Juniper Research: 5G to Account for 80% of Operator Revenue by 2027; 6G Requires Innovative Technologies
5G to Account for 80% of Operator Revenue by 2027:
Juniper Research has forecast that communications operators are likely to generate $625B from 5G services globally by 2027, a substantial rise from the $310bn predicted for the end of 2023. The new report, Operator revenue strategies: Business models, emerging technologies & market forecasts 2023-2027, forecasts that 80% of global operator-billed service revenue will be attributable to 5G by 2027; allowing operators to secure a return on investment into their 5G networks. However, the increasing implementation of eSIMs into new devices will drive global cellular data traffic to grow by over 180% between 2023 and 2027, as data traffic is offloaded from fixed and Wi-Fi networks to 5G.
Juniper Research noted that the increasing implementation of embedded subscriber identity modules (eSIMs) into new devices would drive global cellular data traffic to grow by over 180% between 2023 and 2027, as data traffic is offloaded from fixed and Wi-Fi networks to 5G. Previous Juniper studies have observed that after spending more than a decade offering a potential breakthrough in mobile communications, embedded eSIM technology has enjoyed noticeable growth in the past 12 months, making its way from smartphones to smart devices. The report also calculated that, driven by Apple’s innovation disrupting the smartphone sector, the value of the global eSIM market was expected increase from $4.7bn in 2023 to $16.3bn by 2027.
Juniper Research author Frederick Savage commented: “eSIM-capable devices will drive significant growth in cellular data, as consumers leverage cellular networks for use cases that have historically used fixed networks. Operators must ensure that networks, including 5G and upcoming 6G networks, are future‑proofed by implementing new technologies across the entirety of networks.”
6G Development Necessitates Innovative Technologies:
To prepare for this increasing demand in cellular data, the report predicts that 6G standards must adopt innovative technologies that are not currently used in 5G standards. It identified NTNs (Non‑terrestrial Networks) and sub-1THz frequency bands as key technologies that must be at the center of initial trials and tests of 6G networks, to provide increased data capabilities over existing 5G networks.
However, the research cautions that the increased cost generated by the use of satellites for NTNs and the acquisition costs of high-frequency spectrum will create longer timelines for securing return on 6G investment for operators. As a result, it urges the telecommunications industry to form partnerships with specialists in non-terrestrial connectivity; thus benefitting from lower investment costs into 6G networks.
………………………………………………………………………………………………………………………………………………………………………………………………………..
References:
https://www.juniperresearch.com/pressreleases/operator-5g-revenue-to-reach-$625bn-by-2027
Juniper Research: CPaaS Gobal Market to Reach $29 Billion by 2025
Juniper Research: 5G connectivity opportunity for the connected car market
Juniper Research: 5G Fixed Wireless Access to Generate $2.5 Billion in Operator Revenue by 2023
3 thoughts on “Juniper Research: 5G to Account for 80% of Operator Revenue by 2027; 6G Requires Innovative Technologies”
Comments are closed.
Ericsson reviewed various seminal 6G white papers across wireless industries, regional research partnerships and academia to give you the nine key takeaways from the 6G early research phase.
1. Sustainability goals will be crucial to 6G use case development
2. 6G will deliver extreme performance
3. 6G networks will offer sensing capabilities
4. 6G will support trillions of embeddable devices
5. Network resilience will be a key design element of 6G systems
6. 6G network architecture will be more adaptable and dynamic
https://www.ericsson.com/en/blog/2023/2/6g-early-research-global-takeaways
Another Opinion on 6G:
6G is the upcoming sixth-generation cellular network technology that is currently in early development. One of the goals of 6G cellular technology is not just to deliver basic content faster to smartphones, like streaming video, but to create a cellular network capable of supporting real-time augmented reality, virtual reality, and a future Internet of Things (IoT) model where small smart devices are a ubiquitous presence in and outside of our homes.
When reading anything about 6G, especially the breathless and hype-laden announcements from telecommunications companies that emphasize how 6G will usher in the metaverse, a fusion of our physical and virtual lives, and so on, you should keep the “early” part of early development in mind.
Currently, there are no established 6G specifications or standards, let alone deployed 6G networks or devices. Even the most basic aspects of 6G development, like which specific frequencies the next generation cellular technology will rely on, are still being ironed out along with technical challenges like energy and heat dissipation demands of advanced 6G devices.
That said, we do have some idea what 6G will look like. Current cellular technology operates in the Megahertz (MHz) and the lower Gigahertz (GHz) frequency ranges. The portion of the radio spectrum under consideration and testing for 6G includes frequencies in the 30-300 Ghz range—also known as millimeter waves (mmWave) or Extremely High Frequency (EHF) radio—and the Terahertz (THz) frequency up to 3000 Ghz. The use of these frequencies will allow for data transmission well beyond the bandwidth capacity of current cellular technology.
In December of 2022, Qualcomm released a 6G development plan with 2030 as a projected rollout date for 6G tech. Ericsson’s 6G messaging echoes the early 2030s timeframe too, as do various interviews with telecom executives.
5G was first introduced in 2019. Four years later, there are still millions of cellular subscribers using 4G, and 5G is yet to have a fully realized coast-to-coast rollout. GSMA’s authoritative 2023 Mobile Economy report, for instance, indicates North American adoption rate of 5G is only 39%, with more than half of cellular subscribers still using 4G. By their projections, the North American 5G adoption rate will be 91% by 2030, meaning by the time 6G potentially arrives, there will still be 4G subscribers out there.
Given the current development timelines, you should expect a delivery arc similar to the 5G rollout. If you live in a major metropolitan area, there is a good chance you’ll be covered by early 6G networks around 2030. If you’re not in a major metropolitan area, it’s likely you’ll be waiting well into the 2030s for the 6G rollout.
So if we step away from the hype and look at the matter practically, it’s likely only a small percentage of people will be using 6G-based networks by 2030. But the bulk of North American subscribers, and certainly the majority of global subscribers, will still be on 5G networks.
Nokia just opened a 6G lab in Bangalore, India which is a joke since 6G specs from 3GPP and standards from ITU-R won’t be completed until 2030-2031. So what can be tested or prototyped at that 6G lab or any of the others launched this year?