NeoPhotonics CFP2-DCO Module Transmission of 400Gbps over 1500 km

Optical components maker NeoPhotonics said it was able to transmit data at 400 Gbps over a distance of 1500 km, using its Multi-Rate CFP2-DCO coherent pluggable transceivers, in a 75 GHz-spaced DWDM network.

The demonstration was done in NeoPhotonics Transmission System Testbed using production modules with enhanced firmware and 19 in-line erbium-doped fiber amplifiers (EDFA).

To achieve 1,500 km reach and a 400G data rate, the modules were operated at 69 Gbaud using 16 QAM modulation. NeoPhotonics added that the modules each consumed considerably less electrical power than line card systems operating at comparable data rates and distances. These 400G CFP2-DCO coherent pluggable transceiver modules use NeoPhotonics Indium Phosphide-based coherent components, along with its ultra-narrow linewidth tunable laser. These components include Class 40 CDM, Class 40 Micro-ICR and Nano-ITLA.

These 400G CFP2-DCO coherent pluggable transceiver modules use NeoPhotonics high performance Indium Phosphide-based coherent components, along with its ultra-narrow linewidth tunable laser. These components are all shipping in high volume into multiple coherent system applications, and include:

  • Class 40 CDM: NeoPhotonics Class 40, polarization multiplexed, quadrature coherent driver modulator (CDM) features a co-packaged InP modulator with a linear, high bandwidth, differential driver, and is designed for low V-Pi, low insertion loss and a high extinction ratio. The compact package is designed to be compliant with the form factor of the OIF Implementation Agreement #OIF-HB-CDM-01.0.
  • Class 40 Micro-ICR: NeoPhotonics Class 40 High Bandwidth Micro-Intradyne Coherent Receiver (Micro-ICR) is designed for >60 GBaud symbol rates. The compact package is designed to be compliant with the OIF Implementation Agreement OIF-DPC-MRX-02.0.
  • Nano-ITLA: NeoPhotonics Nano-ITLA is based on the same proven and reliable high performance external cavity architecture as NeoPhotonics’ industry leading Micro-ITLA and maintains comparable ultra-narrow linewidth, low frequency phase noise and the low power consumption in a compact package approximately one half the size.

NeoPhotonics Multi-Rate CFP2-DCO modules are fully qualified. Telcordia testing has been successfully extended to 2000 hours of High Temperature Operating Life (HTOL) testing, showing the high reliability and performance of NeoPhotonics CFP2-DCO platform.

Multi-Rate CFP2-DCO modules supporting Metro (64G baud/DP-16 QAM) and Long Haul (64 G baud/DP-QPSK) applications are shipping in General Availability.

“Coupled with our recent demonstration of 800 km 400 Gbps transmission using our 400ZR+ QSFP-DD, our CFP2-DCO 400G 1500 km transmission brings the use of pluggable modules in regional and long haul networks closer to reality,” said Tim Jenks, Chairman and CEO of NeoPhotonics. “The ability to implement a long haul coherent transponder in the size and power envelope of a pluggable module is a testament to the progress that has been made in photonic integration and DSP development, and has the potential to be a game changer for telecom as well as DCI networks,” concluded Mr. Jenks.

June 8, 2021 Update:

NeoPhotonics announced that its QSFP-DD and OSFP 400ZR pluggable modules are in General Availability and shipping to customers.

These products utilize NeoPhotonics Silicon Photonics Coherent Optical Subassembly (COSA) and low power consumption, ultra-narrow linewidth Nano-ITLA tunable laser, combined with the latest generation of 7 nm node DSP (digital signal processing) technology, to provide full 400ZR transmission in a standard data center QSFP-DD or OSFP form factor that can be plugged directly into switches and routers. This greatly simplifies and cost reduces data center interconnect (DCI) networks by enabling the elimination of a layer of network equipment and a set of short reach client-side transceivers, and paves the way for similar benefits in metro networks.

These 400G modules are compliant with the OIF 400ZR Implementation Agreement and are interoperable with other manufacturers’ 400ZR modules that utilize a standard forward error correction (FEC) encoder and decoder.  These modules are capable of tuning to and transmitting within 75 GHz or 100GHz spaced wavelength channels, as specified in the OIF agreement, and operate in 400ZR mode for Cloud DCI applications.  For longer metro reaches, the modules are designed to support 400ZR+ modes.

NeoPhotonics QSFP-DD and OSFP modules have completed reliability qualification and have passed 2000 hours of High Temperature Operating Life (HTOL) as well as other critical tests per Telcordia requirements.

The company recently announced that it had used its QSFP-DD coherent pluggable transceiver to transmit at a 400 Gbps data rate over a distance of 800 km in a 75GHz-spaced DWDM system with more than 3.5 dB of OSNR margin in the optical signal while remaining within the power consumption envelope of the QSFP-DD module’s power specification.

“This demonstration of high data rates over longer distances shows the potential of these game-changing products, and we expect to see increasing deployment of coherent pluggable modules with different use cases, from data center interconnect to metro and regional applications as well as 5G wireless backhaul,” said Tim Jenks, Chairman and CEO of NeoPhotonics.  “Since the beginning of coherent transmission, NeoPhotonics has been at the forefront in meeting the volume needs of our customers, as is indicated by our recent announcement that we had shipped a cumulative total of more than two million ultra-narrow linewidth tunable lasers,” concluded Mr. Jenks.

About NeoPhotonics:

NeoPhotonics is a leading developer and manufacturer of lasers and optoelectronic solutions that transmit, receive and switch high-speed digital optical signals for Cloud and hyper-scale data center internet content provider and telecom networks. The Company’s products enable cost-effective, high-speed over distance data transmission and efficient allocation of bandwidth in optical networks. NeoPhotonics maintains headquarters in San Jose, California and ISO 9001:2015 certified engineering and manufacturing facilities in Silicon Valley (USA), Japan and China. For additional information visit www.neophotonics.com.

References:

NeoPhotonics demonstrates 90 km 400ZR transmission in 75 GHz DWDM channels enabling 25.6 Tbps per fiber

NeoPhotonics completed experimental verification of the transmission of 400Gbps data over data center interconnect (DCI) link in a 75 GHz spaced Dense Wavelength Division Multiplexing (DWDM) channel.

NeoPhotonics achieved two milestones using its interoperable pluggable 400ZR [1.] coherent modules and its specially designed athermal arrayed waveguide grating (AWG) multiplexers (MUX) and de-multiplexers (DMUX).

Note 1. ZR stands for Extended Reach which can transmit 10G data rate and 80km distance over single mode fiber and use 1550nm lasers.

  • Data rate per channel increases from today’s non-interoperable 100Gbps direct-detect transceivers to 400Gbps interoperable coherent 400ZR modules.
  • The current DWDM infrastructure can be increased from 32 channels of 100 GHz-spaced DWDM signals to 64 channels of 75 GHz-spaced DWDM signals.
  • The total DCI fiber capacity can thus be increased from 3.2 Tbps (100Gbps/ch. x 40 ch.) to 25.6 Tbps (400Gbps/ch. x 64 ch.), which is a total capacity increase of 800 percent.

NeoPhotonics said its technology overcomes multiple challenges in transporting 400ZR signals within 75 GHz-spaced DWDM channels.

The filters used in NeoPhotonics MUX and DMUX units are designed to limit ACI [2.] while at the same time having a stable center frequency against extreme temperatures and aging.

Note 2.  ACI stands for Adjacent Channel Interface; it also can refer to Application Centric Infrastructure.

What is 400ZR? - Ciena

NeoPhotonics has demonstrated 90km DCI links using three in-house 400ZR pluggable transceivers with their tunable laser frequencies tuned to 75GHz spaced channels, and a pair of passive 75GHz-spaced DWDM MUX and DMUX modules designed specifically for this application. The optical signal-to-noise ratio (OSNR) penalty due to the presence of the MUX and DMUX and the worst-case frequency drifts of the lasers, as well as the MUX and DMUX filters, is less than 1dB. The worst-case component frequency drifts were applied to emulate the operating conditions for aging and extreme temperatures, the company said in a press release.

“The combination of compact 400ZR silicon photonics-based pluggable coherent transceiver modules with specially designed 75 GHz channel spaced multiplexers and de-multiplexers can greatly increase the bandwidth capacity of optical fibers in a DCI application and consequently greatly decrease the cost per bit,” said Tim Jenks, Chairman and CEO of NeoPhotonics. “These 400ZR coherent techniques pack 400Gbps of data into a 75 GHz wide spectral channel, placing stringent requirements on the multiplexers and de-multiplexers. We are uniquely able to meet these requirements because we do both design and fabrication of planar lightwave circuits and we have 20 years of experience addressing the most challenging MUX/DMUX applications,” concluded Mr. Jenks.

About NeoPhotonics

NeoPhotonics is a leading developer and manufacturer of lasers and optoelectronic solutions that transmit, receive and switch high-speed digital optical signals for Cloud and hyper-scale data center internet content provider and telecom networks. The Company’s products enable cost-effective, high-speed over distance data transmission and efficient allocation of bandwidth in optical networks. NeoPhotonics maintains headquarters in San Jose, California and ISO 9001:2015 certified engineering and manufacturing facilities in Silicon Valley (USA), Japan and China. For additional information visit www.neophotonics.com.

References:

https://www.neophotonics.com/press-releases/?newsId=11856

https://www.telecompaper.com/news/neophotonics-demonstrates-90-km-400zr-transmission-in-75-ghz-dwdm-channels-enabling-256-tbps-per-fibre-capacity–1343096