Millimeter Wave Market Projected to reach 7.38B by 2027; 37% CAGR

The global telecom millimeter wave technology market size is projected to reach USD 7.38 billion by 2027, registering a CAGR of 37.01%.

Millimeter Waves (MMW) can transmit a large amount of data efficiently, operating in the electromagnetic spectrum of 30 GHz to 300 GHz. Millimeter waves are also known as Extremely High-Frequency (EHF) waves owing to its operational frequency spectrum. The property of transmitting a large amount of data has made the technology popular across the telecommunication application.

The MMW technology industry is prominently dependent on the applications in various verticals where it is used extensively. Major application areas include telecommunication, military and defense, security services, and medical and healthcare. Evolution of 5G technology is likely to occur over the coming years on account of recent developments and continuous research and progress in the telecom industry.

Millimeter waves are anticipated to play a vital role in the development of 5G technology on account of the technology’s demand for higher-bandwidth. The 5G technology is predicted to emerge in the coming years and the market is likely to witness its adoption significantly. Eventually, the demand for MMW technology is expected to boost, in turn, propelling the overall MMW technology market, particularly across the telecom industry.

Increased government funding and initiatives coupled with intensive R&D carried out from the military and private sectors are leading towards the improvement of the MMW technology. In addition, the E-band frequency segment having extensive application in the telecommunication sector is estimated to generate the highest revenue. The E-band frequency segment is projected to keep on dominating in the telecom industry owing to the growing telecom applications. Therefore, the overall telecom millimeter wave technology market is poised to witness significant growth worldwide over the forecast period at a notable pace.

Telecom Millimeter Wave Technology Market Report Highlights:

  • North America accounted for the largest market share in the telecom MMW technology market owing to the technology’s early and greater adoption rate
  • U.S. being the highest revenue generating country in 2019 in North America, the regional market is predicted to exhibit steady growth over the forecast period
  • E-band frequency segment is anticipated to grow rapidly over the estimated duration owing to its extensive adoption in the telecom applications
  • The telecom industry in the Asia Pacific is poised to expand substantially over the coming years, and the E-band frequency segment is likely to witness lucrative opportunity in the regional telecom industry
  • Besides, growing urbanization in the Asia Pacific region and competition amongst the telecom service providers to offer superior quality of internet and other related services in order to enlarge customer base is another factor expected to drive the telecom MMW technology market
  • Online streaming of high-quality videos, online gaming, and other entertainment stuff which demand high bandwidth and consume heavy data are again likely to fuel the overall demand for MMW technology in the telecom sector globally.

Millimeter wave (mmWave) communication systems have attracted significant interest regarding meeting the capacity requirements of the future 5G network. The mmWave systems have frequency ranges in between 30 and 300 GHz where a total of around 250 GHz bandwidths are available. Although the available bandwidth of mmWave frequencies is promising, the propagation characteristics are significantly different from microwave frequency bands in terms of path loss, diffraction and blockage, rain attenuation, atmospheric absorption, and foliage loss behaviors. In general, the overall loss of mmWave systems is significantly larger than that of microwave systems for a point-to-point link.

Fortunately, the small wavelengths of mmWave frequencies enable large numbers of antenna elements to be deployed in the same form factor thereby providing high spatial processing gains that can theoretically compensate for at least the isotropic path loss. Nevertheless, as mmWave systems are equipped with several antennas, a number of computation and implementation challenges arise to maintain the anticipated performance gain of mmWave systems. Toward this end, this chapter discusses key enabling techniques of the mmWave based 5G network from the link level perspective. The link level performance of the mmWave wireless system depends on a number of factors, including the transmission scheme (i.e., whether we employ beamforming, multiplexing, or both), the approach to identifying the channel, how to design the transmitted signal waveform structure and access strategies.

References:

https://www.prnewswire.com/news-releases/global-telecom-millimeter-wave-technology-market-size-share–trends-analysis-report-2020-2027-301179073.html

https://www.sciencedirect.com/topics/engineering/millimeter-wave

Dell’Oro and Cignal AI: Optical Transport Equipment Market Grows in 3Q 2020

According to a recently published report from Dell’Oro Group, the optical transport equipment revenue increased 9 percent year-over-year in 3Q 2020 reaching $3.8 billion. The market growth was largely attributed to higher demand in Asia Pacific.

“Sales slowed in North America following a strong first half of the year,” said Jimmy Yu, Vice President at Dell’Oro Group. “Whether it was due to network demand caused by people working and studying from home or new projects at the beginning of the year, the demand for optical equipment in the region rose 11 percent in the first half of 2020. But I think there was enough concern surrounding the longevity of the pandemic that service providers grew cautious and refrained from overextending their capital. As a result, optical revenue in North America declined 7 percent in the third quarter,” continued Yu.

Growth in Asia Pacific more than offset the lower revenue in North America and Latin America. Optical revenue grew 22 percent year-over-year in Asia Pacific, driven largely by higher deployments in China and Japan. Also, with lockdown restrictions easing, some regions such as Middle East and Africa (MEA), significantly rebounded in the quarter following a sharp decline in 1H 2020. Sales in China, Japan, and MEA each grew over 25 percent.

About the Report

The Dell’Oro Group Optical Transport Quarterly Report offers complete, in-depth coverage of the market with tables covering manufacturers’ revenue, average selling prices, unit shipments (by speed including 100 Gbps, 200 Gbps, 400 Gbps, and 800 Gbps).  The report tracks DWDM long haul, WDM metro, multiservice multiplexers (SONET/SDH), optical switch, optical packet platforms, data center interconnect (metro and long haul), and disaggregated WDM.  To purchase this report, please contact us at dgsales@delloro.com.

About Dell’Oro Group

Dell’Oro Group is a market research firm that specializes in strategic competitive analysis in the telecommunications, networks, and data center IT markets.  Our firm provides in-depth quantitative data and qualitative analysis to facilitate critical, fact-based business decisions.  For more information, contact Dell’Oro Group at +1.650.622.9400 or visit https://www.delloro.com

…………………………………………………………………………………………………………………………………………………………………………………………………………..

According to Cignal AI, European network operators resumed purchases of optical and packet transport hardware in 3Q20 as COVID-related supply chain and operational delays eased, according to the most recent Transport Hardware Report from research firm Cignal AI. At the same time, North American spending weakness spread to the optical hardware segment as the region’s operators paused capex after aggressive deployments in the first half of the year.
“EMEA’s packet and optical transport sales growth was bolstered by sales deferred from Q2 and raised the market overall during the third quarter,” said Scott Wilkinson, Transport Hardware lead analyst at Cignal AI. “The outcome was different in North America, where sales were more frontloaded in the first two quarters than in EMEA, especially by the larger operators. NA annual CapEx budgets are largely exhausted, producing declining sales in the second half of the year for this region.”
Additional 3Q20 Transport Hardware Report Findings:
  • Optical hardware spending grew by double-digits in EMEA, countering expectations of a flat-to-down quarter in optical spending. Nokia led the robust growth with a boost from sales deferred from Q2. Worldwide, optical hardware spending was up slightly.
  • Packet transport hardware spending also rose in EMEA but declined worldwide. EMEA packet transport revenue for both Huawei and Juniper grew by more than 20% YoY as the two companies gained ground on market leaders Cisco and Nokia.
  • North American optical and packet spending declined this quarter, as anticipated by vendors (Ciena, Cisco) with exposure to large network operators. Ciena continues to lead optical market share with slight YoY revenue growth, while Cisco maintains packet transport market leadership despite a sharp YoY revenue decline.
1Q20-Dashboard-Sample

About the Transport Hardware Report

Cignal AI’s Transport Hardware Report is issued each quarter and examines optical and packet transport equipment revenue across all regions and equipment types. The initial analysis is based on financial results, independent research, and guidance from individual equipment companies. Hardware forecasts are reviewed and updated in following weeks, along with spending trends by operator type. Clients can review a summary of quarterly results as well as access real-time dashboards and Excel downloads. Additionally, subscribers to the Transport Hardware Report have access to Active Insight, Cignal AI’s news service highlighting current market events.
The Transport Hardware Report examines revenue for metro WDM, long-haul WDM and submarine (SLTE) optical equipment, and access, aggregation, edge, and core packet equipment in six global regions. Vendors in the report include Adtran, ADVA, Alaxala, Ciena, Cisco, Ekinops, Fiberhome, Fujitsu, Huawei, Infinera, Juniper, Mitsubishi Electric, NEC, Nokia, Padtec, Ribbon, Tejas, Xtera, and ZTE. A full report description, as well as articles and presentations, are available on the Cignal AI website.

About Cignal AI

Cignal AI provides active and insightful market research for the networking component and equipment market and the market’s end customers. Our work blends expertise from a variety of disciplines to create a uniquely informed perspective on the evolution of networking communications.  sales@cignal.ai

Huawei and Cambridge Wireless plan private 5G testbed in Cambridge, UK

Huawei and Cambridge Wireless have partnered to deploy and build a private 5G testbed at the Cambridge Science Park. This marks the start of a 3-year partnership which will include digital training, joint events and business support.

This will be the UK city’s first 5G mobile private network, and will support companies with the R&D and application of new digital technologies in areas such as remote surgery, autonomous vehicles and clean energy. The 5G testbed will go live in January 2021. Owned by Cambridge University, the Cambridge Science Park currently has over 120 technology companies and scale-ups.

“We are constantly working to provide value to CW members,” said Simon Mead, CEO of Cambridge Wireless. “As home to one of the world’s most advanced R&D ecosystems, Cambridge is perfectly positioned for the rollout of next-generation wireless technology and we’re delighted to be driving this initiative with our partners.

“We hope to bring something unique to the Science Park to accelerate use cases and development of this technology. We invite ambitious businesses to get involved, and through this exciting 3-year partnership with Huawei, we will support their 5G innovation journey.”

Victor Zhang, vice-president at Huawei, commented: “Huawei’s success is built on a relentless drive for innovation and we are able to keep pushing the boundaries of technology when we partner with those who share this ambition.

“The Cambridge eco-system is recognised as a global leader in technology, and we are excited to work with the talent and vision in this eco-system. We hope to enable Cambridge Wireless members to reach new heights by allowing them access to our state-of-the-art equipment and markets, including China and beyond.

“Our commitment to the UK and industry remains as strong as ever and we will continue to offer our expertise and technology to our partners to promote connections and innovation.”

To find out more and how to get involved, please contact:

Abhi Naha CCO CW (Cambridge Wireless)

Tel: +44(0)1223 967 101 | Mob: +44(0)773 886 2501

abhi.naha@cambridgewireless.co.uk

…………………………………………………………………………………………………………………………………………………………………………………………………….

About CW (Cambridge Wireless)

CW is the leading international community for companies involved in the research, development and application of wireless and mobile, internet, semiconductor, hardware and software technologies.

With an active community of over 1000 technology companies ranging from major network operators and device manufacturers to innovative start-ups and universities, CW stimulates debate and collaboration, harnesses and shares knowledge, and helps to build connections between academia and industry.

www.cambridgewireless.co.uk

……………………………………………………………………………………………………………………………………………………………………………

About Huawei

Founded in 1987, Huawei is a leading global provider of information and communications technology (ICT) infrastructure and smart devices. We are committed to bringing digital to every person, home and organization for a fully connected, intelligent world. Huawei’s end-to-end portfolio of products, solutions and services are both competitive and secure. Through open collaboration with ecosystem partners, we create lasting value for our customers, working to empower people, enrich home life, and inspire innovation in organizations of all shapes and sizes. At Huawei, innovation puts the customer first. We invest heavily in fundamental research, concentrating on technological breakthroughs that drive the world forward. We have nearly 194,000 employees, and we operate in more than 170 countries and regions, serving more than three billion people around the world. Founded in 1987, Huawei is a private company fully owned by its employees.

…………………………………………………………………………………………………………………………………………………………………………….

References:

https://www.huawei.com/uk/news/uk/2020/cambridge%20wireless%20partnership

https://www.cambridgewireless.co.uk/news/2020/nov/10/cambridge-wireless-and-huawei-partner-build-first-/

Huawei and Cambridge Wireless to build private 5G testbed

 

T‑Mobile expands Home Internet to over 130 additional cities

T-Mobile US will increase its Home Internet service to more than 130 additional cities and towns across Michigan, Minnesota, New York, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin. The move comes after it massively expanded its home broadband pilot to more than 20 million households in October.

The $50/month Home Internet pilot service will be deployed in underserved rural markets — through LTE-based coverage, with 5G service coming soon.  The company says that only 63 percent of adults in rural America currently have access to high-speed internet.

“Home broadband has been broken for far too long, especially for those in rural areas, and it’s time that cable and telco ISPs have some competition,” said Dow Draper, T-Mobile EVP, Emerging Products. “We’ve already brought T-Mobile Home Internet access to millions of customers who have been underserved by the competition. But we’re just getting started. As we’ve seen in our first few months together with Sprint, our combined network will continue to unlock benefits for our customers, laying the groundwork to bring 5G to Home Internet soon.”

T-Mobile Home Internet is just $50/month all-in and features many of the same benefits that have made T-Mobile the fastest growing wireless provider for the past seven years:

  • Self-installation. That means there’s no need for installers to come to your home.
  • Taxes and fees included.
  • No annual service contracts.
  • No maddening “introductory” price offers. What you pay at sign-up is what you’ll pay as long as you have service.
  • No hardware rental, sign-up fee or installation costs (because set-up is so easy!).
  • No data caps.
  • Customer support from the team that consistently ranks #1 in customer service satisfaction year after year.

Now that customers have had access to T-Mobile Home Internet since 2019, the reviews are in … and the feedback speaks for itself. Customers give T-Mobile Home Internet an average Net Promoter Score (NPS) of 42, compared to -75 (that’s a negative 75!) for their previous provider. Seventy-three percent report saving money with T-Mobile Home Internet, with 50% saving more than $30 per month (that’s $360 annually!).

The Home Internet pilot provides home broadband on the Un-carrier’s LTE network. With additional capacity unlocked by the merger with Sprint, T-Mobile is preparing to launch 5G Home Internet commercially nationwide, covering more than 50% of U.S. households within six years and providing a badly needed alternative to incumbent cable and telco ISPs.

Home broadband is one of the most uncompetitive and hated industries in America. Rural areas in particular lack options: more than three-quarters have no high-speed broadband service or only one option available. And when there’s no choice, customers suffer. It’s no wonder internet service providers have the second lowest customer satisfaction ratings out of 46 industries, beating cable and satellite TV companies by just one point according to the ACSI (American Customer Satisfaction Index)!

T-Mobile Home Internet service is available on a first-come, first-served basis, where coverage is eligible, based on equipment inventory and local network capacity, which is expanding all the time. For more information on T-Mobile Home Internet or to check availability for your home in these areas, visit t-mobile.com/isp.

Reference:

https://www.t-mobile.com/news/un-carrier/tmobile-expands-home-internet-to-more-than-130-additional-cities-towns

 

Netgear Nighthawk 5G Hotspot Pro from AT&T; Netgear’s audio video over IP (AV over IP)

AT&T announced the exclusive launch of the Netgear Nighthawk 5G Mobile Hotspot Pro (aka “5G puck”) powered by Qualcomm Snapdragon X55 Mobile Platform. The device is the first hotspot of its kind to leverage AT&T’s nationwide (pre-standard) 5G network and the latest WiFi 6 network.  Customers can only buy it at AT&T online store for  $509.99 or $17 per month for 30 months on an installment plan when orders begin on September 18th.

“The combination of AT&T 5G technology and the NETGEAR Nighthawk 5G Mobile Hotspot Pro gives AT&T customers fast speeds, low-latency and improved bandwidth for all of their WiFi needs,” said David Christopher, executive vice president and general manager, AT&T Mobility. “The 5G addition is innovative in a hotspot and much needed during a time when many of our customers continue to work and learn from home.”

“We are delighted to team with AT&T, to release their next generation 5G hotspot. The NETGEAR Nighthawk 5G Mobile Hotspot Pro combines the best of WiFi and mobile technologies – WiFi 6 and 5G, to keep you always connected at home and on the go via the AT&T 5G network,” said Patrick Lo, chairman and chief executive officer for NETGEAR. “This new mobile hotspot with WiFi 6 provides robust WiFi connectivity to the increasing number of mobile devices and computers simultaneously with the best mobile internet speeds available over 5G.”

The introduction of this hotspot also exceeds AT&T’s commitment to offer 15 5G-capable devices to our lineup in 2020. This expansive portfolio gives our customers a wide variety to choose from, with features and price points that best serve their needs. All of these devices tap into our nationwide 5G network, offering fast, reliable and secure connectivity across the U.S. Plus, 5G access is included in all of our current consumer and business unlimited wireless plans at no extra cost to you.3

NETGEAR NIGHTHAWK 5G MOBILE HOTSPOT PRO FEATURES

The NETGEAR Nighthawk 5G Mobile Hotspot Pro is the perfect portable device. Whether you’re constantly on the move or looking for an alternative to in-home broadband, it offers the following features that will provide a steady and reliable connection wherever you are:

  • Capacity: Share your connection with up to 32 WiFi devices such as smartphones, tablets, and laptops for a connection you can count on.
  • 5G Compatibility: In addition to AT&T’s nationwide 5G network, this device can also access AT&T 5G+ in parts of 35 cities across the country. Together, these two flavors of 5G create the best mix of speeds and coverage, and will power new experiences coming to life.
  • WiFi 6: Tap into the latest WiFi technology that will power fast surfing, downloading, and streaming for the whole family.
  • Touch Screen: Set up your device and manage your usage with ease from the NETGEAR Nighthawk 5G Mobile Hotspot Pro’s touchscreen.
  • Battery Life: Power through your day and night with the long-lasting, powerful 5,040 mAh rechargeable battery. It also operates without battery when connected via the quick charge power adapter.

FIRST RESPONDERS

The NETGEAR Nighthawk 5G Pro Hotspot will also be FirstNet Ready™, which means first responders can use it to tap into the power of FirstNet® – America’s public safety communications network. FirstNet Ready devices are tested and approved to operate with services using the FirstNet LTE network core. This gives public safety access to the critical capabilities that FirstNet enables, like the full power of AT&T’s LTE network, including Band 14 spectrum, which serves as a VIP lane for first responders.4

For more information on AT&T 5G, visit att.com/5G. For the latest on how we’re using this next generation of wireless technology, head to att.com/5GNews.

https://about.att.com/story/2020/netgear_nighthawk_5g_mobile_hotspot_pro.html

……………………………………………………………………………………………………………………………………………………………………………………….

Netgear separately announced the addition of an entirely new series of switches designed and built from the ground up for the growing audio video over IP (AV over IP) market.  Called the AV Line, these products combine years of networking expertise with best practices from leading experts in the professional AV market.  Netgear says the following about its new product line:
  • An entirely new series of switches developed and engineered for the growing audio, video over IP (AV over IP) market. These AV Line switches combine years of networking expertise with best practices from leading experts in the professional AV market.
  • The new AV Line incorporates NETGEAR IGMP Plus for flawless video over IP (including audio and control). If you are using Dante or AVB in your audio deployment, you can trust that NETGEAR’s new AV Line switches are designed to seamlessly integrate into your solution.
  • The new M4250 AV interface presents the common AV controls right up front with user-selectable profiles for common AV platforms making it a snap to ensure the settings are correct for a specific audio or video application.

At long last, commercial 400GE is real via Windstream -Evergreen long haul optical circuit

IEEE 802.3‘s “400 Gb/s Ethernet Study Group” started working on the 400 Gbit/s generation standard in March 2013. Results from the study group were published and approved on March 27, 2014.  IEEE officially ratified its 802.3bs standard for 200G and 400G over Single Mode Fiber (SMF) and Multi Mode Fiber (MMF) on December 6, 2017.

Below are charts of recent IEEE 802.3 Ethernet standards development and the various option for 400GE over SMF or MMF:

ethernet standards development by year

Name Medium Tx Fibers Lanes Reach Encoding
400GBASE-SR16 MMF 16 16 x 25 Gbps 70 m (OM3)100 m (OM4) NRZ
400GBASE-DR4 SMF 4 4 x 100 Gbps 500 m PAM4
400GBASE-FR8 SMF 1 8 x 50 Gbps (WDM) 2 km PAM4
400GBASE-LR8 SMF 1 8 x 50 Gbps (WDM) 10 km PAM4
200GBASE-DR4 SMF 4 4 x 50 Gbps 500 m PAM4
200GBASE-FR4 SMF 1 4 x 50 Gbps (WDM) 2 km PAM4
200GBASE-LR4 SMF 1 4 x 50 Gbps (WDM) 10 km PAM4

Source:  IEEE 802.3

……………………………………………………………………………………………………………………………………….

There’s been much talk about 400GE since then with continued promised of “deployment this year,” primarily for Data Center Interconnect (DCI), Internet Data Exchange, and wholesale fiber service providers.  Now, it’s finally real!

Windstream Wholesale has begun deploying long haul 400 Gigabit Ethernet (400GE)  to link the regional teleco’s fiber network with Everstream’s Chicago-to-Cleveland route.  For this deployment, Windstream used Infinera’s Groove (GX) Series compact modular platforms and Juniper’s PTX Series transport routers. Windstream provided the 400G Wavelength Service using Infinera’s coherent wavelength technology.

The two primary customer segments for 400GE have been data center operators looking to interconnect two or more data centers, or service providers that want to build metro rings consisting of 400G lines on which they then would lease capacity to data center operators or enterprises through a data center interconnection (DCI) as-a-service offering.

“So this is not just an experiment,” said Buddy Bayer, chief network officer at Windstream. “This is a real world revenue generating circuit for us. We have a lot of peers in this industry that we talk to quite a bit, and there’s a lot of experimentation and lot of discussion going on around about 400 Gig. But this is the first one that we’ve really heard about where it’s a real circuit with real revenue behind it.”

                                                                              Source: Windstream Wholesale

…………………………………………………………………………………………………………………………………………………………………………………

Bayer credited the work done in Windstream’s Little Rock lab earlier this year with Infinera for being able to boot up the commercial 400GbE connection with Everstream. In April, Windstream Holdings and Infinera paired 400GE with client-side services with commercially available 400GE-LR8 QSFP-DD compact pluggable interfaces. The trial used Infinera’s commercially available 2x 600G Wavelength muxponder on its Groove (GX) G30 Compact Modular Platform with the CHM-2T sled, which enabled the customer-facing 400GE service to be transmitted using a single-carrier 600G wavelength. Windstream has been aggressive about working with vendors such as Infinera and Ciena in its labs in order to provision 400G services.

“With the LR8, you now you have the optical reach for the long haul.  So going from seeing it in the lab environment to now getting it onto our network live with a real customer is pretty exciting. This kind of put us in the driver’s seat from our consumers’ perspective,” Bayer said. “We get to take all their questions and all their needs and put them right inside of those labs and trials and create solutions around them,” he added.

The introduction of Windstream’s 400 GbE Wavelength Service helps Everstream meet the relentless growing bandwidth demands from enterprises and provide the flexibility to support a wide variety of business-class services. The partnership enables Everstream to leverage the national footprint of Windstream’s advanced fiber-optic network and augment its high-demand route between Chicago and Cleveland. Windstream’s Wavelength Service product offering includes routes across its nationwide fiber network from 10GbE to 400GbE.

“Everstream is committed to continually enhancing our business-only network and expanding our partnerships to deliver a customer experience that is unmatched for even the most demanding enterprise requirements,” said Everstream President and CEO Brett Lindsey. “As our customers continue to scale, they need access to high-bandwidth, agile network solutions. This opportunity with Windstream enables us to consistently lead the market in providing the services that businesses demand with the reliability they need.”

“Windstream is committed to tapping into the latest technological innovation, enabling us to offer customers the benefits of ultra-efficient, high-capacity transport solutions across our network,” said Joe Scattareggia, executive vice president, Windstream Wholesale. “By partnering with Windstream Wholesale, regional service providers like Everstream have access to advanced national connectivity solutions to support the increasing bandwidth and capacity demands of their customers.”

…………………………………………………………………………………………………………………………………………………………………………………………………

Cisco and Juniper have produced commercially available 400G for routers, but the optical network transport side has been slower on the uptake, according to Jimmy Yu, vice president and analyst for the optical transport market at Dell’Oro Group.

“So the fact that Everstream is going to be the first announced paying customer really speaks to the fact that they (Windstream) have gone full throttle on getting this not only up, but getting it running and getting a customer,” Yu said. “It does seem like they are kind of hitting the market first among service providers.”

Yu also pointed to Windstream’s work with Ciena for the build-out of Windstream’s new nationwide optical network, which is slated for turn up in the third quarter of this year.

Bayer and Yu expect 400G long-haul deployments will ramp up around the middle of next year after a few smaller launches near the end of this year. Bayer said the cost model for deploying 400G needs to come down for wide-scale adoption.

“I think the typical cost curve hasn’t kicked in yet,” Bayer said. “It’s supply and demand. As soon as there’s a demand on the 400G side, we’re going to see the cost come way down. You’re going to see cost models where it’s cheaper to turn up one 400 Gig as it is for turning up two 100 Gigs. We’re not there yet.

“The router blades are in the same supply and demand curves that the transport optics are in.”

Both Bayer and Yu said ZR pluggable optics, which will be for the longer spans of up to up to 120 kilometers, would start to become more widely available next year. Using ZR and ZR Plus pluggable optics allows service providers to eliminate transponders in the their WDM wavelength-division multiplexing) networks.

“IR8 is absolutely a good technology and it gave us the reach that we needed for 400 Gig, but ZR optics is another level of performance at a lower cost point,” Bayer said. “ZR is a lot lower cost point that’s going to be more appealing. I think that’s when you start to really see 400 Gig take off because now you can take that pluggable and put it in a router or transport gear. I think that’ll really kind of stir the nest for demand for 400G.

Yu said that while ZR is standards-based ZR Plus is not. ZR Plus could span up to 1,000 kilometers but may not fit on a switch or router.

“One of the advantages of ZR is everyone wants to put the pluggable on an Ethernet switch or router instead of on an optical system,” Yu said. “It’s not clear to me if ZR Plus can be put on a router or just go on an optical system but now it’s going to be more pluggable,” Yu added.

400G ZR and the longer-distance 400G ZR Plus will bring interoperability, and with that, potentially lower cost to 400G deployments as companies deploying 400G have more options to mix and match different vendors.

“ZR Plus will probably be generally available mid next year,” Bayer said. “ZR Plus is a lot lower cost point and that’s going to be more appealing. It’s not available to us yet, but as soon as it is we’re right in the labs and environments with it. We’re ready to go.”

References:

https://investor.windstream.com/news/news-details/2020/Everstream-Partners-with-Windstream-to-Bring-400GbE-Services-to-Market/default.aspx

 

Everstream Partners with Windstream to Bring 400GbE Services to Market

https://www.fiercetelecom.com/telecom/windstream-powers-up-live-400gbe-service-everstream

https://www.infinera.com/press-release/Windstream-Wholesale-and-Infinera-Successful-Trial-of-LR8-based-400GbE

Ericsson deploys 25,000 base stations in Russia; 100 5G deployment agreements top Huawei & Nokia

Sebastian Tolstoy, Head of Ericsson in Russia, said:

“Our development enables Tele2’s subscribers the opportunity to use mobile internet services in high quality. As all our network equipment in Russia supports an upgrade to 5G technologies through remote software installation, operators in Russia are able to launch new services as soon as they get the appropriate licenses.

Ericsson’s 5G Innovation Hub in Moscow gives Russian service providers the opportunity to test innovations on live 5G and IoT networks. The Ericsson Academy, our training center co-located at the Innovation Hub, trains more than 1,000 specialists from Russian service providers and students each year.”

The pace of deployment from Ericsson is truly impressive, especially in the context of the ongoing pandemic. If the current pace is maintained, the five-year deal will be completed in two years.

Aleksey Telkov, CTO of Tele2 Russia, comments:

“In the Moscow region, from the very start, we installed 5G-ready base stations. We deployed a pilot 5G network in the center of Russia’s capital, and together with Ericsson, we are carrying out a large-scale network modernization across the country.

This allows us to say that Tele2 is technologically ready for 5G.”

The 5G Zone uses the 28 GHz band in non-Standalone (NSA) mode and the frequency band for anchor LTE band is Band 7 (2600MHz). 5G pocket routers supporting 28 GHz were used as end-user devices for mobile broadband services with ultra-high speeds.

Ericsson and Tele2’s 5G Zone was used to demonstrate the opportunities 5G presents, including immersive VR entertainment, smart buildings, and other consumer and industrial use cases.

………………………………………………………………………………………………………………………………………………………………………………………………………………..

Ericsson announced it had 100 telco 5G agreements following the announcement of a 5G deal with Telekom Slovenije yesterday.  That’s a lot of progress made in a relatively short time. Just under a year ago, Ericsson had publicly announced 24 5G contracts with equipment live in 15 networks. As of today, 58 contracts have been publicly announced and Ericsson’s gear is being used in 56 live 5G networks.

Börje Ekholm, President and CEO, Ericsson, said:

“Our customers’ needs have been central to the development and evolution of Ericsson’s 5G technology across our portfolio from the very beginning. We are proud that this commitment has resulted in 100 unique communications service providers globally selecting our technology to drive their 5G success ambitions.

We continue to put our customers center stage to help them deliver the benefits of 5G to their subscribers, industry, society and countries as a critical national infrastructure.”

Ericsson has been able to capitalize on the uncertainty surrounding Huawei’s future in many Western countries due to security concerns.  Even prior to the UK’s decision to ban Huawei’s equipment, many operators in Britain were moving away from the Chinese vendor.  India is now moving in that same direction.

In April, Howard Watson, BT’s chief technology and information officer, said:

“Having evaluated different 5G core vendors, we have selected Ericsson as the best option on the basis of both lab performance and future roadmap. We are looking forward to working together as we build out our converged 4G and 5G core network across the UK.”

For comparison, Nokia says it has 85 commercial 5G deals and equipment live in 33 5G networks.  In February 2020, Huawei aid it had secured more than 90 commercial 5G contracts worldwide, an increase of nearly 30 from last year despite the relentless pressure from U.S. authorities and being banned in the UK.

………………………………………………………………………………………………………………………………………………………………………………………………..

References:

Ericsson deploys 25,000 base stations in Russia to support Tele2’s 5G rollout

https://asia.nikkei.com/Business/China-tech/Huawei-claims-over-90-contracts-for-5G-leading-Ericsson

 

U.S. government in talks with Intel, TSMC to develop chip ‘self-sufficiency’

The coronavirus pandemic has underscored longstanding concern by U.S. officials and executives about protecting global supply chains from disruption. Administration officials say they are particularly concerned about reliance on Taiwan, the self-governing island China claims as its own, and the home of Taiwan Semiconductor Manufacturing Company (TSMC), the world’s largest contract chip manufacturer and one of only three companies capable of making the fastest, most-cutting-edge chips (the two other foundries are Samsung and Intel).

Officials from the U.S. government are in talks with Intel and Taiwan Semiconductor Manufacturing to build chip factories in the U.S., the Wall Street Journal reported, citing sources familiar with the matter. The U.S. government believes the pandemic showed how reliant the U.S. is on Asian factories and it now wants to promote more tech self-sufficiency.

“The administration is committed to ensuring continued U.S. technological leadership,” a senior official said in a statement. “The U.S. government continues to coordinate with state, local and private-sector partners as well as our allies and partners abroad, to collaborate on research and development, manufacturing, supply-chain management, and workforce development opportunities.”

HiSilicon, owned by Huawei, is a fabless semiconductor company which doesn’t have its own manufacturing plant. It relies on foundry companies like Taiwan Semiconductor Manufacturing Co. to make its chips. The Trump administration is preparing rules that could restrict TSMC’s sales to HiSilicon. Huawei may be storing up chip inventories in anticipation of such tighter restrictions. Huawei may shift some of its orders to Chinese foundry Semiconductor Manufacturing International Corp. (SMIC), but technology there still lags behind industry leaders like TSMC and Samsung.

Ultimately SMIC’s capabilities could be hampered if the Trump administration decides to dial up the pressure in its campaign against China. The Commerce Department said last week that it would expand the list of U.S.-made products and technology shipped to China that need to be reviewed by national security experts before shipping. SMIC depends on foreign semiconductor manufacturing equipment, including some from the U.S.

………………………………………………………………………………………………………………………………………..

Intel VP of policy and tech affairs Greg Slater said Intel’s plan would be to operate a plant that could provide advanced chips securely for both the government and other customers. “We think it’s a good opportunity,” he added. “The timing is better and the demand for this is greater than it has been in the past, even from the commercial side.”

Intel Chief executive Bob Swan sent a letter to Defense Department officials on 28 April, saying the company was ready to build a commercial foundry in partnership with the Pentagon. Strengthening U.S. domestic production and ensuring technological leadership is “more important than ever, given the uncertainty created by the current geopolitical environment,” Swan wrote in the letter. “We currently think it is in the best interest of the U.S. and of Intel to explore how Intel could operate a commercial U.S. foundry to supply a broad range of microelectronics,” the letter said. The letter was then sent to Senate Armed Services Committee staffers, calling the proposal an “interesting and intriguing option” for a U.S. company to lead an “on-shore, commercial, state of the art” chip foundry.

TSMC has been in talks with people at the Commerce and Defense departments as well as with Apple, one of its largest customers, about building a chip factory in the U.S., other sources said. In a statement, TSMC said it is open to building an overseas plant and was evaluating all suitable locations, including the US. “But there is no concrete plan yet,” the company said.

Some U.S. officials are also interested in having Samsung, which already operates a chip factory in Austin, Texas, expand its contract-manufacturing operations in the U.S. to produce more advanced chips, more sources said.

A trainee at a facility of the U.S. chip maker GlobalFoundries in Germany last year. The U.S. is looking to strengthen its own production of semiconductors.              PHOTO: SEBASTIAN KAHNERT/DPA/ZUMA PRESS

…………………………………………………………………………………………………………………………………..

Taiwan, China and South Korea “represent a triad of dependency for the entire US digital economy,” said a 2019 Pentagon report on national-security considerations regarding the supply chain for microelectronics. The US has dozens many semiconductor factories, but only Intel’s are capable of making the chips with transistors of 10 nanometers or smaller. The company however mostly produces for its own products. Among companies that make chips on contract for other companies, only TSMC and Samsung make those high-performing chips. Many US chip companies such as Qualcomm, Nvidia, Broadcom, Xilinkx and Advanced Micro Devices rely on TSMC for the manufacture of their most advanced products. Intel also makes chips with TSMC, according to TSMC’s 2019 annual report.

The Semiconductor Industry Association is conducting its own study on domestic chip production. The report is expected to recommend the US government set up a billion-dollar fund to push domestic chip investment, another source said. Another proposal by SEMI, an industry group representing semiconductor manufacturing equipment makers, involves giving tax credits to chip makers when they purchase and install equipment at factories in the US.

The Commerce Department is also considering a rule aimed at cutting off Huawei’s ability to manufacture chips at TSMC (see Addendum below). President Donald Trump has approved the move, but Commerce Department officials are still working through preliminary drafts, sources said.

May 16, 2020 Addendum:  U.S. Moves to Cut Off Chip Supplies to Huawei 

New restriction stops foreign semiconductor manufacturers whose operations use U.S. software and technology from shipping products to Huawei without first getting a license from U.S. officials

References:

https://www.wsj.com/articles/trump-and-chip-makers-including-intel-seek-semiconductor-self-sufficiency-11589103002

https://www.wsj.com/articles/china-chases-self-reliance-in-chips-but-the-u-s-still-holds-a-trump-card-11588932443

Highlights of Cisco Roundtable: Expanding the Internet for the Future: Supporting First Responders and Society at Large

The agenda at Cisco’s April 28th  roundtable “Expanding the Internet for the Future, Today: Supporting First Responders and Society at Large,” was focused on how the coronavirus is impacting our use of the internet from expanded online learning for students and adults alike to increased telehealth platforms (more on this subject below).

The discussion featured guest panelists including representatives from AT&T, Comcast, Cox Communications, Facebook, Verizon, and the University Texas-Gavelston Medical Branch. The panelists first took turns giving their individual perspectives on the current state of the internet before shifting focus on innovating to meet the demands of the future.

The conference opened with host Jonathan Davidson, senior vice president and general manager, Mass Scale Infrastructure Group at Cisco sharing some choice illustrative Cisco Webex data. So far this month, Cisco has hosted more than 20 billion virtual meeting minutes. For perspective, that is up from a mere 14 billion last month. These March 2020 totals doubled the meeting minutes from February. Around the globe, traffic appears to be leveling off or decreasing from recent highs.

Speakers included AT&T’s FirstNet SVP Jason Porter (a long time colleague and September 2020 IEEE ComSocSCV workshop speaker) and Andrés Irlando, president of Verizon’s “public sector” that sells services to public-safety officials.

Almost all roundtable participants said they have been working overtime during the past few weeks to make sure doctors, nurses and other medical professionals and first responders remain connected as they fight COVID-19. “This was like a fire, flood and tornado in every single city at the same time,” said AT&T’s Porter commented on the demand for FirstNet services.  Jason and other speakers said their networks have managed to meet that demand, and that traffic growth is beginning to plateau.

However, “this gives us a peak at what the future looks like,” argued Verizon’s Irlando, explaining that traffic likely will start to decline as most Americans return to work, but some things won’t return to the way things were.

…………………………………………………………………………………………………………………………………………………………

Cisco has a website to help healthcare providers transition to virtual healthcare.  There you will find resources for scheduling, conducting, and joining virtual consultations between Doctors and patients.

Telemedicine, Telehealth And Online Doctor Visits

Telehealth and complex video session between Doctor and Patient

…………………………………………………………………………………………………………………………………………………………

During the second half of the roundtable, panelists each shared the vision on ways to revolutionize the current model to provide access for people around the globe. Ideas ranged from the importance of government subsidies when it comes to building this infrastructure in some areas, to reverse auctioning portions of spectrum to cover more isolated communities. Facebook Vice President of Connectivity Dan Rabinovitsj floated the idea of allowing spectrum sharing in more remote areas without facing fines as well as the idea of utilizing the recently opened 6 GHz band for internet access around the globe. As individuals posed questions, Cisco executive Stephen Liu touched on the idea of a flexible consumption system to revolutionize the traditional service model.

“This allows Service Provider customers to procure equipment fully loaded with all the bandwidth they need, but only pay for what they use based on licensing. That way, if surges occur such as what happened with COVID-19, the capacity can be added immediately and paid for at a later time. The licenses can be pooled as well so that capacity could be moved from lower traffic areas into high traffic areas,” Liu said.

A huge problem for telehealth is insurance coverage.  Light Readings Mike Dano wrote in a blog post:

One of the biggest obstacles was how healthcare insurance, including Medicare and Medicaid, account for telehealth services. Prior to the pandemic, healthcare pricing generally discouraged the use of videoconferencing and phone calls for doctor’s visits, but new rules implemented due to COVID-19 now incentivize the practice, King explained.

In the telecom sector, the FCC is working to promote telehealth offerings. Earlier this month, the agency voted to adopt a $200 million telehealth program as part of Congress’ CARES Act.

……………………………………………………………………………………………………………………………………………………………….

Currently, billions of people remain without internet access despite efforts to close the digital divide. Today, Cisco published the “Cisco Inclusive Future Report 2020” estimating that bringing those currently with internet access online would increase the worldwide economy by nearly $7 trillion and “would lift 500 million people out of poverty.” More than one-third (35%) of people in developing countries lack access to the internet compared to 80% of individuals in more “advanced economies.” The report also discusses the problems inherent with so-called digital literacy meaning a person’s basic understanding of using the internet, one of the principal roadblocks preventing “digital inclusion.” Internationally, nearly one-quarter of adults lack such digital literacy.

As the coronavirus continues to take its toll on populations and economies around the globe, the inadequacies of our digital infrastructure have been thrust into the spotlight. Current barriers to internet access has innumerable disadvantages for humans and economies around the globe. As has been illustrated during this pandemic-induced grand digital experiment, a well-equipped digital infrastructure has far-reaching social and economic implications for humans around the globe.

cisco-slide.jpg
Image: Cisco

References:

https://www.techrepublic.com/article/cisco-virtual-roundtable-how-to-solve-digital-divide-impacting-remote-workforce-and-online-classrooms/

https://www.lightreading.com/services/verizon-atandt-cisco-others-eye-telehealth-growth/d/d-id/759256?

https://www.webex.com/webexremotehealth.html

 

 

Windstream Wholesale and Infinera Complete Successful Trial of LR8-Based 400GbE Client-Side Services

Windstream’s Wholesale Division recently completed a 400 gigabit Ethernet (400 GE)  trial pairing the client-side transmission with 400GbE-LR8 QSFP-DD pluggable interfaces on Infinera’s platform.  Transmission used a single-carrier 600G wavelength, which the companies announced as an industry first.
Pluggables have gained momentum in optical technology as web-scale companies, service providers and data center operators look to deploy some 400G gear this year and even more next year.
“The ability to support 400GbE services with a wide-variety of client interfaces and to carry those services across metro, regional and long-haul distances enables Windstream to seamlessly support their customers’ evolving connectivity needs,” said Infinera’s said Glenn Laxdal, senior vice president and general manager of product management, in a press release.
Infinera’s 600-Gbps enabled Groove (GX) G30 Compact Modular Platform was used in the 400 GE trial.  A G30 version of the Groove was fitted with a 2x600G per wavelength muxponder via a CHM-2T sled. The 400GbE service was carried via a single-carrier 600-Gbps wavelength.Coriant, which originally developed the Groove platform, announced 600-Gbps capabilities for the system shortly before the company was acquired by Infinera in 2018 (see “Coriant adds 600G transmission to Groove via CloudWave T” and “Infinera closes Coriant acquisition”).
800G, 600G, 400G
Image Courtesy of Infinera
……………………………………………………………………………………………………………………………………………………………………………………
Windstream Wholesale’s optical infrastructure was designed to support high-speed optical services using state-of-the-art flex grid spectrum and flexible colorless-directionless-contentionless (CDC) architecture. Flex grid, which is often paired with CDC, allows service providers to optimize the allocation of spectrum on long-haul fiber based on the required speed and reach of each wavelength.  All of this enables Windstream to tap into cost-effective 400G today, with 600G and 800G wavelengths available down the road.

“Our customers’ bandwidth requirements are growing rapidly, and Windstream is increasing network capacity to meet this demand,” said Buddy Bayer, chief network officer at Windstream. “Infinera’s GX G30 Compact Modular Platform provides an ultra-efficient transport solution enabling us to offer 400GbE services to support our customers’ high-bandwidth needs.  The use of LR8 clients with a single mode fiber interface and a 10-kilometer reach provides an extremely cost-effective solution by enabling us to extend these services directly to our customers’ premises.”

Windstream Wholesale is currently engaging with customers for initial deployment of the end-to-end 400G Wave service. For more information on how you can bring 400G Wave services to your company, call 1-866-375-6040.

To view the Windstream network map, visit https://www.windstreamenterprise.com/wholesale/interactive-map/.

About Windstream

Windstream Holdings, Inc., a FORTUNE 500 company, is a leading provider of advanced network communications and technology solutions. Windstream provides data networking, core transport, security, unified communications and managed services to mid-market, enterprise and wholesale customers across the U.S. The company also offers broadband, entertainment and security services for consumers and small and medium-sized businesses primarily in rural areas in 18 states. Services are delivered over multiple network platforms including a nationwide IP network, our proprietary cloud core architecture and on a local and long-haul fiber network spanning approximately 150,000 miles. Additional information is available at windstream.com or https://www.windstreamenterprise.com/wholesale/. Please visit our newsroom at news.windstream.com or follow us on Twitter at @Windstream.

About Infinera

Infinera is a global supplier of innovative networking solutions that enable carriers, cloud operators, governments, and enterprises to scale network bandwidth, accelerate service innovation, and automate network operations. The Infinera end-to-end packet optical portfolio delivers industry-leading economics and performance in long-haul, submarine, data center interconnect, and metro transport applications. To learn more about Infinera, visit www.infinera.com, follow us on Twitter @Infinera, and read our latest blog posts at www.infinera.com/blog.

Windstream Media Contact
Scott Morris, 501-748-5342
scott.l.morris@windstream.com

Infinera Media Contact
Anna Vue, (916) 595-8157
avue@infinera.com

Source: Windstream Holdings, Inc.

Reference:

https://news.windstream.com/news/news-details/2020/Windstream-Wholesale-and-Infinera-Mark-Industry-First-with-Successful-Trial-of-LR8-Based-400GbE-Client-Side-Services/default.aspx