ITU-R WP5D: Guidelines for evaluation of radio interface technologies for IMT-2020

ITU-R Working Party 5D: draft new Report ITU-R M.[IMT-2020.EVAL]

“Guidelines for evaluation of radio interface technologies for IMT-2020”


Among other work items, the October 2017 ITU-R WP5D meeting discussed proposals to correct minor errors and insert editorial improvements in draft new Report ITU-R M.[IMT-2020.EVAL]. Proposals to introduce some corrections including range of working distance in Indoor Hotspot channel models were agreed and reflected in the new version of the document.

Selected sections of this EVAL draft report follow (see NOTE at the end of the post and Comment in the box below it)…….


Resolution ITU-R 56 defines a new term “IMT-2020” applicable to those systems, system components, and related aspects that provide far more enhanced capabilities than those described in Recommendation ITU-R M.1645.

In this regard, International Mobile Telecommunications-2020 (IMT-2020) systems are mobile systems that include the new capabilities of IMT that go beyond those of IMT-Advanced.

Recommendation ITU-R M.2083 “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond” identifies capabilities for IMT‑2020 which would make IMT-2020 more efficient, fast, flexible, and reliable when providing diverse services in the intended usage scenarios.

The usage scenario of IMT-2020 will extend to enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable and low latency communications (URLLC).

IMT-2020 systems support low to high mobility applications and much enhanced data rates in accordance with user and service demands in multiple user environments. IMT‑2020 also has capabilities for enabling massive connections for a wide range of services, and guarantee ultra‑reliable and low latency communications for future deployed services even in critical environments.

The capabilities of IMT-2020 include:

–                 very high peak data rate;

–                 very high and guaranteed user experienced data rate;

–                 quite low air interface latency;

–                 quite high mobility while providing satisfactory quality of service;

–                 enabling massive connection in very high density scenario;

–                 very high energy efficiency for network and device side;

–                 greatly enhanced spectral efficiency;

–                 significantly larger area traffic capacity;

–                 high spectrum and bandwidth flexibility;

–                 ultra high reliability and good resilience capability;

–                 enhanced security and privacy.

2.  Scope:

These features enable IMT-2020 to address evolving user and industry needs.

The capabilities of IMT-2020 systems are being continuously enhanced in line with user and industry trends, and consistent with technology developments.

This Report provides guidelines for the procedure, the methodology and the criteria (technical, spectrum and service) to be used in evaluating the candidate IMT-2020 radio interface technologies (RITs) or Set of RITs (SRITs) for a number of test environments. These test environments are chosen to simulate closely the more stringent radio operating environments. The evaluation procedure is designed in such a way that the overall performance of the candidate RITs/SRITs may be fairly and equally assessed on a technical basis. It ensures that the overall IMT‑2020 objectives are met.

This Report provides, for proponents, developers of candidate RITs/SRITs and independent evaluation groups, the common evaluation methodology and evaluation configurations to evaluate the candidate RITs/SRITs and system aspects impacting the radio performance.

This Report allows a degree of freedom to encompass new technologies. The actual selection of the candidate RITs/SRITs for IMT-2020 is outside the scope of this Report.

The candidate RITs/SRITs will be assessed based on those evaluation guidelines. If necessary, additional evaluation methodologies may be developed by each independent evaluation group to complement the evaluation guidelines. Any such additional methodology should be shared between independent evaluation groups and sent to the Radiocommunication Bureau as information in the consideration of the evaluation results by ITU-R and for posting under additional information relevant to the independent evaluation group section of the ITU-R IMT-2020 web page (

Evaluation guidelines:

IMT-2020 can be considered from multiple perspectives: users, manufacturers, application developers, network operators, service and content providers, and, finally, the usage scenarios – which are extensive. Therefore, candidate RITs/SRITs for IMT-2020 must be capable of being applied in a much broader variety of usage scenarios and supporting a much broader range of environments, significantly more diverse service capabilities as well as technology options. Consideration of every variation to encompass all situations is, however, not possible; nonetheless the work of the ITU-R has been to determine a representative view of IMT‑2020 consistent with the process defined in Resolution ITU-R 65, Principles for the process of future development of IMT‑2020 and beyond, and the key technical performance requirements defined in Report ITU-R M.[IMT-2020.TECH PERF REQ] – Minimum requirements related to technical performance for IMT-2020 radio interface(s).

The parameters presented in this Report are for the purpose of consistent definition, specification, and evaluation of the candidate RITs/SRITs for IMT-2020 in ITU-R in conjunction with the development of Recommendations and Reports such as the framework, key characteristics and the detailed specifications of IMT-2020. These parameters have been chosen to be representative of a global view of IMT-2020 but are not intended to be specific to any particular implementation of an IMT-2020 technology. They should not be considered as the values that must be used in any deployment of any IMT-2020 system nor should they be taken as the default values for any other or subsequent study in ITU or elsewhere.

Further consideration has been given in the choice of parameters to balancing the assessment of the technology with the complexity of the simulations while respecting the workload of an evaluator or a technology proponent.

This procedure deals only with evaluating radio interface aspects. It is not intended for evaluating system aspects (including those for satellite system aspects).

The following principles are to be followed when evaluating radio interface technologies for IMT‑2020:

−                 Evaluations of proposals can be through simulation, analytical and inspection procedures.

−                 The evaluation shall be performed based on the submitted technology proposals, and should follow the evaluation guidelines, using the evaluation methodology and the evaluation configurations defined in this Report.

−                 Evaluations through simulations contain both system-level and link-level simulations. Independent evaluation groups may use their own simulation tools for the evaluation.

−                 In case of evaluation through analysis, the evaluation is to be based on calculations which use the technical information provided by the proponent.

−                 In case of evaluation through inspection the evaluation is to be based on statements in the proposal.

The following options are foreseen for proponents and independent external evaluation groups doing the evaluations.

−                 Self-evaluation must be a complete evaluation (to provide a fully complete compliance template) of the technology proposal.

−                 An external evaluation group may perform complete or partial evaluation of one or several technology proposals to assess the compliance of the technologies with the minimum requirements of IMT-2020.

−                 Evaluations covering several technology proposals are encouraged.

Overview of characteristics for evaluation:

The characteristics chosen for evaluation are explained in detail in § 3 of Report ITU-R M.[IMT‑2020.SUBMISSION −Requirements, evaluation criteria and submission templates for the development of IMT‑2020] including service aspect requirements, spectrum aspect requirements, and technical performance requirements, the last of which are based on Report ITU‑R M.[IMT-2020.TECH PERF REQ]. These are summarized in Table 6-1, together with their high level assessment method:

−                 Simulation (including system-level and link-level simulations, according to the principles of the simulation procedure given in § 7.1 below).

−                 Analytical (via calculation or mathematical analysis).

−                 Inspection (by reviewing the functionality and parameterization of the proposal).


TABLE 6-1 Summary of evaluation methodologies:

Characteristic for evaluation High-level assessment method Evaluation methodology in this Report Related section of Reports
Peak data rate Analytical § 7.2.2 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.1
Peak spectral efficiency Analytical § 7.2.1 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.2
User experienced data rate Analytical for single band and single layer;

Simulation for multi-layer

§ 7.2.3 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.3
5th percentile user spectral efficiency Simulation § 7.1.2 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.4
Average spectral efficiency Simulation § 7.1.1 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.5
Area traffic capacity Analytical § 7.2.4 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.6
User plane latency Analytical § 7.2.6 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.7.1
Control plane latency Analytical § 7.2.5 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.7.2
Connection density Simulation § 7.1.3 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.8
Energy efficiency Inspection § 7.3.2 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.9
Reliability Simulation § 7.1.5 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.10
Mobility Simulation § 7.1.4 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.11
Mobility interruption time Analytical § 7.2.7 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.12
Bandwidth Inspection § 7.3.1 Report ITU-R M.[IMT-2020.TECH PERF REQ], § 4.13
Support of wide range of services Inspection § 7.3.3 Report ITU-R M.[IMT-2020.SUBMISSION], § 3.1
Supported spectrum band(s)/range(s) Inspection § 7.3.4 Report ITU-R M.[IMT-2020.SUBMISSION], § 3.2

Section 7 defines the evaluation methodology for assessing each of these criteria.


IMPORTANT NOTE:  The excerpts shown above are not final and subject to change at future ITU-R WP 5D meetings.  The remainder of this draft report is much too detailed for any tech blog.  Note that development of the detailed specs for the RIT/SRIT chosen won’t start till early 2020!




For a glimpse at what ITU-T and 3GPP are doing to standardize the network aspects/core network for IMT 2020 please refer to this post:

New ITU-T Standards for IMT 2020 (5G) + 3GPP Core Network Systems Architecture

Also note that 3GPP’s New Radio spec (3GPP release 15) is ONLY 1 candidate for the IMT 2020 Radio access Interface Technology (RIT).  There are expected to be several others.


One thought on “ITU-R WP5D: Guidelines for evaluation of radio interface technologies for IMT-2020

  1. Do not fall for the “5G” hype! ITU-R WP5D IMT 2020 is the ONLY standardized 5G effort. 3GPP Release 16 will be submitted to WP5D as a candidate IMT 2020 radio interface technology (RIT), but other organizations will also submit proposals. The evaluation criteria and methodology defined in the above draft report will be used by submitters and the committee to pick the winning RIT(s) or SRITs.

    WP5D is a model for what a standards organization should do to ensure the best technology is selected. Contrast that to the “wild west” of SD-WANs and IoT Platforms where there are no standards and no interoperability!

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>



Recent Posts