India’s TSDSI candidate IMT 2020 RIT with Low Mobility Large Cell (LMLC) for rural coverage of 5G services

India’s telecom standards organization TSDSI has submitted its candidate Radio Interface Technology (RIT) to the IMT-2020 evaluation at the ITU-R WP 5D meeting #32 being held in Buzios, Brazil from 9 July 2019 to 17 July 2019.  TSDSI’s IMT 2020 submission is one of five candidate RIT proposals- see NOTE at bottom of this article for more information.

TSDSI’s RIT is described in document ITU-R WP5D-AR Contribution 770.  This RIT has been developed to address the rural requirements by enabling the implementation of  Low Mobility Large Cell (LMLC), particularly with emphasis on low-cost rural coverage of 5G wireless network services.  TSDSI believes that this RIT will also help to meet the rural requirements of other developing countries.  We agree!

TSDSI proposal on Low Mobility Large Cell (LMLC) configuration has been included as a mandatory test configuration under the Rural eMBB (enhanced Mobile BroadBand) test environment in IMT 2020 Technical Performance Requirements (TPR) in ITU-R with an enhanced Inter Sire Distance (ISD) of 6 km. Incorporation of LMLC in IMT2020 will help address the requirements of typical Indian rural settings and will be a key enabler for bridging the rural-urban divide with 5G rollouts.

–>The Indian administration (ITU member country) extends its support to the RIT of TSDSI and solicits the support of ITU Member States to support this proposal.

Indian wireless network operators, including Reliance Jio Infocomm Ltd, have expressed interest in LMLC.

Kiran Kumar Kuchi, a professor at IIT Hyderabad is building a 5G testbed there.  The system will exceed IMT 2020 5G performance requirements including Low Mobility Large Cell.

IIT Hyderabad 5G Testbed.   Photo courtesy of IIT Hyderabad.

……………………………………………………………………………………………………………………………………………………………………………………………………………

TSDSI’s baseline RIT (initial description template) is documented in ITU-R WP 5D Document 5D/980: Revision 2 to Document IMT-2020/7-E, submitted on 14 February 2019.  Several updates to TSDSI RIT included the updated characteristics template, initial link budget template, etc.  They are in Document 5D/1138: Attachment Part 1: 5D/1138!P1; Attachment Part 2: 5D/1138!P2; Attachment Part 3: 5D/1138!P3; Attachment Part 4: 5D/1138!P4)

Here are a few key excerpts from the TSDSI baseline RIT:

Describe details of the radio interface architecture and protocol stack such as: – Logical channels – Control channels – Traffic channels Transport channels and/or physical channels.

RAN/Radio Architectures: This RIT contains NR standalone architecture. The following paragraphs provide a high-level summary of radio interface protocols and channels.

Radio Protocols: The protocol stack for the user plane includes the following: SDAP, PDCP, RLC, MAC, and PHY sublayers (terminated in UE and gNB). On the Control plane, the following protocols are defined: – RRC, PDCP, RLC, MAC and PHY sublayers (terminated in UE and gNB); – NAS protocol (terminated in UE and AMF) For details on protocol services and functions, please refer to 3GPP specifications (e.g. [38.300]).

Radio Channels (Physical, Transport and Logical Channels):

  • The physical layer offers service to the MAC sublayer transport channels. The MAC sublayer offers service to the RLC sublayer logical channels.
  • The RLC sublayer offers service to the PDCP sublayer RLC channels.
  • The PDCP sublayer offers service to the SDAP and RRC sublayer radio bearers: data radio bearers (DRB) for user plane data and signalling radio bearers (SRB) for control plane data.
  • The SDAP sublayer offers 5GC QoS flows and DRBs mapping function.

The physical channels defined in the downlink are: – the Physical Downlink Shared Channel (PDSCH), – the Physical Downlink Control Channel (PDCCH), – the Physical Broadcast Channel (PBCH).

The physical channels defined in the uplink are: – the Physical Random Access Channel (PRACH), – the Physical Uplink Shared Channel (PUSCH), – and the Physical Uplink Control Channel (PUCCH). In addition to the physical channels above, PHY layer signals are defined, which can be reference signals, primary and secondary synchronization signals.

The following transport channels, and their mapping to PHY channels, are defined:

Uplink: – Uplink Shared Channel (UL-SCH), mapped to PUSCH – Random Access Channel (RACH), mapped to PRACH

Downlink: – Downlink Shared Channel (DL-SCH), mapped to PDSCH – Broadcast channel (BCH), mapped to PBCH – Paging channel (PCH), mapped to (TBD)

Logical channels are classified into two groups: Control Channels and Traffic Channels.

Control channels: – Broadcast Control Channel (BCCH): a downlink channel for broadcasting system control information. – Paging Control Channel (PCCH): a downlink channel that transfers paging information and system information change notifications. – Common Control Channel (CCCH): channel for transmitting control information between UEs and network. – Dedicated Control Channel (DCCH): a point-to-point bi-directional channel that transmits dedicated control information between a UE and the network.

Traffic channels: Dedicated Traffic Channel (DTCH), which can exist in both UL and DL. In Downlink, the following connections between logical channels and transport channels exist: – BCCH can be mapped to BCH, or DL-SCH; – PCCH can be mapped to PCH; – CCCH, DCCH, DTCH can be mapped to DL-SCH;

In Uplink, the following connections between logical channels and transport channels exist: – CCCH, DCCH, DTCH can be mapped to UL-SCH.

Enhancements:

1. Method to improve broadcast and paging control channel efficiency over access elements.

2. Reduce the impact of congestion in the data path and control path to improve overall efficiency in the network. Other aspects – NR QoS architecture The QoS architecture in NG-RAN (connected to 5GC), can be summarized as follows: For each UE, 5GC establishes one or more PDU Sessions. For each UE, the NG-RAN establishes one or more Data Radio Bearers (DRB) per PDU Session. The NG-RAN maps packets belonging to different PDU sessions to different DRBs. Hence, the NG-RAN establishes at least one default DRB for each PDU Session. NAS level packet filters in the UE and in the 5GC associate UL and DL packets with QoS Flows. AS-level mapping rules in the UE and in the NG-RAN associate UL and DL QoS Flows with DRBs – Carrier Aggregation (CA) In case of CA, the multi-carrier nature of the physical layer is only exposed to the MAC layer for which one HARQ entity is required per serving cell. – Dual Connectivity (DC) In DC, the radio protocol architecture that a radio bearer uses depends on how the radio bearer is setup.

Four bearer types (information carrying channels) exist: MCG bearer, MCG split bearer, SCG bearer and SCG split bearer.

The following terminology/definitions apply:

– Master gNB: in dual connectivity, the gNB which terminates at least NG-C.

– Secondary gNB: in dual connectivity, the gNB that is providing additional radio resources for the UE but is not the Master node.

– Master Cell Group (MCG): in dual connectivity, a group of serving cells associated with the MgNB

– Secondary Cell Group (SCG): in dual connectivity, a group of serving cells associated with the SgNB

– MCG bearer: in dual connectivity, a bearer whose radio protocols are only located in the MCG.

– MCG split bearer: in dual connectivity, a bearer whose radio protocols are split at the MgNB and belong to both MCG and SCG.

– SCG bearer: in dual connectivity, a bearer whose radio protocols are only located in the SCG.

– SCG split bearer: in dual connectivity, a bearer whose radio protocols are split at the SgNB and belong to both SCG and MCG.

In case of DC, the UE is configured with two MAC entities: one MAC entity for the MCG and one MAC entity for the SCG. For a split bearer, UE is configured over which link (or both) the UE transmits UL PDCP PDUs. On the link which is not responsible for UL PDCP PDUs transmission, the RLC layer only transmits corresponding ARQ feedback for the downlink data.

For more details on (3GPP “5G”) NR Radio Protocol architecture and channels, refer to: [38.300], [38.401], [38.201], [37.340] What is the bit rate required for transmitting feedback information? The information will be provided in later update.

Channel access: Describe in detail how RIT/SRIT accomplishes initial channel access, (e.g. contention or non-contention based).

Initial channel access is typically accomplished via the “random access procedure” (assuming no dedicated/scheduled resources are allocated). The random access procedure can be contention based (e.g. at initial connection from idle mode) or non-contention based (e.g. during Handover to a new cell). Random access resources and parameters are configured by the network and signaled to the UE (via broadcast or dedicated signaling). Contention based random access procedure encompasses the transmission of a random access preamble by the UE (subject to possible contention with other UEs), followed by a random access response (RAR) in DL (including allocating specific radio resources for the uplink transmission). Afterwards, the UE transmits the initial UL message (e.g. RRC connection Request) using the allocated resources, and wait for a contention resolution message in DL (to confirming access to that UE). The UE could perform multiple attempts until it is successful in accessing the channel or until a timer (supervising the procedure) elapses. Non-contention based random access procedure foresees the assignment of a dedicated random access resource/preamble to a UE (e.g. part of an HO command). This avoids the contention resolution phase, i.e. only the random access preamble and random access response messages are needed to get channel access.

From a L1 perspective, a random access preamble is transmitted (UL) in a PRACH, random access response (DL) in a PDSCH, UL transmission in a PUSCH, and contention resolution message (DL) in a PDSCH.

………………………………………………………………………………………………………………………………………………………………………………………………..

NOTES:

 

1.    TSDSI’s RIT is one of five proposals for the IMT 2020 RIT/SRIT.

The other four are from: 3GPP,  South Korea, China, and ETSI/DECT Forum.  All but the latter are based on 3GPP “5G NR.”

  • The Candidate RIT/SRIT submission from China, as acknowledged in IMT-2020/5, is technically identical to the 5G NR RIT submitted from 3GPP as acknowledged in IMT-2020/3.
  • The candidate RIT/SRIT submission from South Korea, as acknowledged in IMT-2020/4, is technically identical to the 5G NR RIT submitted from 3GPP as acknowledged in IMT-2020/3.

……………………………………………………………………………………………………………………………………………………………………………………………………………

2.   3GPP release 16:

As we have stated numerous times, 3GPP’s final IMT 2020 RIT/SRIT submission to ITU-R  WP 5D will be largely based on 3GPP release 16 (with perhaps some elements of release 15 also included).  From the 3GPP website 

Release 16 will meet the ITU IMT-2020 submission requirements and the time-plan as outlined in RP-172101.

Some Background on 3GPP Release 16:

Here is the active status of 3GPP release 16 project.

The 3GPP release 16 completion date has been delayed by at least 3 months (1Q 2020) with no new completion date specified at this time.

3. DECT Forum/ETSI submission for IMT 2020 SRIT:

From a July 1, 2019 contribution to ITU-R WP5D Brazil meeting:

DECT Forum would like to announce its support and endorsement for the IMT-2020 contribution from ETSI for an SRIT candidate for inclusion in IMT-2020.   The proposed SRIT consists of two component RITs:
DECT-2020 NR RIT
3GPP 5G CANDIDATE FOR INCLUSION IN IMT-2020: SUBMISSION 2 FOR IMT-2020 (RIT)

DECT Forum confirms its continuation as a proponent of this IMT-2020 proposal.

……………………………………………………………………………………………………………………………………………………………………………………………………………

References:

India delays 5G trials; Advocates “the Indian Way” within ITU-R WP 5D for IMT 2020

ATIS endorses 3GPP IMT 2020 RIT submission to ITU-R WP 5D; sees no need for separate LMLC India national option

3GPP Workshop: IMT 2020 Submission to ITU-R WP5D and Timelines for 5G Standards Completion

TSDSI and the 5G IA signed a Memorandum of Understanding to foster collaboration on Research, Standards, Regulations and Policies

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

 

2 thoughts on “India’s TSDSI candidate IMT 2020 RIT with Low Mobility Large Cell (LMLC) for rural coverage of 5G services

  1. TSDSI’s submission is based on 3GPP release 15 NR and also includes enhancements based on Indian requirements and technologies.

    The proposed radio interface technology (RIT) is based on the 3GPP development with regional enhancements. The development is in accordance with the Documents and Reports developed by ITU-R that are related to IMT-2020 submission., including:
    – Document IMT-2020/01 IMT-2020 Background,
    – Document IMT-2020/02(Rev.1) Submission and evaluation process and consensus building for IMT-2020,
    – Report ITU-R M.2411 – Requirements, evaluation criteria and submission templates for the development of IMT-2020,
    – Report ITU-R M.2410 – Minimum requirements related to technical performance for IMT-2020 radio interface(s),
    – Report ITU-R M.2412 – Guidelines for evaluation of radio interface technologies for IMT-2020.

    In an updated submission, TSDSI proposes NR with NB-IoT in subsequent submission as a candidate IMT-2020 radio interface technology (RIT).

  2. Update from ATIS (U.S. rep for 3GPP in ITU-R WP 5D) on 3GPP Release 16: LIAISON STATEMENT FROM 3GPP PROPONENT REGARDING IMT-2020 TRANSPOSITION TIMINGS IN STEP 8 OF IMT-2020 PROCESS

    3GPP asks WP 5D in this liaison if WP 5D could review its year-end 2020 schedule for IMT-2020 to provide some additional time for the provision of the transposed standards URL references to ITU-R for finalization of the new Recommendation ITU-R M.[IMT-2020.SPECS].

    Adjustment to the 3GPP Release 16 Schedule:
    In RAN Plenary #82, 3GPP amended the development schedule for 5G Release 16 to better reflect the complexities of the technology specifications development work. This was done in order to properly facilitate the sequencing of work between 3GPP RAN working groups for overall specification stability. Annex 1 shows this amended Release 16 schedule.

    Global Core Specification (GCS) for IMT-2020 process Step 8:
    3GPP plans to use the June 2020 specification output from the 3GPP Plenaries. In particular, the output of RAN #88 (15-18 June 2020), when Release 16 ASN.1 freeze milestone is concluded, will be the primary basis of the IMT-2020 separate GCSs that correspond to the 3GPP submissions of the NR RIT (Releases 15 & 16) and the LTE/NR SRIT (Releases 15 & 16)2. These specifications will establish the primary basis of the Global Core Specification (GCS) that the 3GPP GCS Proponent will provide to ITU-R WP 5D in time for the WP 5D Meeting #35 (24 June -1 July 2020). This is in anticipation of the detailed ITU-R schedule for IMT-2020 Step 8.
    The approved June 2020 version of the 3GPP specifications will be used by the 3GPP Transposing Organizations (TOs) for their individual standards transpositions, and for the creation of the relevant URL references to be provided to ITU-R for inclusion in the draft new Recommendation under Step 8 of the IMT-2020 process. It is expected that the published versions of the specifications from the June 2020 Plenary will be available to the Organizational Partners (OPs) by 6 July 2020 to initiate their transposition work.

    Anticipation of Schedules:
    While the normal detailed sequencing schedule used in IMT technology Recommendations for IMT-2020 Step 8 has not yet been communicated officially (via liaison) to the External Organizations by WP 5D, the 3GPP TOs have considered the usual milestones of the IMT process in their work planning analysis, assisted by consultations with the ITU-R WP 5D Chairman and the Chair of the WP 5D Work Plan Ad Hoc group.
    Based on a typical schedule for the URL references for ITU-R IMT technology Recommendations, the URL references for IMT-2020 need to be supplied by the TOs to ITU-R approximately 30 days ahead of the planned WP 5D Meeting #36 (7-14 October 2020). This lead time is needed in order for the Radiocommunication Bureau to compile all the TOs’ references and tables into the final draft version for all technologies included in Step 8 in time for WP 5D Meeting #36. The deadline for these URL references and related information to be sent to the Radiocommunication Bureau by the TOs would thusly be expected to be planned for 7 September 2020 by the ITU-R. WP 5D will conclude the draft Recommendation ITU-R M.[IMT-2020.SPECS] in its Meeting #36 and forward it to ITU-R Study Group 5 for initiating final ITU-R approval.
    …………………………………………………………………………………………………………………………..
    3GPP notes that with the complexities of 5G as a new generation of technology and the importance of the new Recommendation ITU-R M.[IMT-2020.SPECS] globally for all stakeholders (including support for the results of WRC-19), any additional time afforded to the External Organizations in Step 8 for provision of the URL references would be of great benefit to all the radio interface technology proponents, not just 3GPP.
    3GPP welcomes any accommodation WP 5D might make concerning the scheduling of the work to conclude the first release of Recommendation ITU-R M.[IMT-2020.SPECS] and kindly asks for feedback to 3GPP from that discussion.
    ……………………………………………………………………………………………………………………………..
    Annex 1. 3GPP has agreed revised completion dates for Release 16 – schedule shifted out by 3 months:
    Release 16 RAN-1 Freeze RAN # 86 December 2019
    Release 16 RAN Stage 3 Freeze RAN # 87 March 2020
    Release 16 ASN.1 Freeze RAN # 88 June 2020
    Release 16 RAN-4 Freeze RAN # 89 September 2020
    ……………………………………………………………………………………………………………………………….
    Submitted on behalf of the 3GPP Proponent of the 3GPP submission, which is collectively the 3GPP Organizational Partners (OPs). The 3GPP OPs are ARIB, ATIS, CCSA, ETSI, TSDSI, TTA and TTC (http://www.3gpp.org/partners).

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*

 
 

 

Recent Posts