Samsung announces 5G NTN modem technology for Exynos chip set; Omnispace and Ligado Networks MoU

Samsung Electronics, a leader in advanced semiconductor technology, today announced that it has secured standardized 5G non-terrestrial networks (NTN) [1.] modem technology for direct communication between smartphones and satellites, especially in remote areas. Samsung plans to integrate this technology into the company’s Exynos modem solutions, accelerating the commercialization of 5G satellite communications and paving the way for the 6G-driven Internet of Everything (IoE) era.  That’s noteworthy considering Samsung’s latest flagship smartphone, the Galaxy S23, does not use Samsung’s Exynos platform and instead only uses Qualcomm’s Snapdragon chipset.

Note 1.  There are no ITU or ETSI standards for 5G NTN– only for 5G terrestrial networks.  It is not even under consideration for the next revision o the 5G RAN standard– ITU-R M.2150-1.

NTN is a communications technology that uses satellites and other non-terrestrial vehicles to bring connectivity to regions that were previously unreachable by terrestrial networks, whether over mountains, across deserts or in the middle of the ocean. It will also be critical in assuring operability in disaster areas and powering future urban air mobility (UAM) such as unmanned aircraft and flying cars.

Source: Samsung

“This milestone builds on our rich legacy in wireless communications technologies, following the introduction of the industry’s first commercial 4G LTE modem in 2009 and the industry’s first 5G modem in 2018,” said Min Goo Kim, Executive Vice President of CP (Communication Processor) Development at Samsung Electronics. “Samsung aims to take the lead in advancing hybrid terrestrial-NTN communications ecosystems around the world in preparation for the arrival of 6G.”

By meeting the latest 5G NTN specifications defined by the 3rd Generation Partnership Project (3GPP Release 17), [2.] Samsung’s NTN technology will help ensure interoperability and scalability among services offered by global telecom carriers, mobile device makers and chip companies.

Note 2.  3GPP Release 17 contains specs for 5G-NR over Non terrestrial Networks (NTN) and NB-IoT over NTN,

Impacts on 5GC of Satellite NG-RAN used as new RAN 3GPP access

In 3GPP Rel-17, only direct access with transparent satellite is considered, as shown in following figure:

Source: 3GPP

……………………………………………………………………………………………………………………………………………..

For highly reliable NTN communication with low Earth orbit (LEO) satellites, Samsung has developed and simulated 5G NTN standard-based satellite technology using its Exynos Modem 5300 reference platform to accurately predict satellite locations and minimize frequency offsets caused by the Doppler shift. Based on this technology, Samsung’s future Exynos modems will support two-way text messaging as well as high-definition image and video sharing.  That would be an important development considering today’s phone-to-satellite services generally support only slow-speed emergency messaging (e.g. Apple iPhone 14). An offering that supports high-bandwidth services like video calling would presumably require far more satellites than today’s services use – and it could also pose a challenge to terrestrial mobile network operators looking to make profits from offering high-bandwidth services in remote or rural areas.

Additionally, Samsung said it plans to secure a standardized NB-IoT NTN technology for use in its next-generation modem platforms. With integrated satellite connectivity, Samsung’s NB-IoT solutions will eliminate the need for a separate high-power wireless antenna chip inside smartphones, providing mobile device makers with much greater design flexibility.

……………………………………………………………………………………………………………………………………………………………….

Samsung has not disclosed when the company might begin offering satellite services in its 5G NTN equipped phones, how much the service might cost, and which satellite operators might support the offering.

…………………………………………………………………………………………………………………………………………………………….

In a related development, Omnispace and Ligado Networks today announced a new Memorandum of Understanding (MoU) to combine their respective spectrum holdings in order to offer “space-based, direct-to-device (D2D) solutions for global voice, text and data connectivity.

The companies pledged to merge Ligado’s 40MHz of L-band satellite spectrum in the U.S. and Canada with Omnispace’s 60MHz of S-band satellite spectrum. “The combination of L- and S-band spectrum is a unique opportunity to expand the ecosystem of D2D applications and technologies, enhance user experience and extend service globally. For consumer smartphones, the offering will have enough bandwidth to go beyond emergency satellite texting by offering ubiquitous roaming mobile coverage with two-way voice, messaging and data capabilities,” according to the companies’ press release.

However, there are plenty of obstacles to the companies’ ambitions. For example, Ligado has spent years working to free its spectrum of interference concerns, and its financial footing remains a  question. “Ligado has no cash and an overwhelming debt load,” tweeted analyst Tim Farrar with TMF Associates following the announcement from Ligado and Omnispace.

References:

https://news.samsung.com/global/samsung-electronics-introduces-standardized-5g-ntn-modem-technology-to-power-smartphone-satellite-communication

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3937

https://www.3gpp.org/specifications-technologies/releases/release-17

Omnispace and Ligado Networks Join Forces to Create Largest Portfolio of Licensed, Satellite Spectrum for Global Direct-to-Device Voice, Text and Data Connectivity