ETSI DECT-2020 approved by ITU-R WP5D for next revision of ITU-R M.2150 (IMT 2020)

ETSI DECT-2020 NR, the world’s first non-cellular 5G technology standard, will be included in the next revision of ITU-R M.2150, aka IMT-2020 technology recommendation as per the conclusion of ITU-R WP 5D’s 39th (virtual) meeting on Oct 15, 2021.

[Separately, Nufront’s IMT 2020 RIT submission has been withdrawn for consideration in the next M.2150 revision, but maybe submitted in the future. The 5D SWG on Frequency Arrangements could not agree on a revision of ITU-R M.1036 Frequency Arrangements for Terrestrial IMT, which now can’t be approved till November 2022’s ITU-R SG 5 meeting.  That means there is no standard for 5G frequencies, which hasn’t bothered the FCC which is considering licensing frequencies that are not being considered for M.1036, e.g. 12GHz.]

The “DECT-2020 NR” Radio Interface Technology (RIT) is designed to provide a slim but powerful technology foundation for wireless applications deployed in various use cases and markets. It utilizes the frequency bands below 6 GHz identified for International Mobile Telecommunication (IMT) in the ITU Radio Regulations.

The DECT-2020 radio technology includes, but is not limited to: Cordless Telephony, Audio Streaming Applications, Professional Audio Applications, consumer and industrial applications of Internet of Things (IoT) such as industry and building automation and monitoring, and in general solutions for local area deployments for Ultra-Reliable Low Latency (URLLC) and massive Machine Type Communication (mMTC) as envisioned by ITU-R for IMT-2020.

According to an email to this author, ETSI supports this DECT RIT mainly because of its URLLC capabilities (3GPP Release 16 URLLC in the RAN has yet to be completed and performance tested).

DECT-2020 NR is claimed by its sponsor to be a technology foundation is targeted for local area wireless applications, which can be deployed anywhere by anyone at any time. The technology supports autonomous and automatic operation with minimal maintenance effort. Where applicable, interworking functions to wide area networks (WAN). e.g. PLMN, satellite, fiber, and internet protocols foster the vision of a network of networks. DECT-2020 NR can be used as foundation for: Very reliable Point-to-Point and Point-to-Multipoint Wireless Links provisioning (e.g. cable replacement solutions);  Local Area Wireless Access Networks following a star topology as in classical DECT deployment supporting URLLC use cases, and Self-Organizing Local Area Wireless Access Networks following a mesh network topology, which enables to support mMTC use cases.

Dr. Günter Kleindl, Chair of the ETSI Technical Committee DECT, said:

“With our traditional DECT standard we already received IMT-2000 approval by ITU-R twenty-one years ago, but the requirements for 5G were so much higher, that we had to develop a completely new, but compatible, radio standard.”

Released last year and revised in April 2021, this ETSI standard sets an example of future connectivity: the infrastructure-less and autonomous, decentralized technology is designed for massive IoT networks for enterprises. It has no single points of failure and is accessible to anyone, costing only a fraction of the cellular networks both in dollars and in carbon footprint.

The IoT standard, defined in ETSI TS 103 636 series, brings 5G to the reach of everyone as it lets any enterprise set up and manage its own network autonomously with no operators anywhere in the world. It eliminates network infrastructure, and single point of failure – at a tenth of the cost in comparison to cellular solutions. It also enables companies to operate without middlemen or subscription fees as well as store and consume the data generated in the way they see best fitting for them (on premises, in public cloud or anything in between).

Another democratizing aspect is the frequency. This new ETSI 5G standard supports efficient shared spectrum operation enabling access to free, international spectrums such as 1,9 GHz.

Jussi Numminen, Vice Chair of the ETSI Technical Committee DECT, explains:

“There’s a lot of talk about private networks but this is the first 5G technology which can support shared spectrum operation and multiple local networks in mobile system frequencies. We see this as a fundamental requirement for massive digitalization for everyone. With the ETSI standard you get immediately access to a free, dedicated 1,9 GHz frequency internationally. It is a perfect match for massive IoT.”

Non-cellular 5G is built on completely different principles from cellular 5G. One of the biggest differences – and advantages – is the decentralized network. In a non-cellular 5G network, every device is a node, every device can be a router – as if every device was a base station. The devices automatically find the best route; adding a new device into the network routing works autonomously as well and if one device is down, the devices will re-route by themselves. It means reliable communication eliminating single point of failures.

The standard fulfills both massive machine-type communications (mMTC) and ultra-reliable low latency communications (URLLC) requirements of 5G. Reliably connecting thousands and even millions of devices is one of the cornerstones for demanding industrial 5G systems. DECT-2020 NR supports local deployments without separate network infrastructure, network planning or spectrum licensing agreements making it affordable and easy to access by anyone and anywhere.

A decentralized mesh with short hops and small transmission power also means a significantly lower carbon footprint of the communications system. A recent study in Tampere University in Finland saw an approximately 60% better energy efficiency at system level compared to traditional cellular topology with the same radio energy profile.

The ETSI DECT-2020 NR standard consists of four parts, published in April 2021:

MAC: ETSI TS 103 636-4 V1.2.1 (2021-04)

PHY: ETSI TS 103 636-3 V1.2.1 (2021-04)

Radio reception and transmission requirements: ETSI TS 103 636-2 V1.2.1 (2021-04)

Overview: ETSI TS 103 636-1 V1.2.1 (2021-04)

Note: Updates are being prepared


This standard is well suited for businesses such as smart meters, Industry 4.0, building management systems, logistics and smart cities. It will assist in the urbanization, building, and energy consumption in the construction of these smart cities. It also opens opportunities for new use cases, scaling at mass the levels of communication for the future. The energy transition from fossil fuels to electricity boost local renewable energy production and consumption market requiring new communication capabilities. This creates a circular economy and allows for the traceability of goods, raw materials and waste.

Finland-based Wirepas received €10 million in funding to develop and bring to market the first technology solutions for non-cellular 5G based on the new DECT-2020 NR wireless connectivity standard announced by ETSI in October 2020.  Wirepas said it was the main contributor to the development of the DECT-2020 New Radio (NR) standard.

ETSI DECT-2020 NR in a nutshell:

  • No middleman
  • No infrastructure
  • No subscription fees
  • Free dedicated international frequency
  • Dense and massive network capabilities
  • One tenth of the cost of cellular
  • Lowest carbon footprint of large-scale networks

Editor’s Note:  We’ve invited ETSI to submit an IEEE Techblog article providing additional information and applications for the ETSI DECT-2020 NR standard.

About ETSI:
ETSI provides members with an open and inclusive environment to support the development, ratification and testing of globally applicable standards for ICT systems and services across all sectors of industry and society.  We are a non-profit body, with more than 950 member organizations worldwide, drawn from 64 countries and five continents. The members comprise a diversified pool of large and small private companies, research entities, academia, government, and public organizations. ETSI is officially recognized by the EU as a European Standards Organization (ESO). For more information, please visit us at