Juniper Research: Global 6G Connections to be 290M in 1st 2 years of service, but network interference problem looms large

A new study from Juniper Research, a leading telecommunications research firm, forecasts 290 million connections globally by 2030; the year after its initial expected launch in 2029 (this author doesn’t think standards for 6G will be completed by 2030). To achieve this early growth, the report cautions operators must solve various technological challenges, including the issue of network interference arising from the use of high-frequency spectrum.

This use of high-frequency spectrum in 6G will be the key enabling technology to provide throughput speeds 100 times greater than current 5G networks. However, as cellular technologies have never used spectrum bands in this range before, the most pressing concern for operators is minimizing this network interference, or risk creating an unreliable 6G network.

RIS Identified as Key Emerging 6G Technology:

To achieve this, the report urges operators to invest in RIS (Reconfigurable Intelligent Surfaces); a technology that will mitigate the impact of interference from large obstacles, including buildings, on network services. This is accomplished by purposefully reflecting and refracting 6G mobile signals to enable data packets to move around physical obstacles.

As 6G standards become clearer in 2025, RIS technology must become an immediate priority for development. However, the report warns that given the wide geographical areas of some 6G networks, operators must implement AI to monitor and adjust RIS configuration in real-time to maximize the technology’s benefits.

Research author Alex Webb remarked: “Initial 6G coverage will occur in the most densely populated geographical areas to serve as many users as possible. Therefore, RIS technology will be key to providing a valuable 6G service to both consumer and enterprise customers in the first few years of network operation.

In 2030, when Juniper Research expects 6G to reach 290 million connections, GSMA Intelligence predicts in its 2023 mobile economy report that 5G will have surpassed 5 billion connections.  We believe both of those forecasts are way off the mark.  In fact, we forecast ZERO 6G subscribers in 2030, because the ITU-R IMT 2030 radio standards and 3GPP 6G specs won’t be completed by then.

About the Research Suite:

The new research suite offers the most comprehensive assessment of 6G development to date, including insightful market analysis, and in-depth forecasts for 60 countries. The dataset contains almost 21,000 market statistics over a nine-year period.

Juniper Research has, for two decades, provided market intelligence and advisory services to the global telecommunications sector, and is retained by many of the world’s leading network operators and communications platforms.

Find out more about the new report: Global 6G Development 2024-2032, or download a free sample.

References:

Global 6G Connections to Reach 290m in First Two Years of Service (juniperresearch.com)

Juniper Research: 5G to Account for 80% of Operator Revenue by 2027; 6G Requires Innovative Technologies

SK Telecom, Intel develop low-latency technology for 6G core network

Ericsson and IIT Kharagpur partner for joint research in AI and 6G

Nokia plans to investment €360 million in microelectronics & 5G Advanced/6G technology in Germany

IEEE 5G/6G Innovation Testbed for developers, researchers and entrepreneurs

WRC-23 concludes with decisions on low-band/mid-band spectrum and 6G (?)

ETSI Integrated Sensing and Communications ISG targets 6G

Ericsson’s India 6G Research Program at its Chennai R&D Center

Big 5G Conference: 6G spectrum sharing should learn from CBRS experiences

6th Digital China Summit: China to expand its 5G network; 6G R&D via the IMT-2030 (6G) Promotion Group

One thought on “Juniper Research: Global 6G Connections to be 290M in 1st 2 years of service, but network interference problem looms large

  1. Research on 6G is gaining momentum, and governments worldwide are contemplating how this next-generation mobile standard aligns with their broader technology roadmaps.

    China outlined its vision in a 6G white paper published back in 2021 titled, “6G Vision and Candidate Technologies,” targeting a 2030 launch. In 2023, the government of India announced plans to prepare the operators for commercial 6G by 2030.

    The South Korean government aims to have commercial 6G networks operational by 2028, two years ahead of the International Telecommunication Union’s scheduled approval for the 6G standard. As the industry grapples with defining the roles of AI, Cloud radio access network (RAN), automation and ESG in the 6G era, we will stay away from the shiny objects and focus on the basics: what spectrum will be utilized for 6G and why ongoing RF innovation is crucial for transforming 6G from a concept into reality within the next five to six years.

    The journey toward 5G-Advanced and eventually 6G will not be trivial. It depends on a confluence of factors, with the type of spectrum being one of the more critical unknowns that can completely change the trajectory and velocity of the entire 6G ramp. After all, the 5G capital expenditure (capex) envelope would look entirely different if not for the large swaths of spectrum in the upper mid-band, coupled with mMIMO.

    Figure 1
    Figure 2 5G/6G spectrum chart.

    Presently, the prevailing notion is that the 6 GHz band and the centimeter wave (cmWave) spectrum will play pivotal roles as anchor bands in the 6G era with frequencies spanning from 6.4 to 15.3 GHz. This band will be akin to the functions carried out by the C-Band in the 5G era. Concurrently, the mmWave spectrum transitions from a backseat position in 5G to a potential passenger seat with 6G in this multi-layered spectrum approach, encompassing new and existing sub-7 GHz, cmWave and mmWave spectrum.

    However, achieving economic viability for the broader 6G coverage layer complicates the situation and poses challenges with small cell infrastructure. Consequently, the 6 to 15 GHz base stations will need to make use of the existing macro grid. Ideally, future mmWave systems will also increasingly leverage the macro infrastructure for MBB applications.

    As the saying goes, nothing in this world can be said to be certain, except death, taxes and the inevitability of greater propagation losses with rising frequencies. According to the Hata model for a medium-sized city, the received power drops by approximately 7 dB when comparing the 6 GHz band with the C-Band. Another loss of approximately 7 dB occurs at 12 GHz in comparison to 6.5 GHz.

    In essence, RF innovation becomes crucial for operators aiming to deploy large bandwidth and wide area 6G in new spectrum. At a broader level, there are three main efforts already part of the 5G journey, including boosting the RF output power, adding more transceivers and incorporating more antenna elements. For 6G deployments within the upper 6 to 15 GHz range, advancing mMIMO becomes indispensable to achieve equivalent upper mid-band coverage. Leading vendors are currently exploring configurations such as 128T/128R or 256 transceiver channels to compensate for different loss parameters. Though it is still early days, preliminary testing shows promise. For instance, Huawei has verified in small-scale tests that the propagation delta between the 6 GHz and C-Band is manageable with higher-order MIMO.

    So far, mmWave deployments have primarily centered around FWA and low-mobility MBB applications, partly due to challenges related to coverage and performance degradation in higher-mobility scenarios. In response, technology leaders are now boosting the EIRP to tackle coverage limitations. One of the suppliers has already verified that co-site deployments with macros using 70 dBm+ EIRP and intra-band coordination with sub-6 GHz spectrum, can deliver Gbps performance throughout the cell. More innovation is also required to smooth out the handovers. Notably, the UL is typically the limiting factor and more work is needed to address the approximately 20 dB gap between the mmWave bands and the C-Band.

    https://www.microwavejournal.com/articles/41451-6g-and-the-long-rf-journey-ahead#new_tab

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*