Ericsson and IIT Kharagpur partner for joint research in AI and 6G

Ericsson and the Indian Institute of Technology (IIT) Kharagpur have announced a partnership for a long-term cooperation for joint research in the area of radio, computing and AI (artificial intelligence). Both organisations have signed two milestone agreements. As part of the agreements, researchers from IIT Kharagpur and Ericsson will collaborate to develop novel AI and distributed compute tech for 6G. Leaders from IIT Kharagpur and Ericsson participated in discussing the developments and advancements for the future of networks and communications at the GS Sanyal School Telecommunications (GSSST).

Ericsson members from left: Rupa Deshmukh, Mikael Prtz, Kaushik Dey, Mikael Hook, Bo Hagerman,Magnus Frodigh, Director – Prof V. k Tewari, Deputy Director – Prof Amit Patra, Anil R Nair

……………………………………………………………………………………………………….

Two key initiatives finalized by Ericsson and IIT were:

a) Compute offload and Resource Optimisation at edge compute: The project aims to explore resource optimization, dynamic observability and sustainable distributed and Edge computing technologies.

b) RL-based Beamforming for JCAS: Safe, Causal, and Verifiable: The project aims to explore causal AI methods for joint communication and sensing (JCAS).

…………………………………………………………………………………………………………….

AI and Compute Research is instrumental to Ericsson’s 6G networks as the compute offload needs to be managed dynamically at edge and the policies would primarily be driven by AI. These themes of research are well aligned with IIT Kharagpur and both organizations view this partnership as a way to push the boundaries of fundamental and applied research in the Radio domain.

Editor’s Note:

Ericsson laid off 8,500 employees last year as part of its cost-cutting initiatives and reduced total costs by 12 billion Swedish crowns ($1.15 billion) in 2023.

Telecoms equipment suppliers are expecting a challenging 2024 as 5G equipment sales – a key source of revenue – are slowing in North America, while India, a growth market, may also see a slowdown. Ericsson’s fourth-quarter net sales fell 16% to 71.9 billion Swedish crowns ($6.89 billion), missing estimates of 76.64 billion.

……………………………………………………………………………………………………………..

Magnus Frodigh, Head of Ericsson Research, says: “This collaboration strengthens our R&D commitments in India and is pivotal to Radio, Compute and AI research. We are excited to partner with IIT Kharagpur and look forward to collaborative research in fundamental areas as well as translational research for our Future Network Platforms”. Dr Frodigh also presented Ericsson’s vision on 6G which aims to blend the physical and digital worlds enabling us to improve the quality of life by incorporating widespread Sensor-based communications between humans and machines through digital twins.

Nitin Bansal, Managing Director of Ericsson India said, “Ericsson is well poised to lead 6G innovation and we are making significant R&D investments in India in line with our commitment to the country. Given our 5G and technology leadership, our research initiatives are geared to provide affordable network platforms for ubiquitous connectivity all across the country.”

Virendra Kumar, Director at IIT Kharagpur, said, “In the commitment towards Digital India and making India the hub of technological innovation, this collaboration with Ericsson will be effective for next-generation technology significantly. 6G networks integrated with artificial intelligence will enable AI-powered applications to run faster and more efficiently. In the 6G era, IIT Kharagpur aims to contribute to Radio Access Technology and Network, Core Network, RF & Device Technologies, VLSI Design, Neuromorphic Signal Processing, Services and Applications.”

About Ericsson;
Ericsson enables communications service providers to capture the full value of connectivity. The company’s portfolio spans Networks, Digital Services, Managed Services, and Emerging Business and is designed to help our customers go digital, increase efficiency and find new revenue streams. Ericsson’s investments in innovation have delivered the benefits of telephony and mobile broadband to billions of people around the world. The Ericsson stock is listed on Nasdaq Stockholm and on Nasdaq New York. www.ericsson.com

About IIT Kharagpur:

Indian Institute of Technology Kharagpur (IIT KGP) is a higher educational and academic institute, known globally for nurturing industry ready professionals for the world and is a pioneer institution to provide Excellence in Education, producing affordable technology innovations. Set up in 1951 in a detention camp as an Institute of National Importance, the Institute ranks among the top five institutes in India and is awarded, “The Institute of Eminence”, by the Govt. of India in 2019. The Institute is engaged in several international and national mission projects and ranks significantly in research output with about 20 academic departments, 12 schools, 18 centers (including 10 Centre of Excellence) and 2 academies with vast tree-laden campus, spreading over 2100 acres having 16,000+ students. Currently, it has about 750+ faculty, 850+ employees and 1240+ projects.

To know more visit: [http://www.iitkgp.ac.in/]

https://www.ericsson.com/en/press-releases/2/2024/2/ericsson-and-iit-kharagpur-partner-for-joint-research-in-ai-and-edge-compute

Ericsson, IIT Kharagpur Partner to Joint Research in AI and 6G

One thought on “Ericsson and IIT Kharagpur partner for joint research in AI and 6G

  1. Research on 6G is gaining momentum, and governments worldwide are contemplating how this next-generation mobile standard aligns with their broader technology roadmaps.

    China outlined its vision in a 6G white paper published back in 2021 titled, “6G Vision and Candidate Technologies,” targeting a 2030 launch. In 2023, the government of India announced plans to prepare the operators for commercial 6G by 2030.

    The South Korean government aims to have commercial 6G networks operational by 2028, two years ahead of the International Telecommunication Union’s scheduled approval for the 6G standard. As the industry grapples with defining the roles of AI, Cloud radio access network (RAN), automation and ESG in the 6G era, we will stay away from the shiny objects and focus on the basics: what spectrum will be utilized for 6G and why ongoing RF innovation is crucial for transforming 6G from a concept into reality within the next five to six years.

    The journey toward 5G-Advanced and eventually 6G will not be trivial. It depends on a confluence of factors, with the type of spectrum being one of the more critical unknowns that can completely change the trajectory and velocity of the entire 6G ramp. After all, the 5G capital expenditure (capex) envelope would look entirely different if not for the large swaths of spectrum in the upper mid-band, coupled with mMIMO.

    Figure 1
    Figure 2 5G/6G spectrum chart.

    Presently, the prevailing notion is that the 6 GHz band and the centimeter wave (cmWave) spectrum will play pivotal roles as anchor bands in the 6G era with frequencies spanning from 6.4 to 15.3 GHz. This band will be akin to the functions carried out by the C-Band in the 5G era. Concurrently, the mmWave spectrum transitions from a backseat position in 5G to a potential passenger seat with 6G in this multi-layered spectrum approach, encompassing new and existing sub-7 GHz, cmWave and mmWave spectrum.

    However, achieving economic viability for the broader 6G coverage layer complicates the situation and poses challenges with small cell infrastructure. Consequently, the 6 to 15 GHz base stations will need to make use of the existing macro grid. Ideally, future mmWave systems will also increasingly leverage the macro infrastructure for MBB applications.

    As the saying goes, nothing in this world can be said to be certain, except death, taxes and the inevitability of greater propagation losses with rising frequencies. According to the Hata model for a medium-sized city, the received power drops by approximately 7 dB when comparing the 6 GHz band with the C-Band. Another loss of approximately 7 dB occurs at 12 GHz in comparison to 6.5 GHz.

    In essence, RF innovation becomes crucial for operators aiming to deploy large bandwidth and wide area 6G in new spectrum. At a broader level, there are three main efforts already part of the 5G journey, including boosting the RF output power, adding more transceivers and incorporating more antenna elements. For 6G deployments within the upper 6 to 15 GHz range, advancing mMIMO becomes indispensable to achieve equivalent upper mid-band coverage. Leading vendors are currently exploring configurations such as 128T/128R or 256 transceiver channels to compensate for different loss parameters. Though it is still early days, preliminary testing shows promise. For instance, Huawei has verified in small-scale tests that the propagation delta between the 6 GHz and C-Band is manageable with higher-order MIMO.

    So far, mmWave deployments have primarily centered around FWA and low-mobility MBB applications, partly due to challenges related to coverage and performance degradation in higher-mobility scenarios. In response, technology leaders are now boosting the EIRP to tackle coverage limitations. One of the suppliers has already verified that co-site deployments with macros using 70 dBm+ EIRP and intra-band coordination with sub-6 GHz spectrum, can deliver Gbps performance throughout the cell. More innovation is also required to smooth out the handovers. Notably, the UL is typically the limiting factor and more work is needed to address the approximately 20 dB gap between the mmWave bands and the C-Band.

    https://www.microwavejournal.com/articles/41451-6g-and-the-long-rf-journey-ahead#new_tab

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*