IMT 2020.SPECS approved by ITU-R but may not meet 5G performance requirements; no 5G frequencies (revision of M.1036); 5G non-radio aspects not included

ITU-R Approves IMT 2020.SPECS:

At it’s November 23rd meeting, ITU-R SG 5 approved WP5D’s draft recommendation IMT 2020.SPECS which is the first official 5G RAN standard. The document contains the description and implementation details for three new technologies that conform with the International Mobile Telecommunications 2020 (IMT-2020) vision, but this author (and others) do not believe they meet the ITU M.2410 Performance Requirements for the URLLC (ultra reliable, ultra low latency communications) 5G use case.  That is because 3GPP’s 5G NR enhancements for URLLC in the RAN had not been completed or performance tested when 3GPP Release 16 was frozen in early July 2020 (see detailed description below) and is therefore NOT included in the IMT 2020.SPECS detailed implementation for 5G NR.

The three Radio Interface (RIT)/Set of Radio Interface (SRIT) Technologies are: 3GPP 5G-SRIT and 3GPP 5G-RIT submitted by 3GPP (contains both Release 15 and 16 functionality), and 5Gi submitted by Telecommunications Standards Development Society India (TSDSI). The 3GPP submissions include support by China and South Korea, which had submitted their own RIT’s that were determined to be “technically identical” with 3GPP’s 5G NR submission so they were effectively combined into one RIT.

TSDSI’s RIT is based on the 3GPP 5G NR RIT with additional functionality to supportLow Mobility Large Cell” (LMLC).   The TSDSI-RIT incorporates India specific technology enhancements that can enable longer coverage for meeting the LMLC requirements. The TSDSI-RIT, which is mainly to address the LMLC requirements, exploits a new transmit waveform that increases cell range developed by research institutions in India (IIT Hyderabad, CEWiT and IIT Madras) and supported by several Indian companies. It enables low cost rural coverage. It has additional features which enable higher spectrum efficiency and improved latency. TSDSI-RIT is a key enabler for 5G based rural broadband usage scenario in India and similarly placed geographies.

Author’s NOTEs:

1.  It is critically important to understand that IMT 2020.SPECs only apply to the 5G RAN and NOT the 5G core network or any other non-radio aspects of 5G.  Also, that the frequencies to be used for 5G RAN are specified in a YET TO BE COMPLETED revision to ITU M.1036 recommendation  which should include WRC 19 frequency arrangements (especially for mmWave spectrum).

–>That means there are no official guidelines on what frequencies might be used with any of the IMT 2020 RITs specified.

2.  Here’s a description of the ITU-R recommendations that were used for evaluation of IMT 2020 RIT/SRIT submissions to ITU-R WP5D:

  • ITU-R M.2410 describes key requirements related to the minimum technical performance of IMT-2020 candidate radio interface technologies.
  • ITU-R M.2411 deals with the requirements, evaluation criteria, and submission templates, providing service, spectrum, and technical performance requirements.
  • ITU-R M.2412 provides guidelines for the procedure, the methodology, and the criteria (technical, spectrum, and service) to be used in the IMT 2020 evaluation process.

With these documents, the evaluation procedure is designed in such a way that the overall performance of the candidate RITs/SRITs is fairly and equally assessed on a technical basis, ensuring that the overall IMT-2020 objectives are met.

Reference:

https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/submission-eval.aspx

………………………………………………………………………………………………………………………………………………………………………………………………….

From the ITU Press Release:

During the multi-year development and evaluation process by the ITU Radiocommunication Sector (ITU-R), these technologies were deemed to be sufficiently detailed to enable worldwide compatibility of operation and equipment, including roaming.

The outcome of this first release of IMT-2020 supporting 5G is a set of terrestrial radio interface specifications which are incorporated into a global standard in the ITU-R Recommendation titled ‘Detailed specifications of the radio interfaces of IMT-2020.’ This is in final approval to the 193 Member States of ITU.

“IMT-2020 specifications for the fifth generation of mobile communications (5G) will be the backbone of tomorrow’s digital economy, transforming lives and leading industry and society into the automated and intelligent world,” said Houlin Zhao, ITU Secretary-General. “5G will enable much faster data speeds, reliable connectivity and low latency to international mobile telecommunications (IMT) — all needed for our new global communications ecosystem of connected devices sending vast amounts of data via ultrafast broadband.”
Mario Maniewicz, Director of the ITU Radiocommunication Bureau, said: “The successful completion of the evaluation process and the release of this global standard is a significant milestone for the global telecommunication industry and its users. 5G technologies will further enrich the worldwide communications ecosystem, expand the range of innovative applications and support the burgeoning Internet of Things, including machine-to-machine communication.”

The evaluation of the candidate technologies was not carried out by ITU-R alone. It was a highly collaborative process with substantial input from and coordination with ITU Member States, equipment manufacturers, network operators, and involved national, regional, and international standards development organizations, partnerships, the academic community and fora, since ITU-R provides a unique global framework to discuss the capabilities of new radio technologies.

In early 2012, ITU initiated the development of “IMT for 2020 and beyond”, setting the stage for 5G research activities and in 2015 established the vision and requirements for the globalization of 5G. Under ITU’s ongoing IMT programme, ITU membership is continuing its long-standing contribution to mobile communications, facilitating its mission to be “committed to connecting the world.“​

……………………………………………………………………………………………………………………………………………………………………………………………………..
Two Other IMT 2020 Radio Inerface Technologies being evaluated by ITU-R WP 5D:
In addition to the three RIT/SRITs approved in this first version of IMT 2020.SPECS, there are two additional RITs from DECT/ETSI IMT-2020/17(Rev 1) and Nufront (IMT-2020/18(Rev 1) that are being re-evaluated by ITU-R WP 5D with respect to “independent evaluation group” conformance testing.  If approved, those RITs will be included in a second version of IMT 2020.SPECS to be ratified sometime in 2021.   Representatives from those two camps state that their IMT 2020 RIT submissions really do meet the low latency requirements in M.2410 [1.], whereas the 3GPP RIT does not and won’t meet those requirements for quite some time.

Note 1.  For the URLLC use case, M.2410 specifies a minimum of 1 msec in the data plane and 10 ms in the control plane for latency (1 way in the RAN).  Actual latency (1-way) is the sum of latency in the RAN, core network, and edge network (if any).

……………………………………………………………………………………………………………………………………………………………………………………………………….

3GPP Release 16 5G NR-URLLC in the RAN spec status as of as of October 11, 2020: 

  • RP-191584 5G NR Physical Layer Enhancements for Ultra-Reliable and Low Latency Communication (URLLC)  was 53% complete
  • RP-190726 Performance part: Physical Layer Enhancements for NR Ultra-Reliable and Low Latency Communication (URLLC) was 0% complete

“In Release 15 the basic support for URLLC was introduced with TTI structures for low latency as well as methods for improved reliability. Use cases with tighter requirements, e.g. higher reliability up to 1E-6 and short latency in the order of 0.5 to 1ms, have been identified as important areas for NR. This work item [1] was approved based on the outcome of the study items as shown in TR 38.824 [2] and TR 38.825 [3].

This work item specifies PDCCH enhancements, UCI enhancements, PUSCH enhancements, enhanced inter UE TX prioritization/multiplexing and enhanced UL configured grant transmission.”

References:

https://www.3gpp.org/ftp/Information/WORK_PLAN/

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493

(Sept 15, 2020 version of Release 16 Description; Summary of Rel-16 Work Items)

……………………………………………………………………………………………………………………………………………………………………………………………………..

The Role of ITU-R:

International Telecommunications Union (ITU), formerly CCITT, is the United Nations specialized agency for information and communication technologies (ICTs), fostering innovation among 193 member states. For more than 150 years, ITU has been coordinating the radio spectrum, establishing standards that foster connectivity globally across multiple technology systems. And for the past 30 years, the ITU Radiocommunication sector (ITU-R) has been coordinating efforts with governments and industries to develop unified global broadband multimedia international mobile telecommunications systems, also known as IMT.

ITU-R plays an important role in achieving the objective of global harmonization and wide industry support for each generation of mobile communication technologies. 2G in the 1990s was the first generation of digital mobile communication system. These technologies provided dramatically enhanced capabilities relative to previous analog technologies, beginning the ongoing prevalence of mobile communication in our daily life. Despite the success of 2G during that era, the fragmented technology standards were incompatible for purposes of global roaming and economies of scale.

Global operation and economies of scale are key requirements for the success of mobile telecommunication systems. In order to achieve this goal, ITU-R established the concept of IMT, which includes a harmonized timeframe for future development, taking into account technical, operational, and spectrum-related aspects. Since then, ITU-R has been striving for harmonized global standards all through the process of IMT-2000 and IMT-Advanced.

ITU-R Progress from 2G to 5G  Credit Dell’Oro Group

………………………………………………………………………………………………………………………………………………………………………………………………………………

References:

https://www.itu.int/en/mediacentre/Pages/pr26-2020-evaluation-global-affirmation-imt-2020-5g.aspx

https://www.itu.int/pub/R-REP-M.2410

Executive Summary: IMT-2020.SPECS defined, submission status, and 3GPP’s RIT submissions

5G Specifications (3GPP), 5G Radio Standard (IMT 2020) and Standard Essential Patents

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=349

8https://www.itu.int/md/R15-IMT.2020-C-0021/en

Harmonized ITU IMT-2020 Standards of 3GPP 5G Technologies Lay The Foundation for a Successful Global Ecosystem

 

6 thoughts on “IMT 2020.SPECS approved by ITU-R but may not meet 5G performance requirements; no 5G frequencies (revision of M.1036); 5G non-radio aspects not included

  1. On 5G Frequencies:
    As with previous cellular generations and 3GPP releases, various regions and countries will also likely adopt unique spectrum for 5G uses. The US FCC, for example, is considering opening 5.925 GHz to 6.425 GHz and 6.425 GHz to 7.125 GHz for unlicensed used and is consulting adding mobile broadband capability in the 3.7 GHz to 4.2 GHz spectrum. Currently, the FCC is actioning spectrum in the 27.5 GHz to 28.35 GHz, 24.25 GHz to 24.45 GHz, and 24.75 GHz 25.25 GHz, range for millimeter-wave 5G use. The FCC may also be considering opening 3.7 GHz to 4.2 GHz mid-band frequencies for 5G, and may also be considering opening 4.9 GHz public safety bands for 5G access. Moreover, the FCC may also make additional bands available for 5G in the 2.75 GHz, 26 GHz, and 42 GHz bands. In December 2018 the FCC announced an incentive action in the 37.6 GHz to 38.6 GHz, 38.6 GHz to 40 GHz, and 47.2 GHz to 48.2 GHz. Most other developing countries are undergoing similar considerations of spectrum allocation for 5G use cases.

    One of the main reasons that additional spectrum is being made available for 5G uses, is the physical limitations associated with throughput and bandwidth. 4G band plans accounted for between 5 MHz and 20 MHz of bandwidth per channel, where the 5G FR1 standard allows for between 5 MHz and 100 MHz of bandwidth per channel. As bandwidth is directly proportional to maximum throughput, the 5X increase in bandwidth relates to roughly a 5X increase in throughput. Moreover, 3GPP Release 15 established new waveforms and the addition of π/2 BPSK as a modulation method. The additional waveforms are discrete fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) for FR1 and cyclic prefix OFDM (CP-OFDM) for FR2.

    Though RF hardware, technology, and the communications infrastructure are available and capable of meeting some of the requirements of early 5G frequency and performance specifications, the majority of 5G expectations are still beyond currently accessible technologies. These challenges include cost effective hardware with the necessary frequency operation, handheld/mobile integration, and dense and highly distributed networking infrastructure. With 4G LTE services still being deployed throughout the US and other countries, it will likely be several years before 5G services beyond FR1 5G capabilities are viable.

    https://www.arrow.com/en/research-and-events/articles/what-frequency-spectrum-will-5g-technology-use-and-how-does-this-compare-to-4g

  2. It’s a shame you don’t have a donate button! I’d most certainly donate to this fantastic IEEE Techblog!

    For now, I’ll settle for bookmarking and adding your RSS
    feed to my Google account.

    I look forward to new IEEE Techblog posts and will share this site with my Facebook group. Chat soon!

  3. Thanks for sharing this post on the limitations of ITU-R 5G recommendations! I’m delighted with this information, where such important disclosures are captured. It seems 5G standards are incomplete which might fracture the market. Any progress at last week’s ITU-R WP 5D virtual meeting?

    1. No progress on the ITU-R M.2150 (formerly IMT 2020.specs) deficiencies. The major accomplishment of last week’s ITU-R WP 5D meeting was the progression of two other 5G Radio’s/5G Radio Interface Technologies (RITs): ETSI/DECT Forum and Nufront. Yet neither has been approved yet for the next version of M.2150 and there is still no agreed upon revision of M.1036 that specifies 5G mmW frequency arrangements.

  4. Email from Joanne Wilson, Deputy to the Director ITU Radio Communications Bureau (ITU-R):

    ITU-R Recommendations are voluntary (non-binding) unless they, or parts thereof, have been incorporated by reference (IBR) into the Radio Regulations. Rec ITU-R M.1036 has not been incorporated by reference into the Radio Regulations and its implementation is voluntary. As a recommendation that addresses the frequency arrangement for an application (not a service!), there would be no context under which M.1036 would be considered for IBR. Still, M.1036 is one of the most heavily debated recommendations because most countries follow it as the basis for their subsequent domestic rulemakings.

  5. As per the Oct 15, 2021 conclusion of ITU-R WP 5D’s 39th (virtual) meeting, the ETSI (TC DECT) and DECT Forum IMT 2020/M.2150 SRIT proposal is ‘a qualifying SRIT’ and therefore will go forward for further consideration in Step 7. With the confirmed name “DECT 5G – SRIT.”
    Reference: https://www.etsi.org/newsroom/press-releases/1988-2021-10-world-s-first-non-cellular-5g-technology-etsi-dect-2020-gets-itu-r-approval-setting-example-of-new-era-connectivity

    SWG IMT Specifications processed the received contributions from ETSI TC DECT and Nufront to the Preliminary Draft Focused Revision to M.2150 which was provisionally consented at WP 5D #38 meeting. However, Nufront agreed to withdraw its submission and consider opportunity of making a new candidate technology submission with no prejudice in future revision of Recommendation ITU-R M.2150 “Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2020 (IMT-2020).”

    Sadly, WP 5D could not agree on the revision of M.1036 Frequency Arrangements for Terrestrial IMT, so there are no standardized frequencies to be used for 5G IMT 2020/M.2150 including the 3 sets of mmWave frequencies WRC 19 assigned for 5G terrestrial use. It became clear during the discussions during SWG Frequency Arrangements meeting that there was a fundamental difference of opinions regarding some proposed edits and the question of whether and how certain decisions of WRC-19 would need to be reflected in Recommendation ITU-R M.1036. In this situation, the SWG agreed to postpone further discussions on the revision of Recommendation ITU-R M.1036 to the October 2022 meeting of WP 5D and the workplan was updated accordingly.

    Hence, the revision of ITU-R M.1036 can’t be approved till Nov 2022 at the annual meeting of ITU-R SG 5. However, that deadline could be missed if SWG Frequency Arrangements can’t reach an agreement at their Oct 2022 WP 5D meeting.

Comments are closed.