Cybersecurity threats in telecoms require protection of network infrastructure and availability

Telecommunications companies have become an attractive target for attackers, as their networks can be used as a back door to other organizations, thereby making it attractive for cybercriminals to gain unauthorized access. These telecoms networks are also used to build, control and operate other critical infrastructure sectors, including energy, information technology, and transportation systems. Given the interconnected nature of telecom networks between critical infrastructure sectors, organizations need to focus on safeguarding network infrastructure and enabling network availability for critical infrastructure communication.

Telecoms face mounting threats due to various factors, such as the absence of technical knowledge, use of legacy systems, presence of sensitive information, inadequate password security, and increasing threat landscape. Operators are also transforming themselves from network infrastructure companies to cloud service companies to improve efficiencies in business operations, roll out new services and applications, and store and distribute content. As telcos are often a gateway into multiple businesses, threats can either target a specific telecom company, its third-party providers, or the subscribers of a telecom service. These attacks can come in various forms.

Trend Micro disclosed that telecoms have a larger cyber-attack surface than most enterprises, often stretching from their base station infrastructure to call centers and home workers’ laptops. The surface area provides ample opportunity for threat actors looking for customer or organizational data, trying to hijack customer accounts, or seeking to disrupt services via DDoS (distributed denial of service) and ransomware. Furthermore, supply chain providers, cloud services, IoT systems and new infrastructure needed to support 5G and network slicing create additional risk.

Industrial Cyber reached out to experts in the telecoms sector to examine the key factors that make the communications sector vulnerable to cyber attacks. They also weigh in on the unique challenges that the communications sector faces when it comes to securing and safeguarding its OT/ICS environments.

Teresa Cottam, the chief analyst at Omnisperience, told Industrial Cyber that in the past, where security was considered in telecoms the focus tended to be how it affected performance – such as minimizing DDoS traffic and attacks. “More recently, as everything has become more interconnected and the threat landscape has evolved, cyberattacks specifically against telecoms firms have increased,” she added.

Cottam pointed out that ultimately four challenges stand out – complexity, exposure, volume and variety, and cost.

On complexity, Cottam said that each individual ‘network’ actually comprises several generations of technology with some of it being decades old, and it might include fixed, mobile, and even satellite infrastructure. “Moving data from one side of the world to another requires multiple networks, each owned by a different company with a different risk profile. The move from 4G to 5G introduces even more complexity. In the 5G era, cloud, data, and IoT are combined – increasing security risks. Breaches now have a company-wide impact from production through supply chains and logistics to corporate systems,” she added.

Cottam also added that “when you consider how much equipment is in public places it’s actually surprising it’s not attacked more often. Malign actors don’t even need to mount a cyberattack, they can simply vandalise equipment to target specific regions or industries.”

Elaborating on volume and variety, Cottam said that the sheer volume of endpoints is staggering and continually increasing. “IoT has already massively increased the number of endpoints and will continue to do so. Many of these so-called smart objects aren’t very smart and are highly vulnerable. Many of the most vulnerable devices are in the home, but wherever they are, each device has the potential to inject malign traffic into the network,” she added.

On cost, Cottam said that the cost of securing a network end-to-end is significant and the reality is that telecoms firms and their customers are having to continually juggle risk versus security.

Turning the question around, Grant Lenahan, partner and principal analyst at Appledore Research, said that one of the huge transitions underway is from fundamentally private data centers and networks to outsourced or managed, secure networks that interconnect distributed enterprise to their digital partners, remote employees, public cloud, and SaaS facilities. Therefore, there is a blurring of public and private targets.

“We certainly can look at those who attack public networks because of the private data and traffic. We can also look at those who attack not an underlying enterprise target per se, but the network infrastructure itself,” Lenahan told Industrial Cyber. “These attacks, rather than going after specific data, or intended either to disrupt, for example, terrorism or to gain control that can later be used to target intellectual property the transit to the network. The very fact that public networks are public, complicates securing them.”

On the other hand, Lenahan added that there is scale and scope, allowing for concentrations of security expertise and automated protections, that might not be possible or affordable by individual enterprises. “We have spent hundreds of pages covering this seismic shift in our security research stream. Some readers might be interested in consulting it,” it added.

Andrei Elefant, CEO of EdgeHawk Security told Industrial Cyber that the key factors that make the communication sector vulnerable to cyber attacks are that the CSPs (communication service providers) face multiple and large attack surfaces. They also have a limited security budget and have to prioritize the security measures they take compared to the cost and priorities.

He also added that security expertise in CSPs is limited. “The various types of attack scenarios, attack methods, the type of data and systems that need to be protected are huge. CSPs cannot build expertise in all the required security domains and have to prioritize focus areas. The CSPs are defined as critical infrastructure and are frequently a target of Nation State Actors, which means higher expertise and more budget on the attackers’ side.”

Elefant added that these challenges are even more noticeable when it comes to protecting the OT/ICS environment. “Attack surfaces grow exponentially with the growth in the number and variety of the endpoints. Many of the OT endpoints have limited inherent protection capabilities (due to resources limitation, legacy devices, etc.,), which means they can be a perfect attack surface to harm CSPs or penetrate their networks. In many cases, these devices are being exploited for DDoS attacks, as they are available in masses with limited protection.”

Addressing ​​the essential components that make cybersecurity in telecoms a vital and fundamental part of protecting the telecommunications landscape, as it also serves much of/all the other critical infrastructure sectors, Cottam said that not having complete visibility of the complexity of the telecoms landscape is one of the biggest challenges. “For example, there could be vulnerabilities in equipment and devices – which is often the focus of analyst reports – but equally there can be vulnerabilities in core processes which were put in place decades ago and haven’t been updated,” she added.

Cottam identified that a typical attack occurs by a criminal convincing the telecoms firm they are the customer and want to move to a new provider. “The telecoms firm – often with only minimal checking – provides the ‘customer’ with the means to do so. In the UK the system is designed to make it as easy as possible for the customer to do this, which also makes it easy for criminals. Such an attack against employees is bad; now consider it targeted at IoT devices. This is a great example of how cybersecurity often focuses on securing equipment (endpoints) but ignores vulnerable processes,” she added.

“Many countries have acted to secure number portability and in this respect, the UK is particularly vulnerable as its current system is so old-fashioned and inefficient,” according to Cottam. “Another problem this causes for IIOT is that the UK system also struggles to port large volumes of numbers such as would need to happen with a large corporate or IoT customer. This has the potential of decreasing competition in the connectivity part of the market since it’s a blocker to switching operators.”

Lenahan said that he doesn’t “believe we need to emphasize how important telecom infrastructure is. Not only is it critical infrastructure and it’s all right, but it is often the control plane for other infrastructure such as water, gas, electricity, emergency services, and many other essential components of both private public, and industrial life. It is, what’s on call, a target rich environment. That said, let’s look at what success looks like,” he added.

Elefant said that the CSPs are becoming a part of the critical infrastructures in any state. “National defense strongly relies on communication availability on the state level, in addition to the fact that these networks provide essential communication infrastructure to many other critical infrastructure facilities,” he added.

The essential components needed to keep CSPs networks available and reliable focus on two main aspects, according to Elefant. “Protecting the network infrastructure from unauthorized access and malicious attacks. This includes implementing firewalls, intrusion detection and prevention systems, and other security measures to prevent unauthorized access.”

He also pointed to protecting network availability for critical infrastructure communication by identifying and blocking attempts to saturate the network and accessibility to specific applications/devices using DDoS attacks.

The telecoms industry has had to reconsider its cybersecurity protocols in light of the digitization and incorporation of Industrial Internet of Things (IIoT) technologies. The executives looked into the main threats posed by increased connectivity techniques and how this shift affects the cybersecurity posture of these communication companies.

Cottam said that often today’s IIoT devices use the same networks as other systems, which presents a double-edged risk. “If a criminal can compromise an IIoT device they could use this as an access point to corporate systems; if they compromise corporate systems or user devices they can hijack IIoT devices. Again, this speaks to the interconnectedness of networks and often the poor understanding of how criminals can utilise connections and access points to compromise industrial customers.”

“The main concerns from customers include exposure of their data, compromised network equipment, attacks on devices and network signaling, as well as creating a gateway for further attacks. Network segmentation is a useful technique to limit the scope of such attacks,” according to Cottam. “Reliable security frameworks are built into 3GPP standards to ensure 4G and 5G cellular connections are secure. But as we move to 5G a range of new exciting techniques are also delivered.”

Another technique is to utilize private networks – effectively campus networks within a factory or industrial complex with limited connections to the public network but complex connections within the private network, Cottam said. “Connectivity is only provided to authorised devices (more secure than WiFi, as it can be based on SIM authentication) and data is processed on-site,” she added.

“The simplest way to look at this is that complexity is increasing dramatically in enterprise networks. There will be an order of magnitude more endpoints; applications and data will reside in various clouds; and dynamically changing ecosystems of digital trading partners will continuously evolve,” Lenahan said. “This implies a complex network that crosses ownership boundaries, and is constantly changing.”

Lenahan noted that the only apparent constant throughout this ‘web’ is the telecom CSP that undertakes end-to-end connectivity, orchestration, and in our view, security. “This is a huge opportunity for our industry. However, it also means we need to think completely differently about security. It cannot be a separate island; it must be integrated into network automation. Furthermore, it must be automated, something tacos in security professionals have long been uncomfortable with,” he added.

Elefant identified some of the threats brought by these increased connectivity techniques, including increased attack surface, unsecured devices, protocol vulnerabilities, and DDoS attacks. With “the exponential increase in the number of connected devices, the attack surface of the network has increased, creating more opportunities for malicious actors to gain unauthorized access to the network. Many IoT devices are not designed with security in mind, and may have weak passwords, unpatched vulnerabilities, or lack encryption, making them easy targets for attackers.”

He also pointed out that IoT devices often use proprietary protocols, which may have vulnerabilities that are not well understood and are difficult to patch. IoT devices can be easily compromised and used to launch DDoS attacks, overwhelming the network with traffic and causing availability issues.

Elefant highlighted that the new threats have led to a shift in the cybersecurity posture of CSPs. “Implementing more strict network segmentation, both on their infrastructure and also as a service to their customers. Specifically for the IIoT environment, access control services, delivered by the CSPs, are being applied on a larger scale. Protecting the network from DDoS attacks on the edge and access points became a mandatory consideration. Additionally, there is a need to continuously monitor and assess the security of the network edge and access as more attacks may come from exploited devices connected to the network.”

Like other critical infrastructure sectors, the communications sector has also faced mounting cybersecurity rules and regulations in recent times. The executives address how the communication sector responded to the increase in cybersecurity regulations for critical infrastructure owners and operators, as well as analyze the impact these initiatives have had in enhancing reporting procedures and improving the cybersecurity posture of the telecoms sector.

Cottam said that one of the biggest challenges stems from the ‘democratisation’ of IoT. “As it becomes the norm in manufacturing supply chains, smaller and newer industrial firms are drawn in or adopt IoT to increase their efficiency. These firms often don’t fully understand the importance or complexity of securing their IoT devices and lack the budget and expertise in-house,” she added.

Another challenge is that many enterprises deploy and secure IoT from an IT perspective, according to Cottam. “Traditional IT security largely focuses on end-point and perimeter security. But with hundreds of thousands of IoT endpoints and more permeable boundaries, the emphasis has to shift to securing and managing the network rather than trying to put security into every device – not all of which are designed to be secured,” she added.

“Likewise, while cellular IoT is reasonably secure – and that based on 5G even more so – it is not unhackable. IoT network security isn’t just about securing the network either, it’s about network-based security that can monitor all the connected objects, processes, and applications,” Cottam said. “Neither is it just about hackers anymore. Nation states, protestors, and terrorists are just as likely to want to attack critical infrastructure and their objectives are different and their budgets and expertise are huge. While there has been much talk of bringing together IT/OT/IoT into a single process to make it more manageable and auditable, the risk is that the complexity and volume become overwhelming.”

Lenahan said that details on how telcos are handling critical infrastructure security are hard to get, and in my opinion, rightly so. “That said, we can see many trends in the industry to prepare telecoms to not only be more secure on its own but to be in a good position to secure infrastructure for others. Some things are as simple as the collaborative work in the MEF, on secure transport services — or the transport service in security or considered as one. Similarly, the managed services, with security at their core, that many leading telcos are offering to their enterprise clients, can be applied to protecting public and shared infrastructure as well,” he added.

“One thing we believe they must change is that these ‘managed’ services, which, by definition, are semi-custom, must become more standardized products,” according to Lenahan. “We say this because that is the only way telcos can afford to invest in the level of automation that will truly illuminate errors and omissions and stay ahead of the bad actors. It’s simply a matter of operating a process at scale and concentrating one’s fire, so to speak.”

The CSPs responded in various methods to address the increase in cybersecurity regulations for critical infrastructure, Elefant said. “Increase in network segmentation to protect critical infrastructure, the CSPs designed their networks in a way they can segment their network based on the type of service they need to deliver. Applying more protection capabilities at the edge of the network to protect the network from threats that may come from the access side, in addition to more traditional protection methods they apply on the network core,” he added.

Elefant also suggested adding more secure communication channels, like segmentation and encryption for critical elements, such as the control plane, and adding more monitoring tools to identify security risks in real time. “These initiatives help CSPs to identify security threats in real-time and apply faster response and mitigation, leveraging the new control points, mainly at the edge of the network,” he concluded.

References:

https://industrialcyber.co/features/cybersecurity-issues-in-telecoms-sector-call-for-protection-of-network-infrastructure-and-availability/

https://industrialcyber.co/features/cybersecurity-issues-in-telecoms-sector-call-for-protection-of-network-infrastructure-and-availability/

https://www.trendmicro.com/en_se/research/22/b/the-telecoms-cyber-threat-landscape-in-2021.html

https://www.enisa.europa.eu/news/enisa-news/cyber-threat-warnings-the-ins-and-outs-of-consumer-outreach

Cybersecurity to be a top priority for telcos in 2023

IEEE/SCU SoE Virtual Event: May 26, 2022- Critical Cybersecurity Issues for Cellular Networks (3G/4G, 5G), IoT, and Cloud Resident Data Centers