Infonetics: Carrier Ethernet Market is Booming; MEF Announces CE 2.0

Carrier Ethernet Market Status and Forecast:

On February 23rd, Infonetics Research co-founder Michael Howard led off the Ethernet Technology Summit – Market Research session with his Carrier Ethernet market assessment and forecast. Here are the highlights:

-Carrier Ethernet Equipment market is booming with $37.5B worlwide revenues forecasted for 2015.  The cumulative 2005 to 2010 CE market was $101B.

-Ethernet dominates worldwide mobile backhaul carrier spending with $6.4B or 91% of the 2011 mobile backhaul equipment market (that’s Ethernet over copper, microwave or fiber between the cell tower and the long haul carrier/ISP point of presence, and on to the controller site and/or mobile switching center.  In 2012, Ethernet based mobile backhaul accounts for 40% of physical connections of all types of mobile/cellular backhaul (e.g., TDM, IP, etc) in the world. It’s projected to be 95% of the mobile backhaul connections market by 2015.

-Network Operator Carrier Ethernet services (Ethernet Private Line, Virtual Private Line, Virtual Private LAN, Ethernet as access for IP VPNs) will be a $49B worldwide market in 2015. [this includes both retail and wholesale].  The cumulative 2010-2015 Carrier Ethernet market (total sales) is expected to be $93B.

-Big growth is foreseen for CE: Routers, Switches and optical networking/transport (Ethernet over DWDM) equipment.  Ethernet over microwave growth is accelerating.

Comment:

After many years of slow growth, it’s great to see the Carrier Ethernet market now “booming.” Note that the MEF has been in existance for 10 years and that the IEEE 802.3ah Ethernet First Mile (EFM) standard was completed in 2003. Yet the Carrier Ethernet market really didn’t start to ramp till 2010 or 2011.

It’s somewhat surprising that mobile network operators are using Ethernet based backhaul when they still have so much TDM based cellular voice (even though mobile data traffic has now eclipsed voice, it’s voice that pays most of the bills).  We see tremendous promise and potential for Ethernet over fiber backhaul for the exponentially growing 4G data traffic.

For information on XO Communications Carrier Ethernet service offerings (EoC, EoFiber, Direct Internet Access via Ethernet, and others) please contact: XO Sales Executive Mike Weiss: [email protected]

MEF announces CE 2.0:

Carrier Ethernet 2.0, announced February 23, 2012 by the Metro Ethernet Forum (MEF), is characterized by three powerful and standardized features: Multiple Classes of Service (Multi-CoS), Interconnect and Manageability.  Collectively, these enable the delivery of differentiated applications over managed and interconnected global networks. CE 2.0 is generationally advanced from the standardized Ethernet services delivered over a single provider’s network which are now called Carrier Ethernet 1.0 (CE 1.0).

CE 2.0 greatly expands from 3 services in CE 1.0 to eight services, two of each respectively in E-Line, E-LAN, E-Tree, and E-Access, as defined in MEF Service Specifications and Implementation Agreements (MEF 6.1, 6.1.1, 22.1,33). CE 2.0 carries newly standardized service features of Multi-CoS (Class of Service) with Performance Objectives, Interconnect and Manageability.  These are facilitated through the integrated delivery of MEF Service Attributes (MEF 10.2, 10.2.1, 26.1), Implementation Agreements (MEF 13, 20, 23.1) and Management Specifications (MEF 7.1, 16, 17, 30, 31).

“For the Enterprise, CE 2.0 will mean more consistent performance levels and associated SLA’s regardless of office location; It will also enable enterprises to reach all their offices more efficiently on a global basis.  For the small/medium business, it will further the availability of capabilities such as Internet and hosted services on a single Carrier Ethernet connection, with higher SLA’s for those hosted services,” said Mike Volgende, Chairman of the MEF Board, and Director of Business Process Management at Verizon.

“For network equipment manufacturers, it means additional new markets and opportunities, augmenting already hot-selling Carrier Ethernet equipment.” said Phil Tilley, MEF Global Marketing Committee Co-Chair, Alcatel-Lucent Director Portfolio Strategy.

“For mobile operators, it means a foundation for additional efficiencies and cost-savings through implementation of Mobile-Backhaul-specific Multi-CoS performance objectives, packet and network-based synchronization, resiliency performance, and service OAM fault management.”

“For the retail service providers, it means that they can expand their footprint more efficiently globally; It also means the guarantee of certain performance criteria whether on or off net.” said Carlos Benavides, MEF Global Marketing Committee Co-Chair, Verizon Group Manager for Access Strategy.

“For the wholesale provider, it means increased revenue by more easily wholesaling existing footprint; it also means the standardized performance that must be delivered from the access network.”

“CE 2.0 underscores the MEF’s commitment to advance the industry and further promote the global adoption of Ethernet services through a new generation of standards,” said Karen Schmidt, MEF Board Member, Executive Director of Data Product Management & Strategy at Comcast Business Services. “Comcast has long-supported the standardization of Carrier Ethernet and we look forward to working with the MEF on CE 2.0 and the benefits it will bring to our mid-market customers.”

Comment:

We are anxious to see what will come out of Carrier Ethernet 2.0 and if operators will wait a very long time to deploy it (as they did with CE 1.0). Technology uncertainty has previously delayed many new, cost effective services to SMBs.

References:

https://techblog.comsoc.org/2011/11/22/ethernet-over-copper-eoc-gains…

https://techblog.comsoc.org/2012/01/04/important-criteria-for-procurement-of-wireline-telecom-services

http://viodi.com/2011/05/23/comcast-fiber-network-buildout-gives-rise-to-metro-ethernet-and-pri-trunking-services-for-smbs/

Quicktake from Ethernet Tech Summit: Ethernet’s Changing Role in the Data Center

As you might expect, the the Ethernet Technology Summit, Feb 21-23, 2012 in San Jose, CA, explored the many ways in that Ethernet is everywhere.  In particular:

• Broadband access: Ethernet over Copper is Ethernet over VSDL or ADSL,  EPONs have been deployed in Japan, Korea, China and elsewhere in Asia

• Transport:  100GE being deployed now in carrier exchanges and long haul networks; Ethernet over OTN (OTU3/4)

•  Cloud Computing:  MEF specified “Connection Oriented Ethernet” for WAN to deliver Private Cloud services to enterprise customer premises

 • Wireless:  Mobile backhaul, Wi-Fi

• LAN:  Ethernet origination in workgroup LANs to campus LANs to metro LANs and Virtual Private LANs

• Data Center:  Enhanced Ethernet with higher speeds (10GE and 40GE) on the horizon

Here are a few Data Center (DC) Trends:
• Server Consolidation and virtualization
• Leading to very large Data Centers
• 600K+ virtual servers in a Data Center
• Scale to 1 million networked devices in a facility
• Efficiency drives many decisions
• Few percent improvements can save $ millions
• Need to scale compute, network, and storage efficiently
• Operations Expenses driving decision
• Power is an important metric
• Need for consolidated management

DC Efficiency Drivers:
• Data center optimized servers
• Eliminate unnecessary components
• Higher efficiency cooling
• Standardized servers for low cost
• Google servers , Facebook Open Compute, Microsoft’s server concept
• Flatter networks for better scaling
• TRILL/Rbridges, Shortest Path Bridging
• Standard interfaces with OpenFlow
• Virtual data centers
• Workload migration between data centers
• Network becomes a simple data backplane
• Separate intelligence

DC’s Focus on Power Efficiency:
• Many now track PUE (Power Usage Efficiency)
• Ratio of power used by IT (servers) to total facility power
• Facility includes cooling and power distribution
• PUE of 2.0 is average
• New facilities targeting PUE of 1.5 or below
• Also need to improve perf per watt
• Power is generally the limiting factor per rack and per data center
• More than a third of total cost of ownership (TCO) is proportional to electrical usage=power consumed
• Leads to Rising Demand for Power Efficient Processors

 

New Opportunity with 10GE:  LAN on Motherboard (LOM) =servers use 10GBaseT component on PC motherboard for access link to DC 10GE Switch.  Expected to happen in 2013-2014.

Source:  Jag Bolaria,  Analyst at Linley Group


Another view of the Data Center:
– 1GE links are saturated and won’t grow much
• 80% of today’s server connections are 1 Gigabit
• 1000BASE-T dominates due to cost, flexibility, low-power
• 10G used primarily for uplinks on TOR switches & aggregation

Today’s Data Center 
– 10G Growing
• ~80% of today’s server connections are 1GbE
• ~20% of today’s server connections are 10GbE
• 10GbE price erosion driving volumes up
• ~200% YOY 2010 (Source Infonetics “Quarterly Worldwide and Regional Market Share, Size, and Forecasts”)

• Data center strategies are diverging
• Blade servers allow higher density, reduce
cabling, higher performance, higher efficiency
• Moving to 10GBASE-KR 
• Rack servers demanding 10G LOM/Mezzanine
• Dominated by SFP+ DAC
• Moving to 10GBASE-T due to cost, flexibility
• Virtualization leading to higher density, higher utilization of servers 
• More focus on energy efficiency
• Blade servers ahead on 10G deployment
• Rack servers trailing but growing faster

Tomorrow’s Data Center – 40GbE and New Architectures:
• Blade Servers moving to 40GbE swiftly
• Virtualization, Convergence, Efficiency Demands will lead to optimization of resources, higher utilization
• Demand for 100GbE aggregation is going to rise accordingly
• Existing 10x10G solutions are bulky, expensive, power hungry


In Thurs AM panel session on Connecting the Next Big Wave of Cloud Computing Infrastructure, Kamal Dalmia of Aquanta Corp said that “10GBASE-T is driving the growth and deployment of 10GE in Data Centers and Cloud Computing.”  The crossover, where 10GE shipments surpass 1GE shipments is expected to be late this year (2012).  10G BaseT is expected to enjoy exponential growth starting in 2013, while 1GE shipments are projected to decline sharply at that time.

For Ethernet Switches
• Cost: 10GBASE-T priced same as emptyoptical socket
• Backward Compatibility
–10G/1000/100BASE-T over RJ45
• Power: High density line cards possible
• Ubiquitous: UTP cable is everywhere (UTP category 6A has been installed in most Data Centers since 2008)

For Servers
• LAN on Motherboard (LOM) economics
–Knife switch transition at 3x price per port of GE
• Backward Compatibility
• Incremental Upgradeability in Data Centers

Summary: 10GBASE-T is driving the 10GE growth
• 10GBASE-T achieves lower cost, lower power, lower latency and higher densitythan Gigabit Ethernet on a per Gbit/s metric
• 10GBASE-T LOM servers start shipping this quarter
• 10GBASE-T switches available from major OEMs

Does Anyone Really Care about lack of Cloud Computing Standards? Who’s doing what?

Introduction:

At Cloud Connect 2012, there were several audience members clamoring for a common API that could be used to access cloud services from Amazon, Rackspace and other leading public cloud providers.  There was also discussion of the networking issues, with the consensus being that the public Internet could not provide the security, performance guarantees, reliability/availability that many larger companies need.  As a result, there are MEF efforts to position “Connection Oriented Ethernet” for private clouds.  (Connections are set up by the management plane used by the network operator).  Here’s a link to their latest whitepaper on Carrier Ethernet for Private Clouds: 

http://metroethernetforum.org/PDF_Documents/Cloud/MEF_Carrier_Ethernet_for_Delivery_of_Private_Cloud_Services_20120031.pdf

For more on this topic, please see:  Cloud Connect 2012: WAN issues still unresolved

http://viodi.com/2012/02/20/cloud-connect-2012-wan-issues-still-unresolved-but-telcos-get-serious-about-cloud/

Yet the lack of standards and the resultant vendor lock-in doesn’t seem to bother most cloud users.  We think it will when they decide to change cloud service providers and have to start everything from scratch.  

Cloud Computing SDOs:

In fact, there are a number of organizations that ratify proposals for cloud standards and others that develop guidelines and provide information to those interested in cloud computing.  Some of the more important ones include (ITU-T and IEEE are NOT listed, as we had earlier written about on this web site):

  • The Distributed Management Task Force (DMTF) develops cloud interoperability and security standards. The DTMF created the Open Cloud Standards Incubator (OCSI) in 2009 to address the need for open management standards for cloud computing. An OCSI-produced white paper, Interoperable Clouds White Paper, helps users with questions about integrating computer, network and storage services from one or more cloud service providers into business and IT processes.
  • The mission of the National Institute of Standards and Technology (NIST) is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security.
  • The Open Cloud Consortium (OCC) is a member-driven organization that develops reference implementations, benchmarks and standards for cloud computing.
  • The Open Grid Forum (OGF) is an open community committed to driving the rapid evolution and adoption of applied distributed computing. OGF accomplishes its work through open forums that build the community, explore trends, share best practices and consolidate these best practices into standards. OGF has launched the Open Cloud Computing Interface Working Group to deliver an open community, consensus-driven API, targeting cloud infrastructures.
  • The Storage Networking Industry Association (SNIA) has adopted the role of industry catalyst for the development of storage specifications and technologies, global standards, and storage education.
  • The Cloud Security Alliance (CSA) publishes guidelines for secure cloud computing, and the Cloud Computing Interoperability Forum (CCIF) is a vendor-neutral, open community of technology advocates and consumers dedicated to driving the rapid adoption of global cloud computing services.

There is also a wiki site for cloud standards coordination that documents the activities of the various standards organizations working on cloud standards and guidelines.

http://cloud-standards.org/wiki/index.php?title=Main_Page#Cloud_Standards_Coordination

Immediately after an incredibly disappointed IEEE Inter-Cloud WG meeting, I wrote an article tracking various cloud related standards:

Cloud Computing Standards Development Organizations (SDOs) and their output documents

https://techblog.comsoc.org/2011/07/15/cloud-computing-standards-development-organizations-sdos-and-their-output-documents

Perspective:

We think the lack of cloud standards will create tremendous churn in the industry and limit market growth.  Until a solid set of cloud computing standards are established and implemented, users need to remain cautious moving to the cloud.

Optical Network Evolution, Status & Future to be explored at March 14th IEEE ComSocSCV meeting in Santa Clara, CA

Introduction:

Transport networks are continuously evolving and the ITU-T Optical Transport Network (OTN) is a case in point. In the last ten years OTN have seen tremendous advances in architecture, flexibility and its ability to transport present and future services. The latest generation of Optical Transport Platforms is integrating cost effectively wavelength switching, extended reach optics, connection oriented packet features and OTN/ODU (Optical Channel Data Unit) networking.

March 14 ComSocSCV meeting:  Evolution & Future of Optical Transport Networks; Photonic Integrated Circuits 

Representatives from Infinera Corp will describe the evolution of the ITU-T standardized Optical Transport Network (OTN), Super-Channels and future directions for DWDM based optical networks.  An overview of Photonic Integrated Circuits (PICs) will also be presented. The three presentations will be followed by a lively panel session, with audience participation via pre-submitted questions and live Q and A.

Presentation Abstracts

1. Overview of Optical Transport Network (OTN) by Radhakrishna (Radha) Valiveti, Architect, System Architecture Group

Abstract: The first generation of OTN standards were defined by ITU-T Recommendation G.709 around the 1999-2001 timeframe. This generation of OTN standards supported SONET/SDH clients as their primary client signals. OTN standards have since undergone significant changes to support dominant Ethernet Client signals such as 1/10/40/100GE. The latest version of OTN standards are defined in G.709 [12/2009] and the key extensions include the support for the Ethernet client signals identified above, and a flexible rate ODU which can support client signals with arbitrary rates. At ITU-T, work has recently begun on the definition of the next generation of standard OTN containers. Infinera is actively tracking, and contributing to the emerging optical network standards. The talk will provide a status of the OTN standardization effort in ITU-T and discuss the evolution of OTN networks – from pure TDM networks to ones that efficiently carry a mix of TDM/packet flows. 

2. Super-channels and the Future of Optical Networks by Abhijeet Deore, Sr. Manager, Product Marketing

Abstract: Super-channels represent the future of the industry and bandwidth evolution to beyond what 100G can deliver. We will discuss what super-channels are, if and why they might be needed, and their benefits. The presentation will also cover a realistic timeline for super-channels, key building blocks that could enable super-channels in a practical real-world implementation and technological challenges of increasing fiber capacity in absence of super-channels. We’ll investigate whether the 100G coherent networks of now (and the near future) are well suited to evolving into super-channel optical networks. Super-channels are currently being discussed by the ITU-T SG15/WP2/Q6 standards group. 

3. Photonic Integrated Circuits (PICs) – Scaling Next Generation Optical Networks by Matthew Mitchell, Sr. Director, Optical Architecture

Abstract: Commercially produced photonic integrated circuits (PICs) used in optical networking equipment was brought to the market in 2004. This important technological breakthrough drastically simplified the design of an optical networking solution, increasing the density of the platform so more bandwidth can be carried by a smaller, more efficient platform. Infinera’s first generation PICs integrate 62 optical components onto a pair of monolithic chips and deliver 100 Gigabits per second of bandwidth capacity. This was the first time the technique of large-scale monolithic integration was applied to commercial photonic chips. Today, Infinera has produced PICs delivering five times the capacity onto a single pair of chips, integrating more than 600 optical functions. This presentation will describe how InP PICs are used in optical networking solutions and the advantages of PIC-based optical networking platforms. InP based integrated circuits provide high optical performance relative to a silicon or hybrid silicon optical approaches.


Meeting Details, Logistics and RSVP info is at:  www.comsocscv.org


References:

ITU-T OTN Tutorial:   http://www.itu.int/ITU-T/studygroups/com15/otn/OTNtutorial.pdf 

PMC-Sierra OTN Tutorial:  http://pmcs.com/whitepaper-processor-mips-sonet-ethernet/otn/

Carriers Making Major Push to OTN

http://viodi.com/2011/05/16/infonetics-carriers-making-major-push-to-otn-pmc-sierra-sees-healthy-otn-growth-during-next-5-years/

IEEE initiates smart grid community planning in its 10 global regions

EXCLUSIVE INTERVIEW by Smart Grid Today

IEEE intends to spearhead 10 community-based smart grid planning efforts around the world beginning this year, Wanda Reder, chair of the IEEE Smart Grid Task Force, told SmarGrid Today in an exclusive interview. IEEE is seeking utility partners in each of its 10 global regions to co-sponsor the event and implement the smart grid pilots in their service areas, she said, adding that several utilities already expressed interest. “We have reached out to utilities, there certainly is early interest,” Reder said. “We are kind of settling down on the plan and the budgets in order to get started here in 2012.” Given its reach and respectability, IEEE’s push could have an agenda-setting influence on the rest of the smart grid industry. Modeling the forthcoming fora after the National Grid and the City of Worcester, Mass, Green2Growth summit in September, Reder hopes IEEE can “templatize” that format for other cities and utilities to copy, she said. Reder was present for the second day of the two-day Green2Growth event, which was the centerpiece of National Grid’s revamped customer engagement plan for its 15,000-meter AMI pilot (SGT, Jan-03). The forum brought students, educators, government officials and activists together to envision what a greener Worcester should include. The summit focused on an “appreciative inquiry” method that begins with participants identifying their own leadership accomplishments and qualities, then moving on to what they would like to see Worcester do to become an idealistic, energy-conscious city (SGT, Sep-20).

http://www.smartgridtoday.com/members/IEEE_takes_on_global_project_to_ltbrgtspur_communitybased_planning.cfm


IEEE has developed several communications standards for Smart Grid:

1)       IEEE P1775: Standard for Power Line Communication Equipment – EMC Requirements -Testing and Measurement Methods

2)       IEEE P1901: Standard for Broadband over Power Line Networks: MAC and PHY Specifications (http://grouper.ieee.org/groups/1901/)

3)       IEEE P2030: Draft Guide for Smart Grid Interoperability ? Task Force 3: Communications Technology (http://grouper.ieee.org/groups/scc21/2030/TF3.html)


References:

http://smartgrid.ieee.org/

http://www.ieee.org/societies_communities/technical_activities/smart_grid.html

http://www.comsoc.org/Smart-Grid

http://www.comsoc.org/webcasts/topic/Smart%20Grid

Official "4G" – LTE-Advanced and WiMAX 2.0 (IEEE 802.16m) Approved by ITU-R as IMT Advanced specifications

The ITU-R (Radiocommunication Assembly) approved both LTE Advanced and WiMAX Release 2.0 as IMT Advanced standards this week at their plenary meeting in Geneva.  The ITU-R had previously referred to IMT Advanced  “4G” but then changed its definition to accomodate all the mobile operators who were calling LTE and WiMAX 1.0 “4G”  (they are actually 3G+ RAN technologies.
 The new IMT Advanced specifications (LTE Advanced and WiMAX 2.0) will deliver “a much higher quality and a much higher bit rate, typically of the order of 100 megabits per second.”

This means absolutely no time to get a page open,” claims Francois Rance, head of the ITU-R.  Mr. Rancey says that speeds will be so fast that a web page will open in less than 10ms, and users will be able to stream high-definition video at very high bit rates.   “IMT-Advanced would be like putting a fibre optic broadband connection on your mobile phone, making your phone at least 500 times faster than today’s 3G smart phones,” explains Rancy. “But it’s not only about speed; it’s about efficiency. IMT-Advanced will use radio-frequency spectrum much more efficiently making higher data transfers possible on lesser bandwidth. This will enable mobile networks to face the dramatic increase in data traffic that is expected in the coming years


From IEEE 802.16 WG Chair Roger Marks:
This week, the ITU-R (in the ITU Radiocommunication Assembly) concluded its approval of the IMT-Advanced specification. This means that the WirelessMAN-Advanced air interface is now officially accorded the official designation of IMT-Advanced. Please see the ITU’s announcementhttp://www.itu.int/net/pressoffice/press_releases/2012/02.aspx
The WirelessMAN-Advanced air interface was first specified in IEEE Std 802.16m and is currently being developed into the standalone IEEE Std 802.16.1. The standard has also been adopted by ARIB, TTA, and the WiMAX Forum.
The ITU-R notes that approval followed “a detailed evaluation against stringent technical and operational criteria.” The ITU Secretary-General called the announcement “a landmark development in mobile technology.”

AW Comment:  We wonder if LTE Advanced and WiMAX 2.0 – “true” 4G RAMs- will now be called “5G” by mobile operators. Else, how can they be distinguished from LTE and WiMAX 1.0 which were incorrectly referred to as 3G?  Neither technology is expected to be available for a least a couple of years.

Important Criteria for Procurement of Wireline Telecom Services

What are the most important factors in procuring telecom services for a small or medium size business?  Many companies just do a price comparison, but that neglects many other important attributes.  Wireline telecom services include:  private line, IP MPLS VPN, wavelength, Internet access, VoIP, and even circuit switched voice/data.   

In telecommunications, the most important aspects of service quality include  availability, reliability, security, flexibility or choice, simplicity and assurance. All of these are affected by innovations in technology, the development of a competitive
market structure, and interconnection of the competitors in a network of networks.

Here’s a checklist of important attributes to consider when procuring a new telecom service for your organization:

-Competitive price for service requested, considering distance between endpoints or from premises to carrier POP

-Quick order processing and rapid provisioning after order is completed

-Service Quality/ Functionality/ Performance/ SLA compliance

-Availability and Reliability – not all services need 5 9’s uptime (but mission critical applications certainly do)

-Customer service/ support/trouble shooting problems

-Fast restoration of service after an outage

-Security (very relevent for a shared network, e.g. MPLS VPN

-Rapid re-provisioning to accomodate moves and changes and to add/delete end points

-Reputation of telco/ brand name recognition


Reference:

An interesting Oct 2011 Google study of attitudes of “wireline users” includes Wireline Purchase drivers.  The study found that customer service was a key driver for many purchases.  In particular, Google found that the customer’s desire for personal interaction prevails.
• 60% research telecom solutions online but still prefer to interact directly with a salesperson
• Wireline service shoppers were willing to pay 11% more for great customer service from an Internet provider
• Over 25% of tele-sales originate as a customer service inquiry

www.thinkwithgoogle.com/insights/uploads/131352.pdf

For more information, please contact me:  [email protected]

ITU-T Smart Grid FG Produces Smart Grid Overview Document

Introduction

A very comprehensive “Smart Grid Overview” document has been produced by the ITU-T Focus Group on Smart Grids (FG Smart).  The objective of this “deliverable” document is to enable readers to understand key concepts and objectives for Smart Grid and identify architectural models and required capabilities in the Information and Communication Technology (ICT) perspective.  

More specifically, this document covers the following:

  • Definition of Smart Grid;
  • Objectives of Smart Grid;
  • Conceptual model and reference architecture of Smart Grid;
  • Fundamental characteristics of Smart Grid;
  • Roles and key areas of ICT for Smart Grid;
  • Architecture overview for Smart Grid; and
  • Required capabilities for Smart Grid.

Goals and Objectives of Smart Grid

Efficient and reliable transmission and distribution of electricity is a fundamental requirement for providing societies and economies with essential energy resources. The utilities in the industrialized countries are today in a period of change and agitation. On one hand, large parts of the power grid infrastructure are reaching their designed end of life time, since a large portion of the equipment was installed in the 1960s. On the other hand, there is a strong political and regulatory push for more competition and lower energy prices, more energy efficiency and an increased use of renewable energy like solar, wind, biomasses and water.

In industrialized countries, the load demand has decreased or remained constant in the previous decade, whereas developing countries have shown a rapidly increasing load demand. Aging equipment, dispersed generation as well as load increase might lead to highly utilized equipment during peak load conditions. If the upgrade of the power grid should be reduced to a minimum, new ways of operating power systems need to be found and established.

In many countries, regulators and liberalization are forcing utilities to reduce costs for the transmission and distribution of electrical energy. Therefore, new methods (mainly based on the efforts of modern information and communication techniques) to operate power systems are required to guarantee a sustainable, secure and competitive energy supply.

The general goals of Smart Grid are to ensure a transparent, sustainable and environmental-friendly system operation that is cost and energy efficient, secure and safe. Objectives of developing the Smart Grid are quite different from country to country for their various demands and start points. However, the common objectives of a Smart Grid are clear and listed below:

  • Robustness: The Smart Grid shall improve resilience to disruption to provide continuous and stable electricity flows, avoiding wide-area breakout accidents. It shall guarantee the normal and secure run of the electricity grid even under the instance of emergency issues, such as natural disasters, extreme weather and man-made breakage, and provides self-healing abilities;
  • Secured operation: The Smart Grid shall enhance communication networks and information security of the electricity grid;
  • Compatibility: The Smart Grid shall support the integration of renewable electricity such as solar and wind, has the capacity of distributed generation access and micro-grids, improve demand response functions, implement the effective two-way communication with consumers and satisfy various electricity demands of consumers;
  • Economical energy usage: The Smart Grid shall have the capacity of more effective electricity markets and electricity trades, implement optimized configuration of resources, increase efficiency of the electricity grid, and reduce electricity grid wastage;
  • Integrated system: The Smart Grid shall highly integrate and share information and data of an electricity grid, utilize the uniform platform and model to provide standardized and refined management;
  • Optimization: The Smart Grid shall optimize assets, reduce costs and operate efficiently;
  • Green energy: The Smart Grid shall solve problems of energy security, energy saving, carbon dioxide emission, etc.

The utilities of the Smart Grid shall address the following challenges:

  • High power system loading;
  • Increasing distance between generation and load;
  • Fluctuating renewables;
  • New loads (hybrid/electric vehicles);
  • Increased use of distributed energy resources;
  • Cost pressure;
  • Utility unbundling;
  • Increased energy trading;
  • Transparent consumption & pricing for the consumer;
  • Significant regulatory push.
  • The key market drivers behind Smart Grid solutions are:
  • Need for more efficient use of energy;
  • Increased usage of renewable energy resources;
  • Sustainability;
  • Competitive energy prices;
  • Security of supply;
  • Ageing infrastructure and workforce

The priority of local drivers and challenges, will likely differ from country to country or by geographical region within a specific country.

Domains and Actors in the Smart Grid conceptual model

Domain

Actors in the Domain

Customers

The end users of electricity. May also store, and manage the use of energy. Traditionally, three customer types are discussed, each with its own domain: residential, commercial, and industrial.

Markets

The operators and participants in electricity markets.

Service Providers

The organizations providing services to electrical customers and utilities.

Operations

The managers of the movement of electricity.

Bulk Generation

The generators of electricity in bulk quantities. May also store energy for later distribution.

Transmission

The carriers of bulk electricity over long distances. May also store and generate electricity.

Distribution

The distributors of electricity to and from customers. May also store and generate electricity.


Communications Aspects of Smart Grid

The communication consists of the following two sub-planes or functional groupings.

Information Access. It determines the syntax and semantic of application related data. Given each specific domain, we shall define the format of data to meet the application/service requirements.

Communication Network. It enables the reliable, efficient and secured transmission of the application/ service specific data.

In the communication network, it is necessary to consider both the network architecture and performance measures to meet the application/service requirements, including the Quality of Service (QoS) and security of information transmission over the network. The detailed description is listed below:

For the network architecture, one shall consider different options, covering home area networks, access/neighbourhood area networks, and wide area networks, and the use of Internet-based technologies along with other choices.

For the QoS, one shall consider different metrics (i.e., end-to-end latency, bandwidth, jitter, and reliability) along with different types of applications (i.e., the amount of data needs to be transmitted in a given deadline in order to successfully accomplish a task). To be specific, the latency shall be very tight in SCADA system in comparison with the normal meter reading and configuration in Advance Metering Infrastructure (AMI). In the August 14, 2003, blackout, a contributing factor was the issue with communications latency in control systems. With the exception of the initial power equipment problems, the on-going and cascading failures will be primarily due to problems in providing the right information to the right individuals within the right time period. Service differentiation and prioritization may be required depending on the quality and type of applications, which are supported by the communication links. Many standards and protocols mentioned above contain the mechanisms to achieve differentiated QoS services. As an example, the admission control, queuing scheduling algorithms, Resource Reservation Protocol (RSVP) and others have been extensively studied to provide QoS in IP networks.

Furthermore, the confidentiality, integrity and availability of network must be addressed as well. Confidentiality is preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information. Integrity is the guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity. Each classification displays the level of adverse effect the destruction of information can be expected to have on organizational operations, organizational assets, or individuals. A loss of integrity is the unauthorized modification or destruction of information. Availability ensures timely and reliable access to and use of information. Each classification displays the level of adverse effect the disruption of access to or use of information or an information system can be expected to have on organizational operations, organizational assets, or individuals.

Power grid information security and protection requirements have aspects of the control network for the operation of energy transmission and distribution (i.e., SCADA), computer networks (i.e., transmitting meter data) as well as enterprise Information Technology (IT) network for business. Although all networks require information security services for dealing with malicious attacks or providing protection against inadvertent errors, specific distinctions in attack and error types, and differences in performance requirements as well as organizational policies for them make their required security posturing quite different in those areas. Hence, we shall systematically analyze the vulnerabilities in Smart Grid, explore the space of attacks targeting different weaknesses of Smart Grid, and develop possible countermeasures against those attacks.


Section 6.3 of this document states the relationship with other Smart Grid Standards Development Organizations (SDOs) that ITU-T believes are doing credible work on Smart Grids.  Those include:  IEC, ISO/IEC/JTC1 (Special Working Group on Smart Grid, WG on Sensor Networks), ITU-R, ETSI, ANSI (TIA, ATIS), China Communications Standards Association (CCSA), and IETF.  The three IEEE Smart Grid related standards are NOT listed and there is no reference to any IEEE Smart Grid activities.  http://www.comsoc.org/Smart-Grid.  Why not?


Section 7 examines the Characteristics of Smart Grid.  Three key elements of Smart Grid are listed: Smart Grid Services/Applications, Communications, and Physical Equipment.

Section 8 provides the Role and Key Areas of ICT for Smart Grid

Section 9 is an Architecture Overview of Smart Grid from an ICT Perspective

Section 10 addresses the Required Capabilities for Smart Grid

Section 11 covers relevent Smart Grid activities of ITU-T Study Groups (SGs).  These are listed in Appendix II.

Bibliograpy lists the NIST and IEC Smart Grid Roadmap documents


Comment and Analysis

This is a very comprehensive and complete look at Smart Grid from an ICT perspective.  It’s interesting that ITU-T does NOT reference IEEE work on Smart Grid, particularly the IEEE standards for Power Line Communications Equipment (P1775) and Networks (P1901).

ITU-T FG Cloud Wraps Up: 7 Deliverable Documents + Jan 9, 2012 Workshop on Cloud Computing and Smart Grid

FG Cloud Deliverable Documents

At their Dec 2011 meeting in Geneva, ITU-T FG on Cloud Computing (FG Cloud) finalized seven output documents that were promised ITU-T TSAG as “deliverables.”  FG Cloud has proposed that these seven deliverables of FG Cloud will be also published as a technical report, and it will be publicly available with subject to approval by the ITU-T Streategic Advisory Group (TSAG) at their 10 – 13 January 2012 meeting in Geneva.

These seven deliverables are listed below along with their document numbers.  Here is a brief description of each:

  1. Introduction to the cloud ecosystem: definitions, taxonomies, use cases, and high level requirements: to provide cloud definitions and taxonomies, and to introduce cloud ecosystem, use cases and high level requirements focusing on integration of cloud model and technologies in telecommunication.
  2. Functional Requirements and Reference Architecture : to define functional requirements and reference architecture including layers and functional entities
  3. Requirements and framework architecture of cloud infrastructure : to provide requirements and framework architecture of cloud infrastructure
  4. Cloud Resource Management Gap Analysis : to identify gaps in cloud resource management standards that could be further developed into ITU-T Recommendations with the appropriate collaboration with related SDOs.
  5. Cloud Security : to identify several security threats and security requirements for cloud users and service providers and to propose cloud security study subjects to be worked in ITU-T
  6. Overview of SDOs involved in Cloud Computing : to provide a complete overview of main ITU-T and SDOs cloud standard activities, to map the FG Cloud activities to these SDOs and to produce a gap analysis from telecom perspectives
  7. Benefits from Telecommunication perspectives : to provide cloud benefits from telecom, partner and user perspectives and identifies general role of telecommunication players in cloud computing, and a list of candidate study items

ITU-T FG Cloud Deliverable Documents:

  1. Cloud-o-0079, Introduction to the cloud ecosystem: definitions, taxonomies, use cases, and high level requirements
  2. Cloud-o-0080, Functional requirements and reference architecture
  3. Cloud-o-0081, Requirements and framework architecture of cloud infrastructure
  4. Cloud-o-0082, Cloud Resource Management Gap Analysis
  5. Cloud-o-0083, Cloud Security
  6. Cloud-o-0084, Overview of SDOs involved in cloud computing
  7. Cloud-o-0085, Benefits from telecommunication perspectives

ITU-T 1 Day Workshop on “Cloud Computing and Smart Grid”

With the Cloud FG’s work completed and FG Smart producing a Smart Grid Overview document, ITU-T will hold a Workshop on “Cloud Computing and Smart Grid” at ITU Headquarters, Geneva, on 9 January 2012.

http://www.itu.int/ITU-T/worksem/ccsg/201201/

The workshop will facilitate the discussion in TSAG on the future direction of cloud computing and smart grid standardization by providing information on these technologies, showing the results of the Focus Groups activities and showing proposals from these Focus Groups.

-FG Cloud has completed its 8th meeting and has produced several final output documents including Reference Architecture, Security, Benefits to SPs, Overview of SDOs involved with Cloud, etc.

-FG Smart (Grid) will also report their activities at this workshop. They’ve produced a “Smart Grid Overview” Deliverable. More information at:

http://www.itu.int/en/ITU-T/focusgroups/smart/Pages/Default.aspx


Postscript:

Here’s an article that mentions partnerships will be needed in cloud computing space:

http://viodi.com/2012/02/20/cloud-connect-2012-wan-issues-still-unresolved-but-telcos-get-serious-about-cloud/

Pyramid Research agrees:

“Service providers should partner with IT vendors and cooperate with software and content providers to increase the attractiveness of their cloud services.”

A new Pyramid report, Global Cloud Computing Market Is Strengthened by Telco Competition analyzes the competitive landscape of the global cloud computing industry. It defines the major players in the space and identifies external forces that influence the level of competition. Finally, the report examines major threats and uncertainties that slow down adoption of cloud computing, particularly in the enterprise sector. The report includes two case studies that illustrate how various players in the cloud industry cooperate to provide telco customers with cloud services that they need: HP’s alliance with Alcatel-Lucent and the implementation of Cisco’s CloudSystem at Telus.

“Competition in the cloud segment is increasing and new players are entering the marketplace aiming to monetize opportunities related to the proliferation of cloud services,” says Pyramid Analyst, Dr. Ewa Romaniuk-Calkowska.

Those already in the game are moving to form partnerships and strategic alliances to provide clients with integrated end-to-end solutions rather than specific elements or sub-segments of the cloud architecture. “Operators looking to partner with IT vendors should be diligent when selecting your cloud platform provider to ensure that the chosen solution fits best with your circumstances and cloud service strategy,” she adds.

IEEE Radio & Wireless Week: 15–18 January,2012 in Santa Clara Features Panel on Spectrum Sharing & Re-Use

Introduction

IEEE Radio & Wireless Week (RWW) Conference comes to Santa Clara, CA the week of 15–18 January,2012.  IEEE ComSocSCV is co-sponsoring a free panel session (7pm-9pm on 15 Jan 2012) that will address Spectrum Sharing and Frequency Re-Use.

RWW 2012 Overview

IEEE RWW 2012 will consists of five related conferences that focus on the intersection between radio systems and wireless technology, creating a unique forum for engineers to discuss hardware design and system performance of state-of-the-art wireless systems and their end use applications. This multidisciplinary IEEE event will offer the latest information on wireless communications and networking, associated enabling technologies and emerging new services and applications.

In addition to the traditional three parallel sessions of podium technical talks and poster sessions, there will be an IEEE Distinguished Lecturer track, workshops, panels, and a relevant industry exhibition. A highlight on Tuesday will be the Plenary talk by Prof. Arogyaswami Paulraj, Professor Emeritus, Stanford University. 

For RWW2012 there will be two new activities:

1.  On Sunday evening there will be an open panel session for all wireless professionals (local and conference attendees).

2.  On Tuesday afternoon there will be a new demo track that will provide an interactive forum with hands-on demonstrations of the latest wireless experiments and innovations.

This multidisciplinary diversity is underlined by the four diverse IEEE Societies that are cosponsors of the RWW events: MTT-S, AP-S, ComSoc and EMB-S. 

The RWW Conference details, information on co-located conferences and the advanced registration link can be found at: http://www.radiowirelessweek.org/

The RWW Agenda is at:  http://www.radiowirelessweek.org/wp-content/uploads/RWW2012_Advance_Program.pdf


Why Attend RWW 2012?

We strongly believe that face to face conferences like RWW 2012 provide attendees with the opportunity to

  • See the latest work and the direction of future activities
  • Expanding your horizons and maybe see new directions for your work
  • Investigate and sample areas outside of your expertise – potential for the serendipity effect, thinking outside the box
  • Great chance to start, expand & renewi your personal network
  • Engage in Continuing Education by attending the workshops

 

This conference is different from many because of the multidisciplinary nature of the presentations and attendees. As noted above, “RWW 2012 will consists of five related conferences that focus on the intersection between radio systems and wireless technology, creating a unique forum for engineers to discuss hardware design and system performance of state-of-the-art wireless systems and their end use applications. This multidisciplinary IEEE event will offer the latest information on wireless communications and networking, associated enabling technologies and emerging new services and applications.”

There will be a diverse mix of attendees offering opportunities to meet, to learn from and to network with those in all aspects of the wireless food chain.


RWW 2012 Conference Highlights

-The open Sunday evening panel session  http://www.radiowirelessweek.org/highlights/panel-session/  — open to all, no registration required

-The workshops  http://www.radiowirelessweek.org/highlights/workshops/ — half day Sunday, can be registered for independent of the conference

-The Plenary with Prof Paulraj http://www.radiowirelessweek.org/highlights/plenary-talk/  — Professor Emeritus at Stanford University, 2011 IEEE Alexander Graham Bell medalist

-The Distinguished Lectures that are a part of the conference http://www.radiowirelessweek.org/highlights/distinguished-lecturers-talks/   (from MTTS, ComSoc & APS)

-And the conference itself – the Advance Program is posted http://www.radiowirelessweek.org/wp-content/uploads/RWW2012_Advance_Program.pdf


IEEE ComSocSCV Co-sponsored Panel Session on 15 Jan 2012

IEEE ComSocSCV is co-sponsoring the 15 Jan 2012 Panel on Spectrum Sharing & Frequency Re-Use.  We see this as the best way to alleviate bandwidth bottlenecks in Radio Access Networks (e.g. 3G, WiMAX and LTE) caused by the explosive growth in mobile data traffic. 

Abstract:  The growing demand for wireless services makes “green field” spectrum very difficult to find. There is an increase in interest in providing new wireless services by sharing available and underutilized spectrum. These approaches have to be designed so that they do not have an impact on the environment. The environmental issues have lead to several spectrum policy battles in recent years. This is because there are vastly different viewpoints on what is considered a harmful interference and what is considered a reasonable receiver in a given context. These battles can discourage investment in innovative wireless technology that requires non-routine approvals.

This session takes a technical and policy perspective on the underlying causes behind the controversies. It reviews recent controversial examples such as GPS/LightSquared, AWS-3, UWB, and Northpoint.

Further information on this free event (no RSVP required- just show up), including all panel participants,  is at: 

http://www.radiowirelessweek.org/highlights/panel-session/

We hope to see you there!

Page 315 of 328
1 313 314 315 316 317 328