SoftBank’s Transformer AI model boosts 5G AI-RAN uplink throughput by 30%, compared to a baseline model without AI

Softbank has developed its own Transformer-based AI model that can be used for wireless signal processing. SoftBank used its Transformer model to improve uplink channel interpolation which is a signal processing technique where the network essentially makes an educated guess as to the characteristics and current state of a signal’s channel. Enabling this type of intelligence in a network contributes to faster, more stable communication, according to SoftBank.  The Japanese wireless network operator successfully increased uplink throughput by approximately 20% compared to a conventional signal processing method (the baseline method). In the latest demonstration, the new Transformer-based architecture was run on GPUs and tested in a live Over-the-Air (OTA) wireless environment. In addition to confirming real-time operation, the results showed further throughput gains and achieved ultra-low latency.

Editor’s note: A Transformer  model is a type of neural network architecture that emerged in 2017. It excels at interpreting streams of sequential data associated with large language models (LLMs). Transformer models have also achieved elite performance in other fields of artificial intelligence (AI), including computer vision, speech recognition and time series forecasting.  Transformer models are lightweight, efficient, and versatile – capable of natural language processing (NLP), image recognition and wireless signal processing as per this Softbank demo.

Significant throughput improvement:

  • Uplink channel interpolation using the new architecture improved uplink throughput by approximately 8% compared to the conventional CNN model. Compared to the baseline method without AI, this represents an approximately 30% increase in throughput, proving that the continuous evolution of AI models leads to enhanced communication quality in real-world environments.

Higher AI performance with ultra-low latency:

  • While real-time 5G communication requires processing in under 1 millisecond, this demonstration with the Transformer achieved an average processing time of approximately 338 microseconds, an ultra-low latency that is about 26% faster than the convolution neural network (CNN) [1.] based approach. Generally, AI model processing speeds decrease as performance increases. This achievement overcomes the technically difficult challenge of simultaneously achieving higher AI performance and lower latency.  Editor’s note: Perhaps this can overcome the performance limitations in ITU-R M.2150 for URRLC in the RAN, which is based on an uncompleted 3GPP Release 16 specification.

Note 1. CNN-based approaches to achieving low latency focus on optimizing model architecture, computation, and hardware to accelerate inference, especially in real-time applications. Rather than relying on a single technique, the best results are often achieved through a combination of methods. 

Using the new architecture, SoftBank conducted a simulation of “Sounding Reference Signal (SRS) prediction,” a process required for base stations to assign optimal radio waves (beams) to terminals. Previous research using a simpler Multilayer Perceptron (MLP) AI model for SRS prediction confirmed a maximum downlink throughput improvement of about 13% for a terminal moving at 80 km/h.*2

In the new simulation with the Transformer-based architecture, the downlink throughput for a terminal moving at 80 km/h improved by up to approximately 29%, and by up to approximately 31% for a terminal moving at 40 km/h. This confirms that enhancing the AI model more than doubled the throughput improvement rate (see Figure 1). This is a crucial achievement that will lead to a dramatic improvement in communication speeds, directly impacting the user experience.

The most significant technical challenge for the practical application of “AI for RAN” is to further improve communication quality using high-performance AI models while operating under the real-time processing constraint of less than one millisecond. SoftBank addressed this by developing a lightweight and highly efficient Transformer-based architecture that focuses only on essential processes, achieving both low latency and maximum AI performance. The important features are:

(1) Grasps overall wireless signal correlations
By leveraging the “Self-Attention” mechanism, a key feature of Transformers, the architecture can grasp wide-ranging correlations in wireless signals across frequency and time (e.g., complex signal patterns caused by radio wave reflection and interference). This allows it to maintain high AI performance while remaining lightweight. Convolution focuses on a part of the input, while Self-Attention captures the relationships of the entire input (see Figure 2).

(2) Preserves physical information of wireless signals
While it is common to normalize input data to stabilize learning in AI models, the architecture features a proprietary design that uses the raw amplitude of wireless signals without normalization. This ensures that crucial physical information indicating communication quality is not lost, significantly improving the performance of tasks like channel estimation.

(3) Versatility for various tasks
The architecture has a versatile, unified design. By making only minor changes to its output layer, it can be adapted to handle a variety of different tasks, including channel interpolation/estimation, SRS prediction, and signal demodulation. This reduces the time and cost associated with developing separate AI models for each task.

The demonstration results show that high-performance AI models like Transformer and the GPUs that run them are indispensable for achieving the high communication performance required in the 5G-Advanced and 6G eras. Furthermore, an AI-RAN that controls the RAN on GPUs allows for continuous performance upgrades through software updates as more advanced AI models emerge, even after the hardware has been deployed. This will enable telecommunication carriers to improve the efficiency of their capital expenditures and maximize value.

Moving forward, SoftBank will accelerate the commercialization of the technologies validated in this demonstration. By further improving communication quality and advancing networks with AI-RAN, SoftBank will contribute to innovation in future communication infrastructure.  The Japan based conglomerate strongly endorsed AI RAN at MWC 2025.

References:

https://www.softbank.jp/en/corp/news/press/sbkk/2025/20250821_02/

https://www.telecoms.com/5g-6g/softbank-claims-its-ai-ran-tech-boosts-throughput-by-30-

https://www.telecoms.com/ai/softbank-makes-mwc-25-all-about-ai-ran

https://www.ibm.com/think/topics/transformer-model

https://www.itu.int/rec/R-REC-M.2150/en

Softbank developing autonomous AI agents; an AI model that can predict and capture human cognition

Dell’Oro Group: RAN Market Grows Outside of China in 2Q 2025

Dell’Oro: AI RAN to account for 1/3 of RAN market by 2029; AI RAN Alliance membership increases but few telcos have joined

Dell’Oro: RAN revenue growth in 1Q2025; AI RAN is a conundrum

Nvidia AI-RAN survey results; AI inferencing as a reinvention of edge computing?

OpenAI announces new open weight, open source GPT models which Orange will deploy

Deutsche Telekom and Google Cloud partner on “RAN Guardian” AI agent

 

 

 

Softbank developing autonomous AI agents; an AI model that can predict and capture human cognition

Speaking at a customer event Wednesday in Tokyo, Softbank Chairman and CEO Masayoshi Son said his company is developing “the world’s first” artificial intelligence (AI) agent system that can autonomously perform complex tasks.  Human programmers will no longer needed. “The AI agents will think for themselves and improve on their own…so the era of humans doing the programming is coming to an end,”

Softbank estimated it needed to create around 1000 agents per person – a large number because “employees have complex thought processes.  The agents will be active 24 hours a day, 365 days a year and will interact with each other.”  Son estimates the agents will be at least four times as productive and four times as efficient as humans, and would cost around 40 Japanese yen (US$0.27) per agent per month. At that rate, the billion-agent plan would cost SoftBank $3.2 billion annually.

“For 40 yen per agent per month, the agent will independently memorize, negotiate and conduct learning. So with these actions being taken, it’s incredibly cheap,” Son said. “I’m excited to see how the AI agents will interact with one another and advance given tasks,” Son added that the AI agents, to achieve the goals, will “self-evolve and self-replicate” to execute subtasks.

Unlike generative AI, which needs human commands to carry out tasks, an AI agent performs tasks on its own by designing workflows with data available to it. It is expected to enhance productivity at companies by helping their decision-making and problem-solving.

While the CEO’s intent is clear, details of just how and when SoftBank will build this giant AI workforce are scarce. Son admitted the 1 billion target would be “challenging” and that the company had not yet developed the necessary software to support the huge numbers of agents. He said his team needed to build a toolkit for creating more agents and an operating system to orchestrate and coordinate them. Son, one of the world’s most ardent AI evangelists, is betting the company’s future on the technology.

According to Son,  the capabilities of AI agents had already surpassed PhD-holders in advanced fields including physics, mathematics and chemistry. “There are no questions it can’t comprehend. We’re almost at a stage where there are hardly any limitations,” he enthused. Son acknowledged the problem of AI hallucinations, but dismissed it as “a temporary and minor issue.”  Son said the development of huge AI data centers, such as the $500 billion Stargate project, would enable exponential growth in computing power and AI capabilities.

Softbank Group Corp. Chairman and CEO Masayoshi Son (L) and OpenAI CEO Sam Altman at an event on July 16, 2025. (Kyodo)

The project comes as SoftBank Group and OpenAI, the developer of chatbot ChatGPT, said in February they had agreed to establish a joint venture to promote AI services for corporations. Wednesday’s event included a cameo appearance from Sam Altman, CEO of SoftBank partner OpenAI, who said he was confident about the future of AI because the scaling law would exist “for a long time” and that cost was continually going down. “I think the first era of AI, the…ChatGPT initial era was about an AI that you could ask anything and it could tell you all these things,” Altman said.

“Now as these (AI) agents roll out, AI can do things for you…You can ask the computer to do something in natural language, a sort of vaguely defined complex task, and it can understand you and execute it for you,” Altman said. “The productivity and potential that it unlocks for the world is quite huge.”

……………………………………………………………………………………………………………………………………………..

According to the NY Times,  an international team of scientists believe that A.I. systems can help them understand how the human mind works. They have created a ChatGPT-like system that can play the part of a human in a psychological experiment and behave as if it has a human mind. Details about the system, known as Centaur, were published on Wednesday in the journal Nature.  Dr. Marcel Binz, a cognitive scientist at Helmholtz Munich, a German research center, is the author of the new AI study.

The researchers gathered a range of studies to train Meta’s LLaMA AI LLM— some that they had carried out themselves, and others that were conducted by other groups. In one study, human volunteers played a game in which they steered a spaceship in search of treasure. In another, they memorized lists of words. In yet another, they played a pair of slot machines with different payouts and figured out how to win as much money as possible. All told, 160 experiments were chosen for LLaMA to train on, including over 10 million responses from more than 60,000 volunteers.

References:

https://english.kyodonews.net/articles/-/57396#google_vignette

https://www.lightreading.com/ai-machine-learning/softbank-aims-for-1-billion-ai-agents-this-year

https://www.nytimes.com/2025/07/02/science/ai-psychology-mind.html

https://www.nature.com/articles/s41586-025-09215-4

AI spending is surging; companies accelerate AI adoption, but job cuts loom large

Big Tech and VCs invest hundreds of billions in AI while salaries of AI experts reach the stratosphere

Ericsson reports ~flat 2Q-2025 results; sees potential for 5G SA and AI to drive growth

Agentic AI and the Future of Communications for Autonomous Vehicle (V2X)

Dell’Oro: AI RAN to account for 1/3 of RAN market by 2029; AI RAN Alliance membership increases but few telcos have joined

Indosat Ooredoo Hutchison and Nokia use AI to reduce energy demand and emissions

Deloitte and TM Forum : How AI could revitalize the ailing telecom industry?

McKinsey: AI infrastructure opportunity for telcos? AI developments in the telecom sector

ZTE’s AI infrastructure and AI-powered terminals revealed at MWC Shanghai

Ericsson revamps its OSS/BSS with AI using Amazon Bedrock as a foundation

Big tech firms target data infrastructure software companies to increase AI competitiveness

SK Group and AWS to build Korea’s largest AI data center in Ulsan

OpenAI partners with G42 to build giant data center for Stargate UAE project

Nile launches a Generative AI engine (NXI) to proactively detect and resolve enterprise network issues

AI infrastructure investments drive demand for Ciena’s products including 800G coherent optics