Technologies that will offer higher quality viewing experience & enable new OTT services

Introduction:
The use of over-the-top (OTT) solutions to deliver streaming video to the TV and second screen devices is now a reality.  Almost all Internet-connected devices (WiFi, Ethernet, 3G/4G) are capable of receiving multiple sources of OTT video- both free and subscription fee based. Though streaming video services are at the center of OTT, there  other uderlying technologies that must be present for this  market to  continues to evolve and grow.  As new, pioneering companies move from testing the water to diving in full force—the OTT industry will change, and dramatically so.
This article summarizes several new technologies described by Cisco, Akamai, and Discretix during the 2013  OTTCON  held last week (March 19-20) in Santa Clara, CA.

OTT Sessions on Enabling Technologies:
1. OTT Technology Enablers: HEVC, CDN, and SDN, by James Field, Director of Technology, New Initiatives – NDS (now a part of Cisco).  Three of the  key technology enablers that will drive OTT innovation and growth were discussed by Mr. Field:

-HEVC is a next generation content encoding standard that provides increased compression rates to improve video throughput and quality.  The result is a much  better mobile video experience along with introduction of advanced video services, such as 3D, and ultra high definition video (up to 8192×4320 pixels). HEVC is the successor to H.264/MPEG‐4 (Advanced Video Coding). It provides a 50% bandwidth savings at equivalent video quality- or higher quality resolution or frame rate.  With this technology an operator can reach more OTT customers and also more end point devices through the same speed broadband access. Standardized only this January 2013, HEVC silicon was forecast to be shipped by the end of this year (mostly for encoding).  Decoding could be implemented in software in the end point device, assuming it contained a fast enough microprocessor.  But embedding HEVC chips in mobile devices will be a cost sensitive market.  Hence, the first chipsets will likely target high-end “4K” Ultra HD TV sets.

-A Content Delivery Network (CDN) is a large distributed system of servers deployed in multiple data centers within the public Internet.  CDN Federation is a collection of CDNs operated by autonomous entities/service providers and interconnected via open interfaces, so as to appear as a single logical CDN. Such a multi-footprint logical CDN may enable improved video quality while providing additional reach and OTT service revenue potential and reach.

CDNs are implemented with caching only OR with a combination of caching and network QoS that are tightly integrated (for HD content, Connected TVs, Mobile content, Live video streaming, etc).  CDN market vendors include Transit Providers (like Level 3 Communications) as well as Pure Play CDN vendors (like Limelight, Akamai, CDNetworks, etc).  Network Service Providers want to participate in the CDN value chain to generate new revenues, improve user experience and reduce network costs.
-Software Defined Networking (SDN) is an emerging network architecture where the control and data planes are decoupled (and reside in different equipment) to enable flexible configuration,  network management and  programmability. An Open Network Environment (ONE) approach to SDNs creates more resilient network intelligence and can enable more agile service delivery. Open Flow protocol is being standardized by the Open Network Foundation (ONF).

Note: This author has written numerous articles about SDN.  We believe it is too early to be used in delivering OTT content to mobile or fixed line subscribers.  Here are a few recent SDN blog posts:

2. OTT for Mobile Devices – An implementer’s Checklist, by Raviv Levi – Director of Product Marketing, Content Protection Products – Discretix

Mobile devices are a crucial element of all “TV Everywhere” deployments. Video quality and effective delivery to mobile devices require different video formats and resolutions. Wireless networks introduce both connectivity and throughput variance, requiring support for  adaptive bit rate streaming protocols. Scalable deployment across multiple platforms – The number of Android and iOS device variants is growing exponentially. Service providers cannot effectively test and debug their “TV Everywhere” application on all existing smartphones, tablets, screen sizes, OS versions and processor platforms. Cost effective deployment requires a single application that can be deployed across the entire mobile device eco-system. Security – Open devices, un-managed networks and multiple untrusted 3rd party applications, add significant complexity to the security of the “Mobile TV Everywhere” applications. Access to premium content from the major studios depends on the proper hardening of content protection technologies. In his presentation, Mr. Levi described the key technology considerations for TV Everywhere deployments on mobile devices and shared lessons learned from devices already in service across the world.

3. OTT and Scale: The Darkness and the Light, by Will Law, Principal Architect – Media Engineering – Akamai

The current architecture and distribution methods of delivering over-the-top content struggle to deliver a single live event to millions of concurrent users. How can they possibly hope to cope with even a fraction of cable’s capacity? This session examined ten new technologies that can combine to help address the problem of delivering live OTT content at massive scale.

The ten technologies described by Mr Law were:
-HEVC – will cut transport costs for OTT content only IF quality parity is maintained
-Increasing device compute capability -enabling software decoding of complex compression schemes
-Storage density growing exponentially- faster than compute capability (more local caching of multi-media content)
-Multi-cast OTT video delivery – for live sports events, election coverage, concerts, royal weddings, OTT linear TC for marquee programming, top 100 Netflix videos, etc)
-Peer assisted video delivery -get video from your peers instead of a conventional video server.  Needs overlay security and control plane
-Tiered pricing plans -already in use by most 3G/4Gmobile carriers, may spread to wireline Internet access; it’s a telco business practice rather than a new technology.
-Local caching networks -caching used to only exist within CDNs. Now major telcos and other carriers (e.g. MSOs) are building out transparent cache layers within their own networks. Federation of content between cache networks is next.)
-Better optimization of mobile data traffic by wireless telcos (small cells, more LTE deployments, self organizing networks, etc)
-Fiber transit capability dramatically increasing in the core network (40G/100GE over fiber being deployed now).
In Sept 2012 NTT demonstrated transmission of 1 petabit (1000 terabits)/sec over 52.4 km of optical fiber. That’s equivalent to sending 5,000 HDTV videos of two hours in a single second.  However, fiber is not being deployed that rapidly to cell towers, and (with the exception of Verizon FiOS and some independent telcos) not directly to the home.
-Scalable Video Coding  with new encoders/decoders capable of operating at mutliple bit rates/frame rates/frequencies.</div

Other new technologies besides the above were identified as:
– 4K video- a new resolution standard designed for digital cinema and computer graphics which has a horizontal resolution on the order of 4,000 pixels.
— Increased device screen resoution (e.g. Samsung Galaxy S4 smart phone is 1080p)
– Server bits/power (Watts) is increasing which is critically important to lower power consumption & cooling in data centers.
— Residential fiber AKA FTTH (not happening in a big way in the U.S.)
— WiFi Carrier Offload (popular with some wireless carriers, but not others)
– HTTP 2.0 is the next planned version of the HTTP network protocol used on the WWW. It is an alternative to SPDY- an HTTP compatible protocol launched by Google and used in Chrome, Firefox and other browsers.

Editors Note:  Time  constraints and great difficulty with this website’s word processor/editor prevented a more complete summary report of these three excellent OTTCON sessions.  Please contact the author if you are interested in learning more as part of a consulting project: [email protected]

Oracle Acquires Tekelec to Pursue Telco Market: Manage, Control & Analyze IP Traffic

Less than two months after buying Acme Packet, Oracle has announced that it has agreed to acquire Tekelec, a leading provider of network signaling, policy control, and subscriber data management solutions for communications networks. The company has also  been an innovator in IP traffic shaping.

Tekelec specializes in critical elements of the modern IP carrier network where the networking and IT software operations converge.  This is the area where Oracle sees its opportunity to expand in the telco market – by bringing its data center and IT systems to telecos and taking on incumbent telco vendors like Ericsson.

Financial terms of the deal were not disclosed. Tekelec has been considered a potential acquisition target since it went private in November 2011. It was then acquired by a group led by private equity firm Siris Capital for $761m, a deal which many believed undervalued the company.  Tekelec made a name for itself in the 1980s and 1990s by specializing in test equipment and then converting to a VoIP software company. 

Last month, Oracle paid $1.7bn for Acme Packet, which specializes in VoIP and IP traffic equipment, notably session border controllers.  We analyzed that transaction in this article:  https://techblog.comsoc.org/2013/02/04/oracle-buys-acme-packet-for-2-1-billion-to-provide-converged-systems-solution

It appears that Oracle is building a group of software technologies  which help network operators control and manage IP traffic and analyze it in detail, in order to impose policies such as offload or premium charging – increasing the ability to monetize the exploding traffic. In particular, it is now a major force in signalling, taking players like F5, which acquired Diameter specialist Traffix over a year ago.  With the Tekelec and Acme Packet acquisitions, Oracle will be in a better position to compete with Cisco Systems, which has recently bought policy management firm BroadHop.

“In an increasingly mobile and social world, customer experience is about optimizing network performance and personalizing services based on what engages, moves, and inspires people,” said Ron de Lange, president and CEO, Tekelec, in a statement. “Together with Oracle, we expect to accelerate the pace of service innovation by helping service providers transform the way they manage and monetize the explosive growth in signaling and data traffic on their networks.”

“Oracle has in the past partnered to provide these capabilities, but by bringing them in house it will have more opportunity
to shape the roadmap and combine the capabilities in a more tightly-coupled solution,” wrote Ovum principal analyst Dana Cooperson in a research note. “Expect Oracle’s telecom focused competitors (Alcatel-Lucent, Huawei, Ericsson) and its IT-focused competitors (HP, SAP, SAS Institute) to do more strategic soul searching and, as their financial situation allows, to pursue acquisitions of their own.”

“As connected devices and applications become ubiquitous, intelligent network and service control technologies are required to enable service providers to efficiently deploy all-IP networks, and deliver and monetize innovative communication services,” said Bhaskar Gorti, general manager of Oracle Communications, in a statement.

In addition to its software products, Tekelec owns hundreds of patents and applications in the communications space. This is an area that Oracle has not hesitated to explore in the courtroom, and given the billion-dollar-plus sums involved in some patent battles, this could have bumped up the pricetag for Tekelec somewhat higher.

References:

http://www.oracle.com/us/corporate/acquisitions/tekelec/index.html

http://www.rethink-wireless.com/2013/03/26/oracle-bolsters-telco-assault-tekelec-buy.htm

http://techcrunch.com/2013/03/25/oracle-buys-tekelec-to-move-closer-to-carriers-and-their-overstretched-data-networks/

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=0&f=S&l=50&TERM1=tekelec&FIELD1=ASNM&co1=AND&TERM2=&FIELD2=&d=PTXT

http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=0&f=S&l=50&TERM1=tekelec&FIELD1=AS&co1=AND&TERM2=&FIELD2=&d=PG01

FBR: SDN’s impact on the networks deployed by service providers and large enterprises

Summary:
FBR CAPITAL MARKETS & CO sees Software Defined Networking (SDN) adoption driving sales of commodity, low-margin switches at the expense of Cisco/Juniper’s conventional switch/routers. SDN separates the data (packet/frame) forwarding “switch engine” from the control plane “server” and uses the Open Flow protocol to communicate between them. SDN revolutionizes networking implementation by using commodity hardware in both the switch/data forwarding engine (data plane) and centralized server (control plane).  All the path computation, re-routing, restoration, management, etc exists as software in the centralized compute server, which is built from off the shelf high performance compute servers.

FBR downgraded Cisco (CSCO) to Sell and said the company will find it difficult to offset weakening router and switching equipment demand. “We believe Cisco will become increasingly more challenged to offset weaker-than-expected routing and switching demand as it works to transition to a more software- and service-centric business model,” the analyst said in its downgrade report. “Looking ahead, we see the potential for additional negative technological trends that could significantly blur the lines between routers, switches AND servers,” FBR added.  “As a result, we expect: (1) a slow, but meaningful, reduction in the number of routers and switches deployed into networks; (2) the adoption of an increasingly larger mix of white box, lower-margin product; (3) the announcement of new competitive products and vendors that could negatively affect gross margins at both companies and across the space.” The investment research firm also downgraded Juniper Networks (JNPR) to underperform.

FBR analyst Scott Thompson forecasts that there will be a 40% drop in switch/router ports deployed by service providers/large enterprises in next 18-36 months (Scott says his forecast was confirmed and considered conservative by several networking companies).  https://twitter.com/thenotablecalls/status/314720086659313664

Note: We await clarification of what FBR thinks will cause the 40% drop in switch/router shipments.  Once we obtain that information this article will be updated.

FBR’s research leads them to believe that the next generation of network and datacenter hardware will blur the boundaries between routing, switching, and computing, providing a single hardware platform on which network and computing functions will be delivered through software applications.

In a just issued report, the firm states:
“Whether microservers, software-defined switches, enterprise flash, or other next-generation datacenter enablers, these technologies often share similar purposes and goals. These technologies typically have the following characteristics:
• Drive power efficiencies from a total platform perspective.
• Lower the overall datacenter footprint.
• Seek to eliminate redundant or nonessential hardware and components.
• Commoditize hardware, thus driving value into “select” software and semiconductors. This new hardware attempts to eliminate the need for custom, purpose-built hardware (example: routers, switches), instead replacing this with a common but versatile computing/switching platform.
• Drive the commoditization of hardware through the scaled use of non-branded component based hardware solutions in distributed datacenter architectures (i.e., white box servers, switches provided by reference designs from the Open Compute Project [OCP]).
• Attempt to replace ASICs with “open” merchant silicon and/or drive advanced functionality into general purpose CPUs (i.e., OpenFlow enables the transfer of the control plane into the CPU).
• Seek to utilize and optimize “open source” software and hardware alternatives (OpenFlow, OpenStack, OpenCompute hardware reference designs).
• Increase infrastructure flexibility through a software approach (example: network function virtualization).

Increasingly, service providers, large enterprises, and Web-based business are working to accelerate the innovation necessary to adopt the types of commoditized support storage, routing, switching, and computing platforms available to hyper-class providers. Our research leads us to believe that the next generation of network and datacenter hardware will blur the boundaries between routing, switching, and computing, thus providing movement toward a single hardware platform on which network and compute functions will be defined through software.

This type of platform approach to networking, particularly with respect to the service provider segment, became increasingly obvious at Mobile World Congress (Barcelona) this year as it was one of the major topics of conversation during multiple carrier keynotes.”

FBR: Software Defined Networking (SDN) is the next logical evolution in networking

“SDN, is a concept that essentially extracts the logical topology of a network from a switch or router and places it in a central repository or database, simplifying the networking topology and making the network easier to manage. SDN essentially splits the functions of a switch or router into two logical functions. It separates the control plane from the forwarding plane. The result drastically simplifies the networking hardware necessary to make a network operate, while making the control plane, or the intelligence of the network, much more flexible. OpenFlow is an important piece of the SDN puzzle and serves as a protocol that delivers the information from the control plane to the forwarding plane. While SDN will likely prove beneficial to all types of organizations, we view SDN as particularly attractive to service providers and large, scaled datacenter operators as a platform from which to launch new SaaS-based services more quickly and easily.”

FBR states and forecasts that: “Web companies moved toward SDN first, carriers moving now, perhaps enterprises later. Thus far, Web-based companies have served as the largest proponents of SDN technologies, and we expect this to continue for the foreseeable future. The demands that Web-based giants have placed on traditional switching networks have stretched networks to their limits, resulting in excessive operating costs and technical constraints to growing business models. SDN presents a much cleaner and more streamlined network solution for these customers.

Our checks indicate that nearly every top 10 service provider is intently focused on the benefits SDN solutions provide.”

Source: BIG “switches:” little SERVERS–FBR’s Holistic View of the Coming Datacenter, written by FBR Technology, Media & Telecom research group


Cisco and Juniper Respond to SDN:

Cisco is trying to respond to the SDN threat with their Open Network Environmnet (ONE)- a portfolio of Cisco  technologies and open standards that brings programmatic control and application awareness to the network, combining the benefits of hardware and software across physical and virtual.

A Cisco Sr VP recently said that SDN will be a “game changer” for data centers:

Juniper Networks say they’re executing on their SDN vision by centralizing network management

The company announced a 4-step roadmap to SDN last month:

Their CEO explained the companies SDN plans in this story:

Juniper has a free SDN Whitepaper you can download after filling out a form at: http://www.juniper.net/us/en/dm/sdn-wp/

References:

2.  IEEE ComSocSCV had the two leaders of the SDN movement talk at one of our technical meetings last year.  Their presentations are posted in the 2012 meeting archive section of our website:

Date: Wednesday, July 11, 2012; 6:00pm-8:30pm
Title: Software Defined Networking (SDN) Explained — New Epoch or Passing Fad?
Speaker 1:  Guru Parulkar, Executive Director of Open Networking Research Center
Subject:   SDN: New Approach to Networking

Speaker 2:  Dan Pitt, Executive Director at the Open Networking Foundation
Subject:   The Open Networking Foundation
http://www.ewh.ieee.org/r6/scv/comsoc/ComSoc_2012_Presentations.php

April 10th ComSocSCV Meeting on Data Center Dynamics & Trends:

Wireless Infrastructure Market and Carrier WiFi integration with cellular networks

The wireless network infrastructure market is currently in a phase of transition as mobile network operators seek to address increasing mobile traffic demands amidst global economic uncertainties. This paradigm shift is bringing new challenges and opportunities to wireless infrastructure vendors.

In 2011, global 2G , 3G and 4G wireless infrastructure revenues were $45.9 billion. Signals and Systems Telecom (http://www.snstelecom.com/)  estimates that these revenues increased 8 percent year on year (YOY) reaching $49.7 billion by end of 2012,  primarily driven by LTE investments. However, between 2012 and 2017, the market is expected to shrink to $48.6 billion.  That’s because of the decline in operator spending on  2G and 3G network infrastructure, network management and related software.

Although, the new wave of 4G-LTE macrocell  Radio Access Network (RAN) and core network investments will not be able to compensate the overall declines in 2G and 3G equipment sales, operators are expected to significantly increase their spending in the evolving small cell and carrier WiFi equipment market.   Small cell and WiFi offload equipment will represent a market of $5.4 billion in 2017. Consequently the small cell and WiFi offload market segment is attracting considerable attention from both established vendors as well as startups which solely focus on the small cell market.
However, carrier WiFi will NOT be supported by all operators.  For example, Sprint and Verizon Wireless have no definitive plans to operate carrier WIFi networks.  Market research firm Informa #1 Trend for 2013 was that Wi-Fi will become a victim of its own success

“There will be a shift in operator sentiment away from public Wi-Fi as it becomes evident that the growing availability of free-to-end-user Wi-Fi devalues the mobile-broadband business model. Mobile operators will respond by articulating the value of their cellular networks better, but others not affected by this trend will double down on their public Wi-Fi investments to continue to propel the deployment and monetization of Wi-Fi.”

Based on it’s WiFi/cellular integration demo at the 2013 Mobile World Congress,  Telefonica d’Espagne seems to be 100% committed to Carrier WiFi.  And so is ATT&T  based on their Wayport acquisition in 2008.  AT&T  might be in the best position to provide access to a worldwide Wi-Fi network.  In that scenario, customers would pay a set amount (maybe $5 or $10 a month) for that capability.  The fact that no one has a fixed monopoly on Wi-Fi makes this a difficult trend for mobile operators to control.

Republic Wireless, a mobile virtual network operator, has created a service that primarily relies on Wi-Fi for connectivity and defaults back to the cell network. Republic sells its service for $19 a month, far less than what people pay carriers. Thus, if carriers seek to monetize their Wi-Fi offerings they are going to have to figure out how to create a service that’s better than what most users cobble together on their own.

IEEE ComSocSCV had a great technical meeting debating the pros and cons of Carrier WiFi along with the new features and functions of IEEE 802.11ac.  Presentos will be posted at the archive section of the Chapter’s web site: http://comsocscv.org

Bell Labs (ALU) narrows its R&D focus to be more product-oriented & realize "near term gains"

What’s left of Bell Laboratories is focusing on software product development on behalf of its parent company, Alcatel-Lucent. “We want to still be the innovation arm of Alcatel-Lucent (ALU) that continues to amaze and surprise people. But I think in order to do that we do have to change somewhat,” said Bell Labs’ Gee Rittenhouse. He added, “As the industry moves toward dynamic networks, distributed systems, Bell Labs also has to move toward those directions.” 

Last month, ALU appointed Rittenhouse as the new leader of the nearly 90-year-old Bell Labs, known for inventing the first transistor, along with a whole host of other technological innovations and discoveries. During his tenure, Rittenhouse plans to steer Bell Labs more toward software products related to networking and cloud computing.

Increasingly, Bell Labs is collaborating with outside partners to solve major technological problems facing the IT industry. One such effort is the GreenTouch Consortium, which is focused on dramatically reducing the power needs of today’s telecommunication networks. Bell Labs and Alctatel-Lucent’s rivals like Huawei and ZTE, among others, are members of the group.

To bring more products to the market, Rittenhouse said Bell Labs will choose long-term projects that can result in near-term gains for the market. Although he declined to reveal specific projects at Bell Labs, he pointed to “immersive communication” as one area the research division has heavily invested time in. This involves examining what makes face-to-face conversations genuine, and how that experience can be replicated over long-distance communication.

“So research in applications, multimedia is just as important as research in physics,” Rittenhouse said. “Because if you are only in math, physics, optical, you are missing this big sea change,” he added.

http://www.cio.com/article/730268/Bell_Labs_Aims_At_Getting_More_Products_to_Market_Faster

http://www.computerworld.com/s/article/9237625/Bell_Labs_hopes_to_get_more_products_to_market_faster

AW Comment: The days of pure research are long gone. Today, companies have a very short time horizon and must get product to market quickly to maintain a competitive edge.  This is especially true in the telecom equipment business, where low cost Chinese vendors Huawei and ZTE, have taken considerable market share from the previous incumbents and forced some (e.g. Nortel) out of business.

Here are a few articles on Bell Labs as the standard for innovation (may no longer be true):

http://www.physicstoday.org/daily_edition/science_and_the_media/is_legendary_bell_labs_the_us_s_gold_standard_for_innovation

http://viodi.com/2012/04/06/computer-history-museum-event-summary-the-idea-factory-bell-labs-and-the-great-age-of-american-innovation/

http://www3.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4w3MXMBSYGYRq6m-pEoYgbxjggRX4_83FT9IH1v_QD9gtzQiHJHR0UAaOmbyQ!!/delta/base64xml/L3dJdyEvd0ZNQUFzQUMvNElVRS82X0FfNDZL

http://www.lgsinnovations.com/about-us/bell-labs

http://www.nytimes.com/2012/02/26/opinion/sunday/innovation-and-the-bell-labs-miracle.html?pagewanted=all&_r=0

France Telecom & Vodafone team up to challenge Telefonica in Spain’s FTTH/High Speed Broadband Access market

France Telecom (FT)/Orange and Vodafone will invest up to up to 1 billion euros (=$1.3 billion) in the joint development of a fiber optic network in Spain, Vodafone-Spain’s Antonio Coimbra told Reuters on March 13th.  The Financial Times reports that Vodafone and FT/Orange plan to offer their own high speed broadband services to customers, in addition to bundled services with mobile, fixed line and TV that are becoming increasingly important in gaining and keeping customers.  The fiber-to-the-home network will reach 800,000 households and workplaces by March 2014, 3m by September 2015, and 6m by 2017.

The new network will challenge Telefónica d’Espagna in the high-speed broadband access market.  But the deal will still need permission to use Telefónica’s network to reach individual homes.  The planned jointly built fiber optic network is intended to reach 6m premises across 50 major cities by September 2017. Vodafone and FT/Orange will each deploy fiber optics in separate but complementary areas to share the network scale. The fiber optic lines will be owned independently but will work as a single network.  The combined capital expenditure needed to reach 6m homes and workplaces is expected to reach €1bn, according to the companies.

Vodafone, which has traditionally been viewed as a purely mobile operator, has slowly established a pan-European fiber optic network through either partnering existing fixed line owners, building its own network as in Portugal or buying companies with fibre or cable assets.  Vodafone and FT/Orange said that the agreement would increase the efficiency of fiber optic deployment and maximize returns on investment for both operators. The agreement is also open to third parties willing to co-invest.

Paolo Bertoluzzo, chief executive of Vodafone’s Southern Europe region, said: “This agreement demonstrates Vodafone’s commitment to provide high-speed unified communications services to our customers coupled with our willingness to invest when there are positive returns.”

http://www.ft.com/intl/cms/s/0/fbd182cc-8bf0-11e2-b001-00144feabdc0.html

http://www.lightwaveonline.com/articles/2013/03/vodafone-orange-partner-for-ftth-in-spain.html?cmpid=EnlDirectMarch142013


Google’s
KC FTTH network was described at the Feb 13th ComSocSCV meeting.  Ken Pyle of
Viodi View wrote: 
“A step function improvement in capability,” is how Milo Medlin described Google’s Kansas City fiber project at the February 13th IEEE ComSoc meeting in Santa Clara. That huge improvement in customer experience is in contrast to the incremental gains of MSO [Multiple System Operator] and telco broadband networks which have much lower access speeds.  Medlin, who is VP of Access for Google, described a Gigabit/second fiber network that eliminates the bottleneck between the home and the cloud, unleashing new applications and devices both in the home and by implication, throughout a city. Google’s biggest innovation may not be in technology, but it in its ability to improve the provisioning process, create a simplified offering and use grass-roots marketing to promote its high speed fiber access
offering.  The story of Google Fiber is pretty well-known by now. Google issued an RFI a couple of years ago to which 1,100 cities responded he test bed for Google’s fiber to the home project. What isn’t so well-known is that the motivation for this was the middling price/bandwidth performance of the U.S. as compared to other countries.

Hopefully, Ken’s write-up of this IEEE ComSocSCV Feb 13, 2013 seminar will be published at http://viodi.com in the near future! 

Medlin, who was a key figure in the early success of cable modems, through his affiliation with @Home, suggested that, instead of complaining to government, Google decided to solve the problem. The unexpected response of so many communities was also a surprise to Google and was an indicator of a pent-up demand.

Interestingly, government turns out to be part of the reason for their success, but not in the form of subsidies or tax breaks. The techniques Google and the local city are using to streamline the permit process and literally work together is saving an estimated 2% of the build cost. Similarly, attachment of fiber to the poles is made somewhat easier because the local utility is municipally-owned.

Mobile World Congress (MWC) 2013 Report: OTT Services & LTE Networks

Source:  Wireless Intelligence

Mobile Network Operators face up to regulatory and OTT challenges

Many of the operator CEOs speaking at the 2013 MWC in Barcelona commented on the phenomenal pace the industry is currently moving.  But what was also apparent was how those same network operators have been much slower than over-the-top (OTT) players, OS developers and in some cases device manufacturers in taking advantage of the opportunities that these changes have brought about.

Taking advantage of rapidly increasing smartphone penetration, OTT messaging services such as Viber, WhatsApp and KakaoTalk have grown exponentially during the past year. Operators have been unable to respond quickly to the challenge of these IP-based players and are feeling the effect in their SMS (texting) ARPUs. Network operator CEOs object that OTT players benefit directly from operator investment in networks without incurring any of their own costs. According to CEO Talmon Marco, Viber, whose users have increased to more than 170 million from 90 million in July 2012, costs just $200,000 per month to run.

As well as the OTT threat, operators voiced concern that excessive regulation and inefficient spectrum allocation were hampering their efforts to develop the infrastructure required to satisfy the everincreasing demand for data.

Key Data Points:
• Network Operators stressed that the regulatory environment needs to be in sync with network investment cycles in the
industry
• Network Operator revenues are stagnating in developed markets, but increasing capex is required to build out 4G LTE infrastructure
• OTT players are eating into operator revenues, and they benefit from operator investment at no cost to themselves
• Current regulation seeks to increase competition but operators say there is too much competition in many countries already, especially in Europe

Spectrum was also high on the agenda for operators, with GSMA chairman Franco Bernabè calling for more efficient allocation as well as greater harmonisation of spectrum for LTE. These are crucial issues, notably in Europe where LTE technology currently accounts for less than 1% of mobile connections in the region – compared to more than 10% in North America, Japan and South Korea.

Operators require a portfolio of frequency bands to ensure that economically viable infrastructure solutions can be deployed nationwide. At present, pieces of the puzzle are missing, with digital dividend frequencies yet to be assigned in several European countries. Availability of spectrum in the 800 MHz band in the region is critical to ensure that LTE coverage is sufficient to meet escalating demand for data services.

There were a number of announcements from European operators focused on network expansion to accomodate greater demand for mobile data services.

Key Data Points:

• O2 UK announced a partnership with Ericsson to deploy LTE this year
• In the UK, EE announced that around a quarter of its customers living within range of its 4G LTE network have upgraded to one of its 4G plans
• O2 Germany is launching an LTE network in Munich and Berlin on 31 March 2013, followed by four other large cities in Q2 2013
• Unlike its competitors that started by covering ‘white spot areas’ (rural zones underserved with broadband connectivity) under licence obligations, O2 Germany says it will focus on large cities
• Vodafone Germany already reports 60% LTE coverage by area and said that 20 million households now have access to its highspeed network
• Telstra claimed that demand for LTE is exploding as one in five Australian smartphone owners plan to buy a 4G handset in the next 12 months. There are 19 LTE devices available on the market
• Telstra has sold 1.5 million 4G LTE devices since September 2011 and aims at increasing coverage to two thirds of the population by June 2013
• China Mobile claimed that its TD-LTE network will be launched in Q3 2013

LTE pricing models vary between operators and regions. Most operators in North America focus on consumption-based tariffs while operators in Europe tend to include a speed-based element to their data plans. In the latter region, competition is intensifying around LTE tariffs, notably with operators such as 3 (Hutchison) promising no LTE premium to consumers in the UK.
O2 Germany claimed that “the German consumer is comfortable with paying for quality of service and different speeds
with data”. The operator unveiled four new O2 Blue tariffs aimed at smartphone users that will better prepare it for an LTE future. The two premium plans support download speeds of rates up to 50 Mb/s and data allowances of up to 5 GB, as well extra SIM cards to enable data to be shared between a smartphone and tablet or laptop. The entry-level plan starts at €19.99 per month, while unlimited voice and SMS is included in all new plans. Bolt-on options are also provided to
enable subscribers to add extra data at LTE speeds.

Wi-Fi hotspots occupy an increasingly important place in the data-centric world that mobile operators are creating, to help manage mobile data traffic, network capacity and high-speed data network coverage. Telefónica demonstrated during Congress a technology that enables smartphone and tablet users to move between Wi-Fi and mobile networks without losing coverage, and said this service could be available in the next year.

http://www.telefonica.com/en/descargas/mwc/np_20130226_4G-WiFi.pdf

Sunil Bharti Mittal, Chairman of Bharti Airtel (India), challenged network infrastructure vendors to offer integrated networks with support for both TD-LTE and FDD LTE technologies – alongside support for various frequency bands – in order to control its infrastructure cost. Bharti has over 20,000 TD-LTE customers in India, and is looking to deploy the technology in the 1800 MHz band using the FDD LTE variant in the near future.

For the complete report, visit:
https://wirelessintelligence.com/files/analysis/?file=130307-mwc-wrap-up.pdf


On 11 March 2013, Yankee Group presented their Mobile World Congress Wrap-Up webinar.  You can replay that Yankee Group webinar at:

http://blogs.yankeegroup.com/2013/03/11/webinar-mobile-world-congress-wrap-up/

There are other webinars shown on the top of that website which may be of interest to our readers.


Google’s white space spectrum database makes its debut

Google is launching its U.S. White Space spectrum database today in a 45-day public readiness trial, becoming the third player to do so, after Telcordia and Spectrum Bridge completed their trials. The data base provides data on TV broadcast frequencies not in use that are available for short-range device access.

In addtion to Spectrum Bridge and Telcordia, there are another 10 companies approved to run databases – including Microsoft – but Google is interesting because it’s one of the biggest brands involved and has previously suggested that, unlike the competition, it won’t charge for access to its data.

For more info, go to:

http://www.theregister.co.uk/2013/03/04/google_white_spaces/


References:

http://viodi.com/2012/11/13/google-advocates-unlicensed-spectrum-sharing-via-tv-white-spaces-for-wireless-broadband-access/

https://techblog.comsoc.org/2012/11/14/summary-of-nov-2nd-wireless-symposium-sponsored-by-joint-venture-silicon-valley

Informa: Public Access Small Cell Market to Hit US$16 Billion in 2016!

Urban and rural small cells will account for 73% of all small cell revenues, according to Informa Telecoms & Media latest quarterly small-cell market status report for the Small Cell Forum.  The report highlights that public access small cells are gaining clear market traction and will dominate small cell revenues for the foreseeable future.

Informa Telecoms & Media’s report predicts that the installed base of small cells is set to grow from almost 11 million units today to 92 million units in 2016 – an eight-fold increase – with a total market value of over $22bn.   Public access models will dominate revenues in 2016 with a market value of $16.2bn, 73 per cent of the overall small cell market total the research found. This is despite accounting for only four per cent of small cell units deployed.
 
The research also found that the 9.6 million femtocells in operation today make up 56 per cent of all base stations globally – outnumbering macrocells for the first time. Femtocells will continue to outnumber all other types of cell with 85 per cent of the total base station market in 2016 and constitute 12 per cent of overall small cell market revenues, according to the report.
 
“Public access small cells in busy urban areas are set to be one of the defining mobile network trends in the coming years. While operators won’t be deploying them in the same numbers as femtocells, they are arguably their best tool for bringing massive extra capacity to their mobile networks. As this research shows, the vendors who succeed in this space are going to win the lion’s share of small cell revenues. All eyes will be on the deployments taking place in the coming months in order to establish best practice for the many more that will follow over the next few years,” said the report’s author, Dimitris Mavrakis, principal analyst at Informa Telecoms & Media.
 
“The mobile network is undergoing the biggest and most rapid change in its history due to small cells – they now account for 63 per cent of all base stations globally. This revolution may have started in the home with femtocells but in 2013 we’re going to see it spill into the streets, shopping centres and enterprises,” added Gordon Mansfield, the Small Cell Forum’s chairman.

For more info, please go to:

http://blogs.informatandm.com/9492/press-release-public-access-small-cell-market-to-hit-us16-billion-in-2016/

http://www.smallcellforum.org/resources-reports

Infonetics 2012 review & 2013 forecasts for PON, FTTH, DSL Aggregation + Cable Broadband markets

Market research firm Infonetics Research released vendor market share and preliminary analysis from its 4th quarter 2012 (4Q12) PON, FTTH, and DSL Aggregation Equipment and Subscribers report. (Full report will be published March 4th).

BROADBAND AGGREGATION MARKET HIGHLIGHTS:

.    Global sales of broadband aggregation equipment (DSL, PON, Ethernet FTTH) fell 6% in 4Q12, to $1.56 billion, as a result of declines in spending on DSL equipment in EMEA and EPON gear in Asia

.     For the full year 2012, worldwide spending on broadband aggregation equipment was down 10% to
$6.65 billion, with DSL equipment taking the largest hit, plunging 26%!

.    Meanwhile, the 2.5G GPON equipment segment is up 30% in 2012, led by China, where a dramatic swing in technology choice by China Telecom and China Unicom is shifting investment from EPON to GPON for FTTH deployments
.    VDSL port shipments grew by almost a quarter in 2012, reaching 23 million worldwide, as Belgacom, KPN, British Telecom, France Telecom, Deutsche Telekom, Turk Telecom, and Telekom Austria deploy VDSL2 to keep pace with cable DOCSIS 3.0 rollouts
.    In 2012 in the overall broadband aggregation market, perennial leader Huawei lost some revenue share to its top competitors, and Alcatel-Lucent pulled ahead of ZTE for 2nd place

.    The top 3 overall vendors also lead the growing 2.5G GPON equipment market, with Dasan Networks rounding out the #4 spot

 

 

ANALYST NOTE:
2012 was a challenging year for fixed broadband equipment, with DSL taking the biggest hit as China continues its transition to FTTH,” notes Jeff Heynen, directing analyst for broadband access and pay TV at Infonetics Research. “But despite the difficult road for DSL, VDSL remains a real bright spot, expanding among operators in Western Europe, North America and Latin America. Vectoring solutions and a long-term path to G.Fast are driving sustained interest in VDSL2.”

Heynen adds: “Meanwhile, GPON equipment had an outstanding year, with China again contributing the most revenue and EMEA and Latin America providing pockets of strength.”

REPORT SYNOPSIS: 
Infonetics’ quarterly broadband aggregation report provides worldwide and regional market size, vendor market share,
forecasts, analysis, and trends for 1.25G, 2.5G, and 10G EPON, 2.5G and 10G GPON, FTTH, FTTB, PON, and DSL aggregation equipment. The report also tracks FTTH, FTTB+LAN, and DSL subscribers. Companies tracked include ADTRAN, Alcatel-Lucent, Calix, Dasan, ECI Telecom, Fiberhome, Fujitsu, Genexis, Hitachi, Huawei, Iskratel, Mitsubishi, Motorola, NEC, OF Networks, PacketFront, Sumitomo, Tellabs, Ubiquoss, Zhone, ZTE, ZyXEL, and others.

To buy the report, contact Infonetics: http://www.infonetics.com/contact.asp

http://www.infonetics.com/pr/2013/4Q12-PON-FTTH-and-DSL-Aggregation-Market-Highlights.asp


Infonetics is very positive about the cable broadband market in 2013 after a difficult 2012.  “Though 2012 was a down year for cable broadband, the stage is set for a strong 2013,” notes Jeff Heynen, directing analyst for broadband access and pay TV at Infonetics Research. “Cable operators worldwide have a number of bandwidth-hungry applications on tap that will drive CMTS and edge QAM channel growth throughout the year, including DOCSIS 3.0, multiscreen services via the deployment of new video gateways, and carrier WiFi services. We’re expecting CMTS and edge QAM revenue to grow more than 20% in 2013,” he wrote.

CMTS AND EDGE QAM MARKET HIGHLIGHTS:
.    For the full year 2012, CMTS (cable modem termination system) and edge QAM (quadrature amplitude modulation) equipment revenue decreased 15%, to $1.39 billion
.    Declining ASPs and channel shipments edged the global CMTS and edge QAM market down for the 3rd consecutive quarter in 4Q12, as revenue fell 1% sequentially, to $284 million
.    North America bucked the global trend, notching a 7% increase in CMTS and edge QAM revenue in 4Q12 from 3Q12
.    Cisco held onto its perennial #1 CMTS revenue market share position in 4Q12, though #2 ARRIS, the leader in channel shipments, grew its share by 6 percentage points
.    In the edge QAM segment, Cisco edged out Harmonic to claim the top spot for the 1st time ever in 4Q12; even so, Harmonic closed out 2012 as the edge QAM leader

http://www.infonetics.com/pr/2013/4Q12-CMTS-and-Edge-QAM-Market-Highlights.asp

A related article on Infonetics Service Provider Router/Switch Market is at:

http://viodi.com/2013/02/23/infonetics-optimism-on-service-provider-routerswitch-market-contrasts-with-ciscos-cautious-outlook/

Infonetics views on mobile infrastructure are at:

http://viodi.com/2012/12/05/infonetics-mobile-infrastructure-market-down-in-quarter-small-cells-not-so-hot/

Page 71 of 94
1 69 70 71 72 73 94