5G market forecast
Gartner: Market Guide for 3GPP “5G New Radio (NR)” Infrastructure
Editor’s Note:
Most mobile 5G deployments to date are based on 3GPP Release 15 “5G NR” or “NR”in the data plane and Non Stand Alone (NSA), with LTE for everything else (i.e. control plane/signalling, mobile packet core, network management, etc). 3GPP Release 16 will hopefully add ultra low latency, ultra high reliability to the 5G NR data plane. Equally important will be the 5G systems architecture-phase 2 that will be specified in Release 16. That spec includes a 5G mobile packet core (5GC) which is a forklift upgrade from the 4G-LTE Evolved Packet Core (EPC). It remains to be seen which ITU study group will standardized 5GC when 3GPP Release 16 is completed in late June 2020.
From the paper titled Narrowband Internet of Things 5G Performance published in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall):
5G NR supports new frequency bands ranging all the way up to 52.6 GHz. These new frequency bands make large system bandwidths available that are needed to improve the mobile broadband data rates beyond what LTE can offer.
NR also supports a reduced latency by means of reduced transmission time intervals and shortened device processing times compared to LTE. To provide high reliability, NR supports low code rates and a high level of redundancy.
In the initial phase of the transition from 4G to 5G, NR is expected to be a complement to both LTE and NB-IoT, providing enhanced Mobile Broadband (eMBB) and critical IoT services. The past industrial practice suggests that the mobile network operators will stepwise re-farm parts of its LTE spectrum for enabling NR. Since NR supports a new range of frequency bands, an attractive alternative approach is to deploy NR in a set of new rather than existing bands. 3GPP Release 15 allows NR to connect to the EPC to support a seamless transition from LTE to NR.
The NR traffic volumes will eventually motivate a full refarming of the LTE MBB spectrum to NR. The longevity of NB-IoT devices is however expected to make NB-IoT a natural component within the 5G echo-system. For this reason, NR supports reservation of radio resources to enable LTE operation including NB-IoT, within an NR carrier. This allows NB-IoT to add NR in-band operation to its list of supported deployment options. Since both NR and NB-IoT employ an OFDM based modulation with support for 15-kHz subcarrier numerology, in the downlink (DL) true interference-free orthogonality can be achieved without configuration of guard-bands between the two systems.
………………………………………………………………………………………………………..
From Gartner report published Dec 16, 2019:
By Peter Liu, Sylvain Fabre, Kosei Takiishi
Introduction:
As communications service providers move forward with 5G commercialization, New Radio infrastructure investment is prioritized and crucial for 5G rollout success. We analyze the market direction and the product strategies of equipment vendors to help guide product managers in CSPs.
By 2021, investments in 5G NR network infrastructure will account for 19% of the total wireless infrastructure revenue of communications service providers (CSPs), elevated from 6% in 2019.
-
Support for new subcarrier spacing
-
Massive multiple input/multiple output (MIMO)/beamforming
-
Enhanced scheduling by hybrid automatic repeat request (HARQ)
-
Cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) and discrete fourier transform spread orthogonal frequency-division multiple access (DFTS-OFDM)
-
Bandwidth part (BWP) and carrier aggregation (CA)
-
New Radio spectrum
-
Optimized orthogonal frequency-division multiplexing (OFDM)
-
Adaptive beamforming
-
Massive MIMO
-
Spectrum sharing
-
Unified design across frequencies
Key Findings:
-
The deployment of 5G New Radio (NR) products will accelerate in 2020, through high total cost of ownership (TCO), absence of “killer application,” unmatured millimeter wave ecosystem and inexpensive device availability that prevent rapid growth in capital investment.
-
Most of current commercial 5G sub-6 gigahertz (GHz) communications service providers (CSPs) also start building their multiband strategy which is in line with their business strategy; for example, sub-1GHz for coverage enhancement and millimeter wave for capacity.
-
Initial 5G deployment was based on non-stand-alone (NSA) architecture which couples the Long Term Evolution (LTE) with 5G NR radio layers to accelerate time to market and reduce cost. This coexistence will last for many years, though specific CSPs may move toward stand-alone (SA) deployment as early as 2020.
-
Open radio access network (RAN) and virtualized RAN (vRAN) have seen an increase in attention after Rakuten Mobile announced its commercial adoption in LTE. However, fragmented standards, incumbent vendor support, technology immaturity and poor fiber availability continue to hamper its success.
Market Description
-
Baseband unit capacity
-
Portfolio broadness
-
Deployment feasibility
-
Technology evolution
Recommendations for 5G Communications Service Providers (CSPs):
-
Build a step-wise 5G NR implementation strategy by initially focusing on best use of existing infrastructure investment, then simplifying the deployment in order to reduce the time to market and minimize risk.
-
Develop spectrum strategies based on business focus, frequencies available as well as ecosystem maturity. Choose the vendors that have preferred radio spectrum support with combinations of spectrum reframing and sharing.
-
Select the 5G NR solution by accessing a vendor’s capabilities of interworking with existing 4G/LTE networks and its ability to provide a high degree of continuity and seamless experience for users. In addition, explore a seamless software upgrade path to enable 5G SA evolution.
-
Build an end-to-end understanding of the Open Radio Access Network (O-RAN) impact on network, operations, performance and procurement by conducting a proof of concept (POC)/pilot.
…………………………………………………………………………………………………………
Acronym Key and Glossary Terms
2G |
second generation
|
3G |
third generation
|
3GPP |
Third Generation Partnership Project
|
4G |
fourth generation
|
5G |
fifth generation
|
AAU |
Active Antenna Unit
|
AI |
artificial intelligence
|
AR |
augmented reality
|
ASIC |
application-specific integrated circuit
|
BBU |
baseband unit
|
BWP |
bandwidth part
|
C-RAN |
cloud radio access network
|
CA |
carrier aggregation
|
capex |
capital expenditure
|
CBRS |
Citizens Broadband Radio Service
|
CoMP |
coordinated multipoint
|
CP-OFDM |
cyclic-prefix orthogonal frequency-division multiplexing
|
CPE |
customer premises equipment
|
CSP |
communications service provider
|
CU |
centralized unit
|
DAFE |
Digital/Analog Front End
|
DFTS-OFDM |
discrete fourier transform spread orthogonal frequency-division multiple access
|
DIS |
digital indoor system
|
DL |
downlink
|
DU |
distributed unit
|
eCPRI |
enhanced Common Public Radio Interface
|
eMBB |
enhanced mobile broadband
|
EPC |
Evolved Packet Core
|
FDD |
frequency division duplex
|
FH |
fronthaul
|
FWA |
fixed wireless access
|
Gbps |
gigabits per second
|
GHz |
gigahertz
|
gNB |
Next Generation Node B
|
HARQ |
hybrid automatic repeat request
|
I&O |
infrastructure and operations
|
IBW |
instantaneous bandwidth (ZTE)
|
IC |
integrated circuit
|
ICT |
information and communication technology
|
IMT-2020 |
International Mobile Telecommunications-2020
|
IoT |
Internet of Things
|
ITU-R |
International Telecommunication Union Radiocommunication Sector
|
LAA |
Licensed Assisted Access
|
LTE |
Long Term Evolution
|
LTE-V |
LTE Vehicle
|
MAA |
Multiple Input/Multiple Output Adaptive Antenna
|
MHz |
megahertz
|
ML |
machine learning
|
MIMO |
multiple input/multiple output
|
mMTC |
Massive Machine Type Communications
|
mmWave |
millimeter wave (frequencies above 24GHz)
|
MOCN |
multioperator core network
|
MORAN |
multicarrier radio access network
|
MOS |
Multi-Operator Servers (Mavenir)
|
NFV |
network function virtualization
|
NR |
New Radio
|
NSA |
non-stand-alone
|
O-RAN |
Open Radio Access Network
|
OBW |
occupied bandwidth
|
OEM |
original equipment manufacturer
|
OFDM |
orthogonal frequency-division multiplexing
|
opex |
operating expenditure
|
POC |
proof of concept
|
PRB |
physical resource blocks
|
QAM |
quadrature amplitude modulation
|
R&D |
research and development
|
RAN |
radio access network
|
RAT |
Radio Access Technology
|
RIC |
RAN Intelligent Controller (Nokia)
|
RF |
radio frequency
|
RFIC |
Radio Frequency Integrated Circuit
|
RRU |
remote radio unit
|
RU |
radio unit
|
SA |
stand-alone
|
SDN |
software-defined network
|
SDR |
software-defined radio
|
SON |
self-organizing network
|
Sub-1GHz |
Low-band frequencies are those at 600MHz, 800MHz, and 900MHz.
|
Sub-6GHz |
Frequencies under 6GHz but above the low-band frequencies (2.5GHz, 3.5GHz, and 3.7GHz to 4.2GHz).
|
SUL |
Supplementary Uplink
|
TCO |
total cost of ownership
|
TD-LTE |
Time Division-Long Term Evolution
|
TDD |
time division duplex
|
TRX |
Transceiver/Receiver
|
UBR |
Ultra Broadband RRU (ZTE)
|
UL |
uplink
|
URLLC |
ultrareliable and low-latency communications
|
VR |
virtual reality
|
vRAN |
virtualized radio access network
|
WG2 |
Work Group 2
|
WG3 |
Work Group 3
|
-
Gartner surveys
-
CSP and vendor briefings, plus discussions
-
Associated Gartner research
-
Gartner market forecasts
-
Gartner client discussions
……………………………………………………………………………………………….
References- related Gartner posts:
Gartner: Telecom at the Edge + Distributed Cloud in 3 Stages
Gartner Group Innovation & Insight: Cutting Through the 5G Hype