewed as unusable for consumer devices and instead was used for applications like line of sight, point-to-point high speed Internet access.

“Fiber is the ideal connection between our network facilities,” said Bill Stone, Verizon’s Vice President of Planning, in a press release. “It carries a ton of data, is reliable, and has a long roadmap ahead as far as technological advancements. It is essential. However, this new IAB technology allows us to deploy 5G service more quickly and then fill in the essential fiber at a later time.”

In an email exchange with RCR Wireless, Karen Schulz, a spokesperson for Verizon, provided further insight into Stone’s comment regarding the role that IAB technology will ultimately play in Verizon’s 5G network.

“We have another phase of trials coming up that will incorporate multi-hops,” Schulz told RCR Wireless. “That is our next step leading to commercial deployment.”

She added that the plan is to actively use IAB as an “acceleration tool” in Ultra Wideband service deployment within UWB footprints.

“Meaning,” she explained, “that it will help us get 5G sites on the air more quickly […] but we do not intend to use the airlink indefinitely. It will help us speed the deployment of cell sites and we will use the airlink for backhaul until we are able to run fiber to the site.”

“Ericsson’s microwave and fiber mobile transport solutions are an important enabler for 5G services,” said Ulf Forssen, Head of Standards & Technology, Development Unit Networks, Ericsson. “This IAB proof of concept demonstrates a complementary solution, enabling faster deployment of the high-quality, high-performance 5G transport needed in a 5G world.”

……………………………………………………………………………………………….

New resources for first responders:

Verizon said that the proof-of-concept also demonstrated that mobile cell sites, which often are deployed during emergencies, can be served by IAB:

In addition to bringing new cell sites on air more efficiently, this proof-of-concept trial showed that mobile cell sites can also be connected using IAB. This becomes a critical asset for first responders and public safety agencies who need temporary cell coverage for search and rescue operations, disaster recovery efforts or other emergency situations.  Verizon owns a fleet of mobile cell sites which are regularly deployed for these situations.  However, until recently they have required a fiber connection to carry data, restricting where they can be deployed, or a satellite connection, which are limited and costly.  Now, with IAB technology, coupled with portable generators for power, cell sites can be deployed more rapidly and to a wider range of locations.

“When our first responders need us, we will be there with the resources they need to accomplish their mission critical work,” said Stone.  “IAB technology gives us many more options to ensure communications resources are where our first responders need them anytime they call on us.”

…………………………………………………………………………………………………….

Author’s Note:

IAB is a component of the 3GPP’s Release 16, which was frozen on July 3, 2020.

Rel16 highlights

graphic version3 SP 200222

IAB doesn’t seek to replace traditional and fiber connections between cell towers, which enable massive quantities of data to be transmitted over networks.  Instead, it enables wireless carriers the ability to set up a completely mobile 5G cell site in an area that doesn’t yet have power and/or fiber.

That could give first responders immediate access to 5G’s ultra high bandwidth and low latency for emergency drone operations or video conferences, while Verizon or other carriers work with partners and local governments to install permanent wired infrastructure.Verizon notes that while it’s still betting heavily — billions of dollars — on fiber, IAB will enable it to launch 5G services faster at specific locations, “then fill in the essential fiber at a later time.”

…………………………………………………………………………….

Appendix:  5G mmWave Frequencies:

Based on ITU-R WRC 19 conference recommendations, ITU-R WP5D is revising of Recommendation ITU-R M.1036-6: Frequency arrangements for implementation of the terrestrial component
of International Mobile Telecommunications in the bands identified for IMT in the Radio Regulations.

The new spectrum added will include the following mmWave frequencies, which are likely to be used with the forthcoming IMT 2020.specs standard:

Frequency arrangements in the bands: 24.25-27.5 GHz, 37-43.5 GHz, 45.5-47 GHz. 47.2-48.2 GHz, 66-71 GHz.  Those mmWave frequencies will all use unpaired TDD for duplex operation, i.e. separation of input/output transmissions over the same frequency bands.

References:

https://www.globenewswire.com/news-release/2020/07/07/2058717/0/en/Deploying-the-5G-Ultra-Wideband-Network-just-got-a-little-easier.html

Verizon, Ericsson test IAB as an ‘acceleration tool’ for 5G deployment

 

Verizon IAB Aims to Speed 5G Builds

Verizon and Ericsson test instant 5G cell towers for emergencies

 

Assessment: Nokia and Samsung tout new equipment for Open RAN and Virtual RAN

For years, Huawei, Ericsson, Nokia, Samsung and ZTE supplied most of the wireless network infrastructure equipment (base stations, small cells, core network, etc) for building cellular networks and mobile operators can only pick one for each part of their network.  That may change with the movement of legacy telecom equipment companies like Nokia and Samsung announcing Open RAN products.

Nokia today became the first major telecom equipment maker to commit to adding open interfaces in its products that will allow mobile operators to build networks that are not tied to a vendor.  It’s Open Radio Access Network (Open RAN), aims to reduce reliance on any one vendor by making every part of a wireless 3G/4G/5G base station modular and interoperable which permits network operators to choose different suppliers for different components.  The company bolded stated in its press release:

“Nokia Open RAN (O-RAN) solutions will deliver world-class performance and security to the O-RAN ecosystem.”

As part of its implementation plan, Nokia plans to deploy Open RAN interfaces in its baseband and radio units, a spokesman said. An initial set of Open RAN functionalities will become available this year, while the full suite of interfaces is expected to be available in 2021, the company said.

Nokia, unlike other Ericsson, Huawei, and other base station vendors, has participated in the development of open RAN technology and have joined the O-RAN Alliance and TIP Open RAN project.

The Finnish telecom giant (which includes what’s left of Alcatel-Lucent) promised an initial set of O-RAN functionalities this year and a “full suite” of O-RAN-defined interfaces in 2021. Nokia’s press release, made no mention of external partners/customers.

“Several operators have now committed to Open RAN,  due to the enhanced flexibility that O-RAN can bring. New operators are fully committing to Open RAN and alternative hardware vendors throughout their networks, and legacy operators are using O-RAN to create opportunities for innovative new products to fit into their complex networks. This overall trend strengthens the ecosystem and allows for specialty radios to address the infinite variety of real-world applications. Nokia is the only major vendor that has fully committed to actively developing the O-RAN interfaces, ensuring that its 5G RAN solutions will support the future open ecosystem the operators are seeking,” said Joe Madden, a principal analyst at Mobile Experts.  

Tommi Uitto, President of Mobile Networks at Nokia, said: “Nokia is committed to leading the open mobile future by investing in Open RAN and Cloud RAN solutions with the aim of enabling a robust telecom ecosystem with strong network performance and security. Nokia’s Cloud RAN solution leads the market and is continuing to evolve to a cloud-native architecture. We have ​the scale and capabilities to address the increased customer demand for this technology, underpinned by the world-class network performance and security that only Nokia can deliver.”

Nokia

………………………………………………………………………………………………………………………………………..

Samsung followed Nokia’s announcement today, announcing RAN products that are fully “virtualized” baseband and radio units. The South Korean conglomerate said in its press release  that it’s  fully-virtualized 5G Radio Access Network (vRAN) solution will be commercially available this quarter.

“The solution provides a new option for mobile operators seeking improved efficiencies, cost savings, and management benefits from deploying a software-based 5G radio infrastructure,” according to that press release.

Samsung’s 5G vRAN consists of a virtualized Central Unit (vCU), a virtualized Distributed Unit (vDU), and a wide range of radio units to enable a smooth migration to 5G. By replacing the dedicated baseband hardware used in a traditional RAN architecture with software elements on a general-purpose computing platform, mobile operators can scale 5G capacity and performance more easily, add new features quickly, and have flexibility to support multiple architectures.  Samsung’s vRAN solution operates on x86-based COTS servers, either with or without hardware accelerators depending on factors such as total bandwidth. The company said:

“When combined with Samsung’s virtualized 4G/5G Core (network), the operator will be able to implement an end-to-end software-based radio and core network running on COTS x86 servers.”

Samsung already commercialized its virtualized Central Unit (vCU) in April 2019, which operates in live networks in Japan, South Korea, and the U.S. The new 5G vRAN solution has expanded to include a virtualized baseband or Distributed Unit (vDU).

“Samsung’s 5G vRAN validates a software-based alternative to vendor-specific hardware, while offering high performance, flexibility, and stability,” said Jaeho Jeon, Executive Vice President and Head of R&D, Networks Business at Samsung Electronics. “Once the solution becomes commercially available this quarter, we look forward to providing carriers with additional architectural options for building innovative and open 5G networks.”

“Samsung is a big believer in open systems,” explained Alok Shah, Samsung’s VP of strategy, marketing and business development. “It’s what our customers are asking for.”

“Now, more than ever, mobile operators recognize the need for quality-driven, flexible, scalable, and cost-efficient network architectures while planning for 5G network success,” said Peter Jarich, Head of GSMA Intelligence. “RAN virtualization will be an important tool in helping to deliver on those demands and Samsung’s continuing vRAN innovation positions it well to deliver.”

Derek Johnston, Samsung’s head of marketing and 5G business development for the Networks unit, said the company completed a final validation test performed for customers this past April. The press release said: “Samsung demonstrated its vRAN capabilities to customers in April 2020, proving the feasibility of full virtualization by operating 5G New Radio (NR) baseband functions in software running on an x86-based COTS server.”

Samsung Wallpapers

…………………………………………………………………………………………………………………………………………………

Samsung is a RAN equipment supplier to cellular networks in  Korea, U.S., and most recently Japan, where the majority of worldwide 5G subscribers are currently located. In addition, Samsung is further expanding its global footprint rapidly to new markets from Europe to Canada and New Zealand.  It has recently closed contracts with Videotron and Telus in Canada, KDDI in Japan and Spark in New Zealand.

In the U.S., it is one of the suppliers for AT&T and Verizon’s 5G networks. Earlier this year the South Korean vendor received a 5G RAN contract with U.S. Cellular. Field trials of the vRAN kit will happen with North American customers in the second half of 2020, according to Johnston.

………………………………………………………………………………………………………………………………………………

Assessment, Comment and Analysis:

1.   Samsung is a smaller player in the RAN market, so likely is going after greenfield or brown field carriers with its Open RAN offerings.  Perhaps, U.S. rural wireless carriers will be fertile ground for the Korean giant, as many have been forced to “rip and replace” Huawei gear.

Samsung named several technology partners, including Qualcomm, HPE, Marvell and Xilinx for its base station products. Samsung, for example, has a deal with HPE to work on 5G core software and edge computing offerings, according to Mike Dano of Light Reading.   For many years, we have been very skeptical about vRANs for many reasons.  While it would greatly reduce the cost and OPEX of dedicated, purpose built RAN infrastructure equipment, it represents a single point of failure, an exponentially enlarged malware attack target, and lower performance, especially latency and jitter (delay variation) requirements for critical real time applications.

2.  Nokia made no reference to other firms (partners or customers) in its O-RAN announcement today. In May, the company said it had joined the Open RAN Policy Coalition to help enable a comprehensive and secure approach to 5G and future network generations.

One has to wonder if Nokia is using their O-RAN/Open RAN Policy Coalition announcements as an optional check-off item for wireless carriers that will buy purpose built RAN equipment today, but want the option of going Open RAN in the future, when the smoke clears?

Much more significant is potential multi-vendor interoperability problems with Open RAN.  There are two independent consortiums generating open source hardware/software specs for it (the O-RAN Alliance and TIP Open RAN project), which have some sort of undescribed relationship.

In an earlier Techblog post, we noted that two vendors from the O-RAN Alliance had to generate their own spec for an O-RAN radio and its interface to the baseband module.

I always thought that an open hardware project (e.g. O-RAN Alliance) would completely specify all hardware modules (like OCP does).  In this case, radios used in 4G/5G cellular networks within an Open RAN environment.  Evidently, I was wrong!

The Open RAN interoperability problem is highlighted by these two quotes in that article:

“Very few companies are participating in the current (OpenRAN) supply chain and mostly offering proprietary radio solutions lacking open interfaces that are not interoperable with other network elements. In addition, the requirement to procure products from trusted vendors in the US market is also causing operators to reconsider supplier options. OpenRAN radios provide new possibilities for operators to implement a secure, cost effective and best of breed solution as networks move to 5G and beyond.”

Parallel Wireless CEO Steve Papa commented to Light Reading that Open RAN (aka O-RAN) “will only be as good as the radios that are available,” he said.  “If Ericsson and Nokia are struggling to be competitive with Huawei’s radios, we should not expect O-RAN to magically solve this problem by using the same semiconductors available to Ericsson and Nokia at present.”

Until it can demonstrate full interoperability between its own products and those made by other O-RAN suppliers, Nokia (along with every other Open RAN supplier) will find it quite difficult to sell O-RAN products.

References:

https://www.nokia.com/about-us/news/releases/2020/07/07/nokia-accelerates-availability-of-open-ran-technology-to-lead-the-open-mobile-future/

https://www.reuters.com/article/us-nokia-5g/nokia-to-add-open-interfaces-to-its-telecom-equipment-idUSKBN2480S0

https://www.lightreading.com/5g/nokia-and-samsung-o-ran-moves-put-pressure-on-ericsson/d/d-id/762205?

https://news.samsung.com/global/samsung-introduces-fully-virtualized-5g-ran-for-commercial-availability

https://www.samsung.com/global/business/networks/insights/blog/realizing-the-benefits-of-virtualized-ran/

https://www.fiercewireless.com/tech/samsung-unveils-commercial-5g-vran

https://techblog.comsoc.org/2020/05/30/ultra-oxymoron-gsma-teams-up-with-o-ran-alliance-without-liaison-with-3gpp-or-itu/

https://techblog.comsoc.org/2020/06/12/mavenir-and-altiostar-collaborate-to-deliver-openran-radios-for-us-market/

Non-coherent Massive MIMO for High-Mobility Communications

By Ana García Armada, PhD, Professor at Universidad Carlos III de Madrid

Introduction:

While driving on a highway in Europe (as a passenger), I tried my smartphone’s 4G-LTE connection and the best I could get was 30 Mbps downlink, 10 Mbps uplink, with latency around 50 msec. This is not bad for many of the applications we use today, but it is clearly insufficient for many low latency/low jitter mobile applications, such as autonomous driving or high-quality video while on the move.

At higher speeds, passengers of ultra-fast trains may enjoy the travel while working. Their 4G-LTE connections are often good enough to read or send emails and browse the internet. But would a high speed train passenger be able to have a video conference call with good quality? Would we ever be able to experience virtual reality or augmented reality in such a high mobility environment?

How to achieve intelligent transport systems enabling vehicles to communicate with each other has been the subject of several papers and reports as per Reference [1]. Many telecommunications professionals are looking to 5G for a solution, but it is not at all certain that the IMT 2020 performance requirements specified in ITU-R M.2410 for low latency with high speed mobility will be met anytime soon (by either 3GPP Release 16 or IMT 2020 compliant specifications).  

…………………………………………………………………………

Editor’s Note: In ITU-R M.2410, the minimum requirements for IMT 2020 (“5G”) user plane latency are: 4 ms for eMBB (enhanced mobile broadband) and 1 ms for URLLC (ultra high reliability, ultra low latency communications).

IMT 2020 is expected to be approved  by ITU-R SG D after their November 23-24,2020 meeting, which is one week after the ITU-R WP 5D approval at their November  17-19, 2020 meeting.

There are three different “5G Radios” being progressed as IMT 2020 RIT/SRIT submissions: 3GPP, DECT/ETSI, and Nufront. The TSDSI’s (India) submission adds Low Mobility Large Cell (LMLC) to 3GPP’s “5G NR.”

……………………………………………………………………………………………………………………………………….

The fundamental reason why we do not experience high data rates using 4G-LTE lies in the signal format. That did not change much with 3GPP’s “5G NR,” which is the leading candidate IMT 2020 Radio Interface Technology (RIT).   Please refer to Editor’s Note above.

In coherent detection, a local carrier mixes with the received radio frequency (RF) signal to generate a product term. As a result, the received RF signal can be frequency translated and demodulated. When using coherent detection, we need to estimate the channel (frequency band). The amount of overhead strongly depends on the channel variations. That is, the faster we are moving, the higher the overhead. Therefore, the only way to obtain higher data rates in these circumstances is to increase the allocated bandwidth (e.g. with carrier aggregation [2]) for a particular connection, which is obviously a non-scalable solution.

Coherent Communications, CSI, and OFDM Explained:

A coherent receiver creates a replica of the transmitted carrier, as perfectly synchronized (using the same frequency and the same phase) as possible. Combining coherent detection with the received signal, the baseband data is recovered with additive noise being the only impairment.

However, the propagation channel usually introduces some additional negative effects that distorts the amplitude and phase of the received signal (when compared to the transmitted signal). Hence, the need to estimate the channel characteristics and remove the total distortion. In wireless communications, channel state information (CSI) refers to known channel properties of a communication link, i.e. the channel characteristics. CSI needs to be estimated at the receiver and is usually quantized and sent back to the transmitter.

Orthogonal frequency-division multiplexing (OFDM) is a method of digital signal modulation in which a single data stream is split across several separate narrowband channels at different frequencies to reduce interference and crosstalk. Modern communications systems using OFDM carefully design reference signals to be able to estimate the CSI as accurately as possible. That requires pilot signals in the composite Physical layer frame (in addition to the digital information being transmitted) in order to estimate the CSI. The frequency of those reference signals and the corresponding amount of overhead depends on the characteristics of the channel that we would like to estimate from some (hopefully) reduced number of samples.

Wireless communications were not always based on coherent detection. At the time of the initial amplitude modulation (AM) and frequency modulation (FM), the receivers obtained an estimate of the transmitted data by detecting the amplitude or frequency variations of the received signal without creating a local replica of the carrier. But their performance was very limited. Indeed, coherent receivers were a break-through to achieve high quality communications.

Other Methods of Signal Detection:

More recently, there are two popular ways of non-coherently detecting the transmitted data correctly at the receiver.

  1. One way is to perform energy or frequency detection in a similar way to the initial AM and FM receivers.

  2. In differential encoding, we encode the information in the phase shifts (or phase differences) of the transmitted carrier. Then, the absolute phase is not important, but just its transitions from one symbol to the other. The differential receivers are much simpler than the coherent ones, but their performance is worse since noise is increased in the detection process.

Communications systems that prioritize simple and inexpensive receivers, such as Bluetooth [3], use non-coherent receivers. Also, differential encoding is an added feature in some standards, such as Digital Audio Broadcasting (DAB). The latter was one of the first, if not the first standard, to use OFDM in wireless communications. It increases the robustness to mitigate phase distortions, caused by the propagation channel for mobile, portable or fixed receivers.

However, the vast majority of contemporary wireless communications systems use coherent detection. That is true for 4G-LTE and “5G NR.”

Combining non-coherent communications with massive MIMO:

Massive MIMO (multiple-input, multiple-output) groups together antennas at the transmitter and receiver to provide better throughput and better spectrum efficiency. When massive MIMO is used, obtaining and sharing CSI threatened to become a bottleneck, because of the large number of channels that need to be estimated because there are a very large number of antennas.

A Universidad Carlos III de Madrid research group started looking at a combination of massive MIMO with non-coherent receivers as a possible solution for good quality (user experience) high speed mobile communications. It is an interesting combination. The improvement of performance brought by the excess of antennas may counteract the fundamental performance loss of non-coherent schemes (usually a 3 dB signal-to-noise ratio loss).

Indeed, our research showed that if we take into account the overhead caused by CSI estimation in coherent schemes, we have shown several cases in which non-coherent massive MIMO performs better than its coherent counterpart. There are even cases where coherent schemes do not work at all, at least with the overheads considered by 4G-LTE and 5G (IMT 2020) standards. Yet non-coherent detection usually works well under those conditions. These latter cases are most prevalent in high-mobility environments.

………………………………………………………………………………………….

Editor’s Note:  In ITU-R M.2410, high speed vehicular communications (120 km/hr to 500 km/hr) using “5G” (IMT 2020) is mainly envisioned for high speed trains.  No “dead zones” are permitted as the “minimum” mobility interruption time is 0 ms!

………………………………………………………………………………………….

When to use non-coherent massive MIMO?

Clearly in those situations where coherent schemes work well with a reasonable pilot signal overhead, we do not need to search for alternatives. However, there are other scenarios of interest where non-coherent schemes may substitute or complement the coherent ones. These are cases when the propagation channel is very frequency selective and/or very time-varying. In these situations, estimating the CSI is very costly in terms of resources that need to be used as pilots for the estimation. Alternatives that do not require channel estimation are often more efficient.

An interesting combination of non-coherent and coherent data streams is presented in reference [5], where the non-coherent stream is used at the same time to transmit data and to estimate the CSI for the coherent stream. This is an example of how coherent and non-coherent approaches are complementary and the best combination can be chosen depending on the scenario. Such a hybrid scheme is depicted in the figure below.

Figure 1. Suitability of coherent (C), non-coherent (NC) and hybrid schemes (from reference [5])

……………………………………………………………………………………………………………………………………………………….

What about Millimeter Waves and Beam Steering?

The advantage of millimeter waves (very high frequencies) is the spectrum availability and high speeds. The disadvantages are short distances and line of sight communications required.

Compensating for the overhead by adding more bandwidth, may be a viable solution. However, the high propagation loss that characterizes these millimeter wave high frequency bands creates the need for highly directive antennas. Such antennas would need to create narrow beams and then steer them towards the user’s position. This is easy when the user equipment is fixed or slowly moving, but doing it in a high speed environment is a real challenge.

Note that the beam searching and tracking systems that are proposed in today’s wireless communications standards, won’t work in high speed mobile communications when the User Endpoint (UE) has moved to the coverage of another base station at the time the steering beams are aligned! There is certainly a lot of research to be done here.

In summary, the combination of non-coherent techniques with massive MIMO does not present any additional problems when they are carried out in millimeter wave frequencies. For example, reference [6] shows how a non-coherent scheme can be combined with beamforming, provided the beamforming is performed by a beam tracking procedure. However, the problem of how to achieve fast beam alignment remains to be solved.

Concluding Remarks:

Non-coherent massive MIMO makes sense in wireless communications systems that need to have very low complexity or that need to work in scenarios with high mobility. Its advantage is that it makes possible communications in places or circumstances where the classical coherent communications fail. However, this scheme will not perform as well as coherent schemes under normal conditions.

Most probably, non-coherent massive MIMO will be used in the future as a complement to well-understood and (usually) well-performing coherent systems. This will happen when there are clear market opportunities for high mobility, high speed, low latency use cases and applications.

References:

[1] ITU report: “Setting the scene for 5G: opportunities and challenges”, 2018, https://www.itu.int/en/ITU-D/Documents/ITU_5G_REPORT-2018.pdf

[2] F. Kaltenberger et al., “Broadband wireless channel measurements for high speed trains,” 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 2620-2625, doi: 10.1109/ICC.2015.7248720.

[3] L. Lampe, R. Schober and M. Jain, “Noncoherent sequence detection receiver for Bluetooth systems,” in IEEE Journal on Selected Areas in Communications, vol. 23, no. 9, pp. 1718-1727, Sept. 2005, doi: 10.1109/JSAC.2005.853791.

[4] ETSI ETS 300 401, “Radio broadcasting systems; DAB to mobile, portable and fixed receivers,” 1997.

[5] M Lopez-Morales, K Chen Hu, A Garcia Armada, “Differential Data-aided Channel Estimation for Up-link Massive SIMO-OFDM”, IEEE Open Journal of the Communications Society -> in press.

[6] K Chen Hu, L Yong, A Garcia Armada, “Non-Coherent Massive MIMO-OFDM Down-Link based on Differential Modulation”, IEEE Trans. on Vehicular Technology -> in press.

……………………………………………………………………………………………………………………………………………………….

About Ana García Armada, PhD:

         

Ana García Armada is a full professor at University Carlos III of Madrid, Spain, where she has occupied a variety of management positions (Head of Signal Theory and Communications Department, Vice-dean of Electrical Engineering, Deputy Vice-Chancellor of International Relations, among others). She is currently leading the Communications Research Group at this university. 
 
Prof. Garcia Armada is the co-author of eight book chapters on wireless communications and signal processing. She has published around 150 papers in international journals and conference proceedings and she holds four patents. She has contributed to international standards organizations, such as ITU and ETSI, is a member of the expert group of the European 5G PPP and a member of the advisory committee 5JAC of the ESA as expert appointed by Spain on 5G.
 
Now Chair of the IEEE ComSoc On-Line Content board, Ana has served on the editorial board of IEEE Communications Letters since 2016 (Editor until Feb 2019, Senior Editor from Mar 2019, Exemplary Editor Award 2017 and 2018) and IEEE Transactions on Communications since 2019.  
 
Ana will be writing articles for the Techblog and will review guest blog submissions.   Her main interests are multi-carrier and multi-antenna techniques and signal processing applied to wireless communications.
 
Her webpage is at: http://agarcia.webs.tsc.uc3m.es/ 
And her detailed CV may be viewed at:

T-Mobile shutters Sprint’s 5G network; OpenSignal 5G User Experience report highlights

As expected following the April 1st close of T-Mobile’s acquisition, Sprint’s 5G network (which uses 2.5GHz mid-band spectrum) has been deactivated while the “new T-Mobile” works to re-deploy it across its own network.

The integration of the Sprint mid-band spectrum is a key part of T-Mobile’s 5G strategy, which aims to combine low-band 600MHz spectrum for broad, nationwide 5G coverage with faster but lower-range midband (Sprint’s 2.5GHz network) and short-range mmWave networks for a balance of coverage and speed.

T-Mobile has already deployed its new 2.5GHz spectrum in New York, the first market to benefit from the wireless network operator’s spectrum in low-, mid-, and millimeter wave bands. The operator’s 2.5GHz 5G is also live in “parts” of Chicago, Houston, Los Angeles, New York, and Philadelphia.

Most existing Sprint customers won’t be able to use their current devices going forward to access 5G.  Newer devices that feature Qualcomm’s X55 modem, like the Galaxy S20 5G lineup, will still be able to access the 2.5GHz 5G when they relaunch as part of the new T-Mobile’s 5G network (along with the rest of T-Mobile’s low-band and mmWave 5G spectrum). T-Mobile is offering credits for affected customers to lease a new 5G device.

“We are working to quickly re-deploy, optimize and test the 2.5 GHz spectrum before lighting it up on the T-Mobile network. In the meantime, legacy Sprint customers with compatible devices can enjoy T-Mobile’s nationwide 5G network,” a T-Mobile spokesperson said.

According to data from a new Opensignal 5G User Experience report, customers using T-Mobile’s mid-band 5G are benefitting from average download speeds of around 330Mbps. The mobile analytics company ranks T-Mobile first for 5G availability; with customers receiving a 5G signal around twice as often as AT&T and 56 times more than Verizon.

T-Mobile’s press release about the Opensignal report said customers are seeing average download speeds of 330 Mbps on its mid-band 2.5 GHz network.

5G phone

T-Mobile scored the highest marks for 5G availability in new Opensignal testing. (Getty Images)

From that OpenSignal report:

T-Mobile wins the 5G Availability award, as its 5G users spend 22.5% of time connected to 5G:

The time connected to a 5G service is extremely important if users are to enjoy all of 5G’s benefits. In the U.S., T-Mobile won the 5G Availability award by a large margin with Sprint and AT&T trailing with scores of 14.1% and 10.3%, respectively. Verizon users saw their extremely fast 5G service 0.4% of the time because of the limited geographical reach of the mmWave wireless technology Verizon currently relies upon for 5G and the early stage of the 5G deployment.

Sprint’s 5G users’ experience is already changing as new T-Mobile combines its network capabilities:

When we previously looked at the 5G Download Speed of Sprint’s users some time ago we saw average 5G speeds of 114.2 Mbps reflecting the mid-band 5G wireless spectrum Sprint relied upon. But following the completion of T-Mobile’s acquisition of Sprint, the new T-Mobile is starting to provide Sprint 5G users with access to old T-Mobile’s 600MHz spectrum and so average 5G speeds are now 49.5 Mbps but 5G Availability has risen from 10.3% to 14.1% of time. T-Mobile is still in the process of merging its original network with Sprint and we expect the mobile network experience of Sprint users will continue to change for some time.

………………………………………………………………………………………………………………………………………………………………………….

“Building the fastest 5G network is easy if you only cover less than 50 square miles. Opensignal’s report shows that only T-Mobile is doing the hard work to deliver BOTH 5G coverage and speed. And we’re just getting started,” said Neville Ray, President of Technology at T-Mobile.

“With the addition of Sprint, the Un-carrier’s 5G is getting bigger, better and faster every day, moving quickly on our mission to build the world’s best 5G network, one unlike any other, to people all across the country!”

T-Mobile and Sprint were finally cleared to merge on April 1st, following discussions which began in 2013.

To appease regulators, T-Mobile agreed to sell Sprint’s prepaid business, Boost Mobile, and Virgin Mobile to Dish network for $1.4 billion. The deal also included selling Sprint’s entire 800 MHz portfolio of spectrum to Dish. Those deals formally completed yesterday.

Last month, T-Mobile asked California’s Public Utilities Commission (CPUC) to ease other conditions it agreed to in order for the merger to be granted – including job creation promises following the COVID-19 pandemic, average 5G coverage and speed commitments, and to remove a “burdensome” third independent test of its network.

……………………………………………………………………………………………………………………………………………………………………

References:

T-Mobile switches off Sprint’s 5G network following $26.5 billion merger

https://www.fiercewireless.com/5g/t-mobile-deactivates-sprint-s-legacy-2-5-ghz-5g-ahead-re-deployments

https://www.opensignal.com/reports/2020/06/usa/mobile-network-experience-5g

ETNO, GSMA: EU should adopt “fresh approach” to support fiber & 5G investments; GSMA says 5G SA coming soon?

The European telecom network operators industry group ETNO together with the GSMA have called on the EU to make support for fiber optics communications and 5G investments part of the bloc’s economic recovery plans. In a joint statement to mark the start of the German presidency of the EU, the associations said a fresh approach is needed to ensure the focus is on closing the digital divide and that plans to alleviate that should not become bogged down in regulatory discussions.

“We encourage all institutions to take stock of the socio-economic context and shift regulatory modes from ‘business-as-usual’ to a fresh and comprehensive approach aimed at unleashing the full power of network investment, at full scale and at full pace,” the statement said.

The joint communique then delineated ways policymakers can support the investment in improved connectivity for the EU:

  • Spectrum auctions are timely and conditions for spectrum assignment support network deployment. This includes taking a long-term view to spectrum prices, rather than imposing punitive fees that hamper 5G investment. Also, access and coverage obligations should not diminish the speed and scale of investment in network roll-out;
  • Sharing agreements for Radio Access Network (RAN) are supported and incentivised, so that they contribute to a speedy 5G deployment;
  • All fibre investment models are adequately incentivised at the national level, including co-investment and other forms of partnerships;
  • Innovative infrastructure solutions, such as cloud, edge and quantum computing, are given the appropriate support;
  • Future EU initiatives dramatically reduce roll-out costs for both mobile and fixed networks. This should tackle, for example, unreasonable costs for using public ground as well as complex authorization procedures for both fixed and mobile networks;
  • Open and interoperable interfaces in the RAN are supported. Initiatives such as Open RAN have the potential to support Europe’s multi-vendor approach, while reducing deployment costs, further strengthening the security of the equipment and unleash more network innovation.

The most important thing is helping grow adoption of the new technologies by citizens and businesses, the statement said. This includes supporting digital skills education and training. “Finally, workers of all ages should be put in the condition to develop the necessary digital skills – both through upskilling and reskilling – to thrive in innovative and fast-paced markets.”

Demand stimulus measures can also help bring digital services to public sector organizations like schools, hospitals and local administrations. That would not only support Europe’s economic recovery, but also can contribute to the EU’s climate goals.

The GSMA and ETNO also called on the EU governments to combat the attacks against telecom infrastructure and misinformation surrounding 5G. To date they have counted over 180 arson attacks against mobile antennas in 11 countries.

Media Inquiries:

Alessandro Gropelli, ETNO – gropelli@etno.eu 0032 476 9418 39

Noelle Knox, GSMA Europe – NKnox@gsma.com 0032 470 45 2941

…………………………………………………………………………………………………………………………………………………………………………..

Separately, GSMA says “5G Stand Alone to Become Reality“:

“The deployment of fully virtualized networks using 5G Stand Alone Cores, thereby facilitating Edge Computing and Network Slicing, will enable enterprises and governments to reap the many benefits from high throughput, ultra-low latency and IoT to improve productivity and enhance services to their customers,” said Alex Sinclair, Chief Technology Officer, GSMA.

“5G Stand Alone Option 2 can meet various and more stringent requirements and provide optimal and differentiated solutions, thereby empowering more businesses and unlocking the potential of many services. 5G is changing our society and life,” said Liu Guiqing, Executive Vice President of China Telecom.

“NTT DOCOMO has been actively promoting virtualisation of our core network; we believe that this virtualisation technology is already mature and that our operational know-how will be our advantage. In the future we expect to build dedicated networks, optimised for consumer use cases, such as AR /VR and gaming,” said Hiroyuki Oto, General Manager of Core Network Development Department, NTT DOCOMO, Inc.

The latest version of the 5G SA guidelines ‘5G Implementation Guidelines: SA Option 2 will be released 30th June at 17:00 Beijing time during Thrive China, a new virtual event from the GSMA.

NOTE that those GSMA guidelines come before 3GPP Release 16 5G Architecture (including 5G Core) spec 23.501 is finalized/frozen at 3GPP’s July 2020 meeting.  It seems there will be many versions of 5G core networks:

Alex Quach, VP of Intel’s Data Platforms Group: “The way different service providers implement their 5G core is going to vary. Every service provider has unique circumstances. The transition to a new 5G core is going to be different for every operator.”

Asked if SK Telecom has now completed its 5G Standalone core network, the South Korean carrier was vague in an email reply to FierceWireless. “To commercialize standalone 5G service in Korea, we are currently making diverse R&D efforts including conducting tests in both lab and commercial environment. Our latest achievements include the world’s first standalone (SA) 5G data session on our multi-vendor commercial 5G network.

fiercewireless.com/operators/sk-t

……………………………………………………………………………………………………………………………………………………………………………..

GSMA also states that:

Mobile connections, including cellular IoT as of 1 July 2020 =8,805,024,140   (not the 20B Ericsson and others predicted for 2020)


GROWTH, YEAR ON YEAR= 6.20%
GROWTH, LAST 3 YEARS
GSMA Logo

……………………………………………………………………………………………………………………………………………………………………..

References:

https://etno.eu/news/all-news/8-news/678-joint-statement-telecoms-eu-recovery.html

https://etno.eu/news/all-news.html

https://www.telecompaper.com/news/etno-gsma-call-for-eu-support-for-fibre-5g-investment-to-drive-economic-recovery–1345051

5G Stand Alone to Become Reality

 

MTN 5G launch at 100 sites in South Africa using multiple frequency bands and DSS

MTN South Africa has officially launched its 5G network, a first for its 21 operations across Africa and the Middle East. The 5G network covers areas of Johannesburg and Cape Town, as well as Bloemfontein and Port Elizabeth.  The operator used various spectrum bands, including temporary spectrum assigned by communications regulator Icasa during the Covid-19 state of disaster, to launch the network.  See video interviews in References, directly below this article.

The launch comes after the South African government’s allocation of temporary spectrum and extensive 5G trials and testing. One of the key innovations driving the broad roll-out by MTN has been the adoption of Dynamic Spectrum Sharing (DSS) to overcome the lack of dedicated 5G spectrum.

“Our 5G strategy has been years in the making and we are confident that we have built a strong foundation to grow and support our 5G ecosystem…,” said chief technology and information officer Giovanni Chiarelli.

“One of the key innovations driving the broad roll-out by MTN has been a strategic approach to dynamic spectrum sharing, as these deployments overcome the challenges of lack of dedicated 5G spectrum,” he added.

MTN will deliver 5G connectivity on the 3.5 GHz band at 58 sites including Johannesburg, Cape Town and Bloemfontein, as well as use the 2,100 MHz and 1,800 MHz bands at 35 sites. The operator is re-farming some 4G spectrum to allow it to run 4G and 5G services at the same time, in the same band. This allows for easier migration of network technology from LTE to 5G and allows the company to deploy 5G using existing spectrum assets in the absence of additional high demand spectrum. MTN deployed 5G sites on the 2,100 MHz band in Johannesburg and Port Elizabeth.

In addition, it will use the 700 MHz band (which analog TV broadcasters are still using) at five sites for extensive coverage in small towns, including Port Alfred, Hopetown, Virginia Queenstown and Tsantsabane.

The South African operator will also deploy 5G in the 28 GHz frequency at three sites in Hatfield (Pretoria), Edenvale and Durban.MTN was the first in the southern hemisphere to demonstrate AAA game streaming over its 5G network.

MTN South Africa 5G Coverage map, courtesy of Tech Central. 

In a partnership with Emerge Gaming, MTN demonstrated GameGloud on 5G streamed to a Huawei P40 Pro phone.nch comes on the back of government’s allocation of temporary spectrum and extensive 5G trials and testing. One of the key innovations driving the broad roll-out by MTN has been the adoption of Dynamic Spectrum Sharing to overcome the lack of dedicated 5G spectrum.

“We are extremely encouraged by the release of the temporary spectrum by Icasa. Our call to the regulator and government is to release permanent 4G and 5G spectrum as a matter of urgency so that we can fuel the digital revolution our nation needs to bridge the digital divide that currently deepens the gap between the ‘haves’ and the ‘have-nots’,” said MTN South Africa CEO Godfrey Motsa.

……………………………………………………………………………………………………………………………………………..

References:

https://www.telecompaper.com/news/mtn-launches-first-5g-network-at-100-sites-in-south-africa–1344595

https://techcentral.co.za/mtn-5g-launch-everything-you-need-to-know/99224/

https://techcentral.co.za/this-is-where-you-can-get-mtn-5g-coverage/99203/

 

Posted in 5G

Recent Posts