LPWAN to Application standardization within the IETF

By Juan Carlos Zuniga, Sigfox, IETF Internet Area Co-Chair, (edited by Alan J Weissberger)

Introduction:

Amongst the plethora of different Internet of Things (IoT) technologies [see Addendum], Low Power Wide Area Networks (LPWANs) [1] offer mature and well-established solutions for the Industrial Internet of Things (IIoT).

Note 1.  A LPWAN is a type of wireless telecommunication wide area network designed to allow long range communications with low power consumption, low cost interface and a relatively low bit rate for the IIoT.  There are many types of LPWANs.  Some like LTE-M and NB-IoT use licensed spectrum, while others such as Sigfox and LoRaWAN use unlicensed spectrum.

LPWANs enables IoT systems to be designed for use cases that require devices to send small amounts of data periodically over often-remote networks that span many miles and use battery-powered devices that need to last many years.

LPWANs achieve those attributes by having the IoT devices (“things”) send only small packets of information periodically or even infrequently—status updates, reports, etc.—upon waking from an external trigger or at a preprogrammed time interval.

………………………………………………………………………………………………

In order to enable these IIoT connectivity solutions, a common standard is needed to allow the various types of LPWANs to communicate with applications using a common language.  For this to occur, each network must have the ability to connect to the Internet.  However, due to the severely restrictive nature of LPWANs, the abilities of Internet Protocols, specifically IPv6, cannot sufficiently meet the needs of these networks.

To overcome these issues, the Internet Engineering Task Force (IETF) chartered the LPWAN working group (WG) in 2016 to identify common functionality needs across LPWANs and to standardize the protocols that could enable these functionalities across the various networks.

The goal of the IETF LPWAN WG is to converge the diverse LPWAN radio technologies toward a common hourglass model that will provide users with a standard management strategy across networks and enable common Internet-based services to the applications.

To achieve this goal, the IETF LPWAN WG has produced the Static Context Header Compression and Fragmentation (SCHC) [2] specification, an ultralightweight adaptation layer uniquely designed to support the extremely restricted communication resources of LPWAN technologies.

Note 2.  SCHC is expected to become a recognized acronym like several  other IETF protocols (e.g. HTTP, TCP, DHCP, DNS, IP, etc.).  Please see illustration below of SCHC Architecture.

………………………………………………………………………………………………….

SCHC will soon be published as a new IETF RFC.  Again, it’s objective is to achieve interoperability across the leading LPWANs, including Sigfox, LoRaWAN, NB-IoT and IEEE 802.15.4w(LPWA) [3].

Note 3.  IEEE 802.15.4w or LPWA

Low Power Wide Area Network (LPWAN) extension to the IEEE Std 802.15.4 LECIM PHY layer to cover network cell radii of typically 10-15km in rural areas and deep in-building penetration in urban areas. It uses the LECIM FSK (Frequency Shift Keying) PHY modulation schemes with extensions to lower bit-rates (e.g. payload bit-rate typically < 30 kb/s). Additionally, it extends the frequency bands to additional sub-GHz unlicensed and licensed frequency bands to cover the market demand. For improved robustness in channels with high levels of interference, it defines mechanisms for the fragmented transmission of Forward Error Correction (FEC) code-words, as well as time and frequency patterns for the transmission of the fragments. Furthermore, it defines lower code rates of the FEC in addition to the K=7 R=1/2 convolutional code. Modifications to the Medium Access Control (MAC) layer, needed to support this PHY extension, are defined.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Why do LPWANs need their own interoperability standard?

The common characteristics of LPWANs include a power-optimized radio network, a simple star network topology, frame sizes in the order of tens of bytes transmitted a few times per day at ultra-low speeds, and a mostly upstream transmission pattern that allows devices to spend most of their time in sleep mode. These characteristics lead to ultra-long-range networks that allow for connected devices to have an extremely long battery life and be sold at a very low cost, enabling simple and scalable deployments.

LPWANs are especially well-suited for deployments in environments where battery recharging or swapping is not an option and where only a very low rate of data reporting is required. Also, LPWAN networks are fundamentally different than other networks, as they have been designed to handle infrequent message exchanges of payloads as small as approximately 10 bytes.

To manage these very specific constraints, the IETF has developed the SCHC adaptation layer, which is located between the network layer (e.g. IPv6) and the underlying LPWAN radio technology. SCHC comprises two independent sublayers – header compression and fragmentation – which are critical to meeting the specific characteristics of LPWANs.

The SCHC header compression sublayer has been tailored specifically for LPWAN technologies, and it is capable of compressing protocols such as IPv6, UDP and CoAP. It relies on the infrequent variability of LPWAN applications to define static contexts that are known a priori to both protocol end points.

The SCHC fragmentation sublayer, on the other hand, offers a generic approach to provide both data reliability and the capability of transmitting larger payload sizes over the extremely constrained LPWAN packet sizes and the extremely severe message rate limitations. Even though the fragmentation sublayer mechanisms have been designed to transport long IPv6 packets, they can equally be applied to non-IP data messages and payloads, as the functionality can be implemented independent of the header compression.

In order to be fully operational across LPWAN technologies, SCHC has been developed by the IETF under a generic and flexible approach that aims to address the common and unique requirements of these networks. The SCHC specification offers enough flexibility to optimize the parameter settings that need to be used over each LPWAN technology.

The IETF LPWAN WG is now working on the development of different SCHC profiles optimized for each individual LPWAN technology, including Sigfox, LoRaWAN, NB-IoT and IEEE 802.15.4w. Future work also includes definition of data models to represent the static contexts, as well as operation, administration and management (OAM) tools for LPWANs.

Here’s an illustration of the Sigfox SCHC:

…………………………………………………………………………………………………..

From the early stage IETF Sigfox SCHC profile spec:

The Static Context Header Compression (SCHC) specification describes a header compression scheme and a fragmentation functionality for Low Power Wide Area Network (LPWAN) technologies.
SCHC offers a great level of flexibility that can be tailored for different LPWAN technologies. 
The present (early stage) document provides the optimal parameters and modes of operation when SCHC is implemented over a Sigfox LPWAN.

………………………………………………………………………………..

Addendum –by Alan J Weissberger

IEEE definition of IoT:

“An IoT system is a network of networks where, typically, a massive number of objects, things, sensors or devices are connected through communications and information infrastructure to provide value-added services via intelligent intelligent data processing processing and management management for different different applications (e.g. smart cities, smart health, smart grid, smart home, smart transportation, and smart shopping).”
— IEEE Internet of Things Journal

IoT communications over LPWANs should be:
 Low cost,
 Low power,
 Long battery life duration,
 High number of connections,
 Low bitrate,
 Long range,
 Low processing capacity,
 Low storage capacity,
 Small size devices,
 Simple network architecture and protocols

Also see IETF draft RFC 8376  LPWAN Overview

……………………………………………………………………………………………….

Sigfox Network Characteristics:

 First LPWAN Technology
 The physical layer based on an Ultra-Narrow band wireless modulation
 Proprietary system
 Low throughput ( ~100 bps)
 Low power
 Extended range (up to 50 km)
 140 messages/day/device
 Subscription-based model
 Cloud platform with Sigfox –defined API for server access
 Roaming capability

………………………………………………………………………………………

References:

https://www.ackl.io/blog/ietf-standardization-working-group-enabling-ip-connectivity-over-lpwan

https://techblog.comsoc.org/2017/10/25/lora-wan-and-sigfox-lead-lpwans-interoperability-via-compression/

https://tools.ietf.org/html/draft-ietf-lpwan-schc-over-sigfox-00

 

2019 IoT World: Market Research from Ovum & Heavy Reading; LPWAN Market to be >$65 billion by 2025

I.  IoT World May 14, 2019 presentation by Alexandra Rehak, Practice Leader IoT, Ovum and Steve Bell,  Sr. Analyst, Heavy Reading.

Edited by Alan J Weissberger

Ovum Forecasts:

  • IoT devices will grow to 21.5bn by 2023, while revenue will nearly double to $860bn.
  • Key trends driving IoT evolution in 2019: enabling technologies, new business models, (industry) verticalization, big data & analytics, new tools, e.g. AI/ML.
  • Drivers for IoT deployment still focus on efficiency and customer
    experience, but many enterprises are looking for new revenue.  Top 4 IoT drivers are to improve: operation efficiency, customer engagement & experience, strategic decision making based on actionable insights, new revenue streams from value added products/services.
  • The biggest enterprise IoT challenge is data – how to secure it, how
    to derive analytics value from it, how to integrate it.  Top 3 barriers to enterprise IoT deployment: data security & privacy (has been top concern for last 10+ years), data analytics skills/data scientists, difficult to integrate with existing IT (and likely OT too), complexity of technical implementation (and systems integration).

Enabling Technologies:

 1.  LPWAN will be a key enabler for cheaper, massive scale IoT
connectivity – and 2019 will be the year it finally takes off (Alan has heard that for several years now!  However, NB-IoT and LoRa are growing very quickly in 2019.)

• <$1 per month connectivity

• <$10 modules

• Low bandwidth, long battery life, extended coverage characteristics

• Use cases: smart cities, consumer IoT, asset monitoring, environmental monitoring

•  NB-IoT, LTE-M, LoRa, Sigfox are the big four LP WANs

2.  5G enables enhanced IoT digital capabilities:

▪ High bandwidth services – eg UHD video
▪ Critical applications, which require low latency – e.g., autonomous driving, industrial applications (3GPP Release 16 and IMT 2020 approved standard)
▪ High bandwidth, low latency services – e.g., augmented reality
▪ Information intensive routines, which require low latency performance– eg smart advertising, True AI (is what we have today fake AI?)
▪ Services that can – but don’t readily – work over 4G, e.g., mobile video conferencing

3.  Edge and the IoT opportunity:

Virtualized services (including gateways and vCPE), FOG nodes, life cycle management, linking silos (systems and data), many different applications, data analytics, AI/ML/DL, threat intelligence, device management services, security credential management.

4. Blockchain is still early-stage as an IoT enabler, but promising use
cases are emerging

  • Authentication of devices joining IoT network
  • Supply chain management and verification
  • Smart grid microcontracts
  • Autonomous vehicles

Blockchain will not suit all IoT security and contract requirements.  That’s because it’s: Complex, heavy processing load, not yet fully commercialized, private blockchain space is fragmented, need for supporting regulatory/legal frameworks Autonomous vehicles.

………………………………………………………………………………………………………….

Industrial IoT (IIoT):

It’s becoming a core focus for the market – and an important testbed for 5G. Requires ultra reliable and very low latency.

IIoT is moving beyond efficiency gains:
• IIoT will grow in importance in 2019
• Drivers: efficiency and margins, competitive positioning, ‘job lots of one’
• Challenges: IT/OT integration, security, traditional business models
• Applications: simple asset tracking/monitoring to complex propositions (predictive maintenance, digital twin, robotics, autonomy)
• IoT, 5G, and AI form virtuous circle for industrial sector and factory
campuses
Private LTE as another enabler (Steve Bell of Heavy Reading was very optimistic on this during the Thursday morning, May 17th round table discussion on 5G and LTE for IoT).  So is this author!

……………………………………………………………………………………………………..

IoT value chain: evolution from ‘platform providers’ to ‘end-to-end
solution providers,’ simplifying the buying process.  An end-to-end solution requires: sensors/devices/hardware, connectivity, platform (connectivity and device control/management), applications, analytics, integration.

Value chain evolution is also driving IoT business model innovation, for both enterprises and providers.  For connectivity, this includes: flat rate IoT connectivity pricing (e.g. $5 per year), bundled IoT device connectivity, alternative IoT connectivity providers (e.g. Sigfox, Zigbee mesh, BT mesh, etc), private LTE (licensed frequencies so not contention for bandwidth as with WiFi).

…………………………………………………………………………………………………….

Summary and Recommendations:

  • Enabling IoT technologies: 5G, LPWAN, edge, blockchain – developing
    quickly – but shouldn’t be seen in isolation.
  • IoT data usage & security: Focus of customer concern – stronger support,
    simpler tools needed to deliver value through analytics, eventually AI.
  • Vertical strategies: Industries face significant disruption – understand
    how IoT will help your customer to transform and address these shifts.
  • New IoT business models: increasingly sophisticated – end customers
    very interested, but need help to understand them, manage risk.

……………………………………………………………………………………………………………

II.  LPWAN Market Forecast from Global Market Insights, Inc.

The LPWAN market is set to grow from its current market value of more than $1.5 billion (€1.3 billion) to over $65 billion (€58.2 billion) by 2025, according to a new research report by Global Market Insights, Inc.

Low power wide area network market growth is driven by the growing deployment of LPWA technologies, including LoRa, NB-IoT, and LTE-M, offering a wide range of connectivity options to enterprises. These technologies provide broader network coverage and better battery life to connect various devices. LPWAN networks are becoming very popular among enterprises to support various IoT use cases for verticals including healthcare, manufacturing, agriculture, logistics, and utilities.

For instance, the rising penetration of Industrial IoT (IIoT) in the manufacturing industry has increased the demand for LPWA technologies, particularly NB-IoT and LTE-M, to enable reliable machine-to-machine communication. Industrial IoT connections are expected to increase nearly five times between 2016 and 2025, from 2.4 billion to around 14 billion connections.

By deploying LPWAN connections, manufacturing companies can increase their operational efficiencies to drive high productivity. Another factor fuelling the LPWAN market growth is increasing investments by companies in LPWAN technologies. For instance, in June 2017, Cisco contributed to a US$ 75 million Series D funding round for Actility, a LPWAN startup. Cisco’s investments in Actility enabled it to accelerate the development of IoT solutions.

The LPWAN platforms held a major market share of over 70% in 2018 owing to the deployment of various platforms, including NB-IoT, LoRaWAN, Sigfox, and LTE-M. Massive IoT deployments in various industry verticals, including utilities, manufacturing, transportation, and healthcare, has increased the demand for LPWAN platforms to support connected devices requiring low power consumption, long range, and low costs. Among all the platforms, LoRaWAN platforms held the highest market share of over 50% in 2018 as they use unlicensed spectrum and are best suited for applications that generate low traffic and require low-cost sensors.

In the services segment, the managed services segment is expected to hold low power wide area network market share of around over 30% in 2025. Managed services enable organisations to accelerate the deployment of LPWAN and reduce the time & expenses spent on training the IT staff. The on-premise deployment model is expected to grow at a CAGR of over 50% over the projected timeline. The demand for this deployment model will increase as it enables organisations to build & manage their own LPWAN for IoT-based applications.

 

References:

Ovum’s latest video on IoT with Alexandra Rehak: https://ovum.informa.com/products-and-services/research-services/internet-of-things

https://ovum.informa.com/resources/product-content/lpwan-tracker-update-lorawan-leads-live-network-deployments-iot002-000005

http://images.intelligence.informa.com/Web/InformaUKLimited/%7B1307c76d-8210-41e4-bec3-ff2db28b0403%7D_Research_Agenda_2019_-IoT.pdf

https://www.gminsights.com/industry-analysis/low-power-wide-area-network-lpwan-market

https://www.iot-now.com/2019/05/22/96056-low-power-wide-area-network-market-valued-us65bn-2025-gmi-report-says/

 

GSA: 102 Network Operators in 52 Countries have Deployed NB-IoT and LTE-M LPWANs for IoT

The Global mobile Suppliers Association (GSA) reported on March 27th that 102 operators in 52 countries have now either deployed or launched at least one of the NB-IoT or LTE-M technologies.  Of these, 20 operators in 19 countries had deployed or launched both NB-IoT and LTE-M,

Narrowband IoT (NB-IoT) and LTE-M are low power wide area network (LPWAN) radio technology specifications developed by the 3GPP to enable a wide range of cellular devices and services, in particular IoT and machine-to-machine applications.  As of the end of March 2019, GSA had identified:

  • 149 operators in 69 countries investing in one or both of the NB-IoT and LTE-M network technologies
  • 22 countries are now home to deployed/launched NB-IoT and LTE-M networks
  • 28 countries are home to deployed/launched NB-IoT networks only, and two countries are home to deployed/launched LTE-M networks only
  • 140 operators in 69 countries investing in NB-IoT networks; of which 88 operators in 50 countries had deployed/launched their networks
  • 60 operators in 35 countries investing in LTE-M networks; of which 34 operators in 24 countries had deployed/launched their network

“The global momentum behind LPWAN deployments is testament to the revenue opportunities which operators are racing to win and monetise in a diverse range of new IoT applications. Significantly, it can also be seen as a precursor to operators replacing legacy M2M services such as GPRS-based trackers and preparing the ground for the eventual switch-off of their 2G networks,” commented Joe Barrett, President, GSA.

The latest data on NB-IoT and LTE-M devices, is fully available to all employees of GSA Executive, Ordinary Member companies and GSA Associates who subscribe to GSA Analyser for Mobile Broadband Devices (GAMBoD) service. The report can be found at https://gsacom.com/paper/global-narrowband-iot-lte-m-networks-march-2019/

GAMBoD is a unique search and analysis tool that has been developed by GSA to enable searches of mobile broadband devices and global data on Mobile Broadband Networks, Technologies and Spectrum (NTS). The LTE and 5G Devices database can be searched by supplier, form factor, features, peak downlink and uplink speeds, and operating frequency. Results are presented as a list or in charts. Charts may be inserted into documents or presentations, subject to accreditation of GSA as the source. 

About GSA:

GSA is the voice of the mobile vendor ecosystem representing companies engaged in the supply of infrastructure, semiconductors, test equipment, devices, applications and mobile support services. GSA actively promotes the 3GPP technology road-map – 3G, 4G, 5G – and is a single source of information resource for industry reports and market intelligence. The GSA Executive board comprises of Ericsson, Huawei, Intel, Nokia, Qualcomm, and Samsung with representation for other members including Viavi Solutions and ZTE.

GSA Membership is open to all companies participating in the mobile ecosystem and operators, companies and government bodies can get access to GAMBoD by subscribing as an Associate.  More details can be found at https://gsacom.com/gsa-membership

Rogers Communications to launch national LTE-M network for IoT in Canada

Rogers plan to launch an LTE Cat M1 network (LTE-M) to help businesses connect and track their assets in real time – using solutions such as logistics tracking, alarm monitoring, and smart metering. LTE-M will connect fixed and mobile low-power IoT devices to carry critical information over long distances, with longer battery life and better network coverage in hard to reach areas. This investment in LTE-M will make IoT solutions more accessible for Canadian businesses, to help them innovate and save money and time.   Network speeds and pricing weren’t announced.

LTE-M is used for fixed and mobile low-power IoT devices sending/receiving data over long distances, particularly for devices needing longer battery life and better network coverage in hard to reach areas.  Telecommunications companies have a long list of potential IoT uses including monitoring pipelines, tracking tools, pallets and factory equipment, home smart meters, monitoring waste bins, street lighting sensors and building infrastructure (HVAC).

“As leaders in IoT, we are committed to supporting our customers as they explore the capabilities and benefits available through Rogers rapidly growing IoT ecosystem,” said Dean Prevost, President, Enterprise, Rogers Communications. “With the launch of LTE-M, we are empowering the adoption of reliable, low cost, and secure IoT solutions that support a variety of use cases such as asset tracking, smart cities, utilities, transportation, and supply chain management.”

The national rollout of LTE-M will start with an initial launch in Ontario by the end of 2018, followed by additional provinces throughout 2019, and a full national rollout completed by 2020. This investment is a stepping stone in Rogers multi-year technology plan to bring 5G to Canadians with its network partner, Ericsson.

“Rogers has a strong history of innovation in IoT. LTE-M continues that leadership and is a key part of our plan towards building a 5G-ready network,” said Jorge Fernandes, Chief Technology Officer, Rogers Communications. “LTE-M will bring Massive IoT to life – a market with tremendous scale for connected devices – and will fundamentally improve how Canadian businesses and cities operate.”

LTE-M is also a great alternative option for all machine-to-machine connections that are still using the 2G network. As LTE-M is rolled out, Rogers will provide its customers with clear and simple options to enhance their service experience when they choose to migrate and upgrade their 2G IoT devices and benefit from all the new capabilities provided by LTE-M. In addition, LTE-M will also enable future consumer IoT applications such as wearables, monitoring and tracking solutions.

“IoT is now a mainstream tool of Canadian businesses, with 81% of medium and large-sized Canadian organizations using IoT solutions today, up from 70% last year[1],” said Nigel Wallis, Vice President, Internet of Things and Industry Research, IDC Canada. “The development of industry-specific IoT solutions addresses unique business needs, like smart utilities and smart asset tracking. Low-power wide area networks (LPWAN) enable businesses to re-think traditional operations practices, and to innovate in ways they would not have attempted before.”

Rogers’ LTE-M website notes that while an IoT device can be installed in an underground parking garage, thick concrete walls can impact coverage, An LTE-based network will help.

The site says LTE-M will offer enhanced wireless coverage; low device cost, because devices for that network are less expensive than current devices; less power drain and extended battery life. LTE-M also can handoff from a Wi-Fi to a cellular network, making it practical for mobile asset tracking needs such as monitoring shipping containers, fleet vehicles or people (for example, patient monitoring). LTE-M supports voice recognition, which is important for alarms and security applications.

Rogers is expanding its portfolio of IoT solutions to meet the needs of Canadian businesses and municipalities. IoT solution providers who are interested in working with Rogers, or participating in LTE-M field trials are invited to submit an application here.

To learn more about LTE-M, visit the Rogers Business Forum.

About Rogers:
Rogers is a leading diversified Canadian communications and media company. We are Canada’s largest provider of wireless communications services and one of Canada’s leading providers of cable television, high-speed Internet, information technology, and telephony services to consumers and businesses. Through Rogers Media, we are engaged in radio and television broadcasting, sports, televised and online shopping, magazines, and digital media. Our shares are publicly traded on the Toronto Stock Exchange (TSX: RCI.A and RCI.B) and on the New York Stock Exchange (NYSE: RCI).

1 State of IoT Adoption in Canada: 2018, IDC Canada

SOURCE Rogers Communications Canada Inc

CONTACT: media@rci.rogers.com, 647-747-5118

IoT for Smart Cities: LoRa with Semtech Silicon as a leading LPWAN

Various wireless LANs and WANs are necessary to linking all the Internet of Things (IoT) devices that will give rise to smart cities.  Some of those wireless networks include: Bluetooth Low Energy, ZigBee, Wi‑Fi and cellular technologies are all established, but low power wide area (LPWA) networking technologies, such as Sigfox, LoRa, LTE-M and NB-IoT are emerging as IoT disruptors.

According to analyst ON World, there could be as many as 2.6 billion connected, wireless IoT devices for smart cities, with LPWA networks suitable for 60% of those connections.

 

 

LPWA networks are increasingly used outdoors in parking, utilities, pollution monitoring and other applications that require wireless communication via always-on nodes in a network.

“Different wireless protocols have different benefits, but where the use case is moving sensor data or small amounts of data, LoRa is designed specifically for that,” says Dave Armour, strategic marketing manager for wireless products at Semtech. The company licenses the proprietary LoRa technology and is a founder member of the LoRa Alliance.

LoRa is based on a transceiver design and uses an unlicensed spectrum, allowing users the option to deploy their own gateways or have their own devices communicate with third party networks, explains Samir Hennaoui, product manager, LPWA at Murata Europe. “Some cities have deployed networks based on LoRa that are free to access and service providers have appeared that rent access to their gateways,” he says.

A spread-spectrum modulation scheme supports data rates from 300bit/s to 50kbit/s to overcome the problem of interference in the shared RF band.

Sigfox, a low-cost, wide area M2M technology developed in 2010 by a French company of the same name, probably has the largest market share for LPWA networks today.  Data rates for this technology are 10bit/s to 1kbit/s.

The main differences between the two are range – Sigfox uses narrowband transmission to achieve up to 50km and LoRa has a range of up to 30km – and that LoRa is bi-directional, whereas Sigfox is not.

“Range depends on a number of things,” concedes Armour. With gateways on top of buildings, the range is more than with a gateway inside the building. “In big open areas we are getting tens of kilometres range typically,” he says, “for sending messages from the sensor back to the gateway in the cloud and also getting updates from the cloud back down to the sensor.

“Most technology allows you to send messages back to the network, but LoRa also enables you to receive messages from the network,” says Armour. This, he adds, is a key characteristic, as LoRa will be deployed in devices that are expected to be in long term use, for example parking sensors or occupancy sensors that can be updated over the air (OTA) rather than needing to be physically removed for updates.

The same OTA functionality can be used for security, which Armour describes as a moving target. A multi‑level AES encryption is the default in the protocol. “Encrypted data is sent from the sensor and goes on to the network encrypted. It is only when its gets to the end-user, who has registered the device, that they can unlock the data and decrypt it,” he explains.

“LoRa is designed specifically for moving sensor data, or small amounts of data,” says Armour. “It can do that over a very long range and at exceptionally low power. The consumption depends on the use case, but some of the sensors can run on coin cell batteries for over 10 years,” he says. “The great thing with sensors is that we can install a large number on a gateway in a building and all the data goes easily back into the cloud where you can start to make use of it,” says Armour.

Sensors can be used to adjust heating and lighting according to the number of tenants in a building, or to adjust the billing in multi-occupancy buildings. LoRa is also used for location services, to track goods, using the two-way communications capability.

“LoRa allows you to locate devices reasonably accurately at low power. If your data starts coming from a location that makes no sense to you, that may be because someone is spoofing, or the device has been stolen or moved,” Armour added.

………………………………………………………………………………………………………………………

LoRa Silicon and IP from Semtech (licensed to other companies, e.g. Microchip):

Semtech, the only supplier of LoRa silicon intellectual property, has announced its next generation of LoRa chipsets, with reduced receiver current and high power option to extend the sensors’ battery life.  The SX1262 (the +22dBm option), the SX1261 (+15dBm) and the SX1268 (+22dBm, China frequency bands) are claimed to extend the battery life of LoRa-based sensors by up to 30%.

The chipsets have a footprint of 4x4mm, which is 45% less than the earlier device and they can be configured to meet application requirements using the LoRaWAN open standard.  Frequency coverage is 150MHz to 960MHz and a spreading factor of SF5 supports dense networks. The chipsets also support FSK modulation, making them compatible with legacy protocols.

https://www.electronicsweekly.com/news/iot-smart-cities-the-long-range-forecast-for-wireless-connectivity-2018-08/

 

 

 

AT&T acquires AlienVault; says its customers demanded NB-IoT

1. AT&T buys AlienVault:

AT&T has announced plans to acquire cybersecurity company AlienVault. Terms of the deal were not disclosed.

Founded in 2007, AlienVault offers a number of tools for detecting and responding to security threats through its Unified Security Management (USM) platform, while its Open Threat Exchange (OTX) platform serves as an online community where security professionals and researchers can share their latest findings and threat data.

2.  AT&T to offer NB-IoT:

AT& already offers cellular LPWAN services (LTE Category 1 and LTE Category M1) for its IoT customers who want to connect devices, assets and equipment to the cloud.  Now, AT&T says NB-IoT opens up new use cases for IoT.  However, the company did not reveal pricing for its NB-IoT data plan(s).

“We already are using LTE-M, and based on a lot of customer feedback we felt that we needed complementary services for other use cases, such as in a fixed asset tracking environment with very low bandwidth uses,” said Shiraz Hasan, VP, IoT solutions at AT&T. “The motivation is cost savings primarily, and the other thing is the ability to utilize the tech a little better because it penetrates even better than LTE-M.”

Shiraz said AT&T has a lot of customers in the security and alarm industries, and that many of these companies are evaluating IoT technology and learning that NB-IoT may serve their needs best. Alarms and locks are often located deep within buildings, so using cellular connectivity to monitor equipment health requires radio transmissions that can penetrate thick walls.

https://www.fiercewireless.com/wireless/at-t-says-customer-demand-prompted-nb-iot-launch

 

AT&T building NB-IoT network in US, Mexico; LPWAN deployments disappoint

AT&T says it will launch a narrowband internet of things network across the US and Mexico in 2019. “Adding NB-IoT to our portfolio will expand our LPWA capabilities, help drive investment in our evolution to 5G, and support our customers as they deploy IoT solutions across the US and Mexico,” said Chris Penrose, AT&T’s president of IoT Solutions.

“Adding NB-IoT to our portfolio will expand our LPWA capabilities, help drive investment in our evolution to 5G, and support our customers as they deploy IoT solutions across the US and Mexico.”

“It really spans every industry out there, connected cars is one of our biggest verticals where we’re adding over a million cars every quarter; we’ve got tons going on in healthcare, agriculture, retail, manufacturing, and asset tracking,” Penrose told ZDNet.

“You name it, we’ve got different solutions out there, and I think we’ve really established ourselves as a true global player; that’s one of the things we also like to say, we can make it happen for you anywhere in the world.”

According to Penrose, AT&T sees smart cities as being a big area, with traction happening in four to five areas: Energy, such as smart lighting; water, including leak detection, smart irrigation, and water quality maintenance; transportation, for instance parking and optimising traffic flow; and smart infrastructure, including roads and bridges.

“We’ve got solutions in all of those different areas, where we’re able to bring to the cities these kind of solutions that they can deploy into their cities to be able to address those particular areas,” he said.

As a result, AT&T created a series of spotlight cities across Dallas, Atlanta, Chicago, Miami, Portland,, Montgomery County, Mexico City, and various college campus environments wherein it allowed the cities themselves to choose what they wanted to solve, and then worked with them to meet those needs.

………………………………………………………………………………………………………………………………………………

Author’s Rebuttal:
We strongly disagree with Global Data (Ms Weldon)’s belief that “5G” will overtake LPWANs.  Most importantly, only about 8 to 12% of IoT applications will need the low latency that 5G will deliver.  The overwhelming majority of IoT applications are low speed, low power, low duty cycle and low cost.  They need solid reliability and strong security much more than (5G) low latency or high bandwidth.
Next is the misconception that “5G is coming sooner than expected.”  That may be true of wireless carrier’s PROPRIETARY deployments, but not IMT 2020 based 5G which will be the only true 5G standard.
It’s curious why so many pundits think anything coming out of 3GPP is a standard when that (honest) organization says their specs have no official status.  3GPP’s first IMT 2020 submission will be a combination of Release 16 (in development) and 15 (completed) at the July 2019 ITU-R WP 5D meeting.
……………………………………………………………………………………………………………………………………………
Reference:

GSMA: NB-IoT and LTE-M deployments gaining market traction; Sequans combo module & NB-IoT silicon

NB-IoT and LTE-M Deployments:

A total of 48 commercial narrowband IoT (NB-IoT) and LTE-category M (LTE-M) have been launched worldwide as of the end of April, according to the GSMA.  Statistics from GSMA show that 13 mobile operators have deployed mobile IoT solutions, including all of China’s big three wireless network operators – China Mobile, China Telecom and China Unicom.

South Korea’s KTLG Uplus, Singapore’s M1, Australia’s Telstra, Sri Lanka’s Dialog Axiata and Mobitel, Taiwan’s Far EasTone and Chunghwa Telecom, Japan’s KDDI, Thailand’s True Corp and Vodafone Group have also adopted the technology.

NB-IoT deployments are currently a lot more common than LTE-M, although some operators including Singtel and Australia’s Telstra have deployed both technologies.  AT&T, Verizon, and Sprint have all announced LTE-M.  T-Mobile has only announced support for NB-IoT.

Note that both NB-IoT and LTE-M operate over licensed spectrum, which is much more reliable than unlicensed spectrum used in Sigfox and LoRa.  Those latter two LPWANs are much more widely deployed then NB-IoT and LTE-M combined.

……………………………………………………………………………………………………………………………

Sequans Combo Module:

During an IoT World panel session on Tuesday May 15th, France chip design house Sequans Communications announced that both Verizon and AT&T would be selling their combined NB-IoT/LTE-M module for $7.50.  Verizon has certified Sequans” Monarch SiP (system-in-package) LTE-M/NB-IoT connectivity solution.  This module integrates Sequans’ Monarch LTE baseband platform with an RF front-end module in the world’s smallest form factor. Monarch SiP was introduced in late February and is now listed on Verizon’s Open Development website as an approved module.  Complete details are available here.

……………………………………………………………………………………………………………..

NB-IoT Silicon:

In a recent blog post, Nick Hunn claimed there are 13 companies (now 17) that have announced NB-IoT chips.

If you count up real NB-IoT deployments, it’s still early days. There are probably fewer than 10 million chips deployed. That’s the figure from Huawei, who is certainly leading the field. How many of those are actually connected and sending data back is questionable – the last year has largely been an exercise in getting things to work and spinning the PR. Nevertheless, Huawei is predicting that by the end of 2018 the number of chip shipments will reach 150 million, which, given the focus on NB-IoT within China, may well happen. The big question is what will happen in the rest of the world. To understand that, it’s interesting to look at the different companies which will be producing silicon.

The thirteen companies I’m aware of (please let me know if you know of any others) are HiSilicon (part of Huawei), Sanechips (a division of ZTE), RDA, Mediatek, Altair (owned by Sony), Sequans, Nordic Semiconductor, Goodix, Riot Micro, Qualcomm and Nesslab, along with ARM and ASTRI/CEVA. ARM and the ASTRI / CEVA partnership are IP vendors, but appear to be at a state where they are already behind some of the offerings, so are worth including, as if anyone plans to ship in volume, they’re an obvious destination. ARM is further differentiating itself by offering a wider-ranging IoT service including device management and aspects of provisioning. I need to apologise for missing GCT, which brings it up to fourteen. And since writing this I’ve been made aware of a further three – Pinecone Electronics (who have Xiaomi as an investor and appear to be building on ASTRI’s IP), Extra Dimensions Technology – a Beijing startup and Eigencomm – a Shanghai startup. That further highlights the China centric concentration and reflects the amount of Government support being put in to make China the leader in IoT. So we have a sweet seventeen, with probably more to come.

………………………………………………………………………………………………………………………….

Mobile IoT for the 5G Future

Image courtesy of GSMA

………………………………………………………………………………………………………………………….

GSMA says the technologies will coexist with other 5G components.  Also, that 3GPP is working to allow LTE-M and NB-IoT to be placed directly in a 5G new radio frequency band, and is investigating options for the 5G core network to support LTE-M and NB-IoT radio access networks.

LoRaWAN gains momentum: NEC LoRaWAN server + New Zealand nationwide network

1.   NEC has launched a new network server that complies with LoRaWAN (MAC and PHY specifications from the LoRa Alliance) to help telecoms carriers accelerate the creation of new IoT services. The new server implements device identification, data rate control and channel allocation for sensor devices complying with LoRaWAN through the LoRaWAN gateway. It also mediates data processing from each sensor device to the application server.  As the LoRaWAN network server features a function for conducting flexible multi-tenant and multi-device control assuming a variety of service provision formats of communication carriers, it is capable of providing LoRaWAN network services to numerous companies and service providers.

LoRaWAN Network Server Connection–Image by NEC Corp.

…………………………………………………………………………..

In addition, its WebAPI capability makes it interoperable with a wide range of service applications using LoRa. This facilitates the utilization of data collected from sensor devices.

“This new server enables new IoT services to be flexibly provided to telecommunications carriers in combination with gateways and end-devices,” said Shigeru Okuya, senior vice president of NEC.

“NEC aims to provide LoRaWAN compliant solutions to companies around the world in the coming years as part of accelerating the creation of new IoT services and improving user convenience,” he added.

“NEC’s network server integrated with Semtech’s LoRa (PHY) Technology will give operators a competitive advantage that will contribute to society,” said Marc Pegulu, General Manager and Vice President of Semtech’s Wireless and Sensing Products Group.

“LoRa Technology offers long-range, low-power capabilities for next-generation IoT applications in vertical markets, including smart cities, smart building, smart agriculture, smart metering, and smart supply chain and logistics.”

The new NEC LoRaWAN servers will start shipping to IoT WAN connectivity providers in December.

http://www.nec.com/en/press/201711/global_20171115_01.html

https://www.telecomasia.net/content/nec-unveils-lorawan-compliant-network-server

2.    New Zealand Nationwide LoRaWAN by Spark

New Zealand’s Spark has contracted French IoT network solutions specialist Kerlink to support a nationwide LoRaWAN rollout in the twin island nation.

Spark, the leading digital services provider in New Zealand, has already deployed the low power wide area (LPWA) network in parts of the country, and has signed on initial customers including farmer co-operatives Farmlands and Ballance Agri-Nutrients.

These companies are using the network to provide farmers with real-time information about their operations through an array of sensors.

“Spark already has created use cases that will demonstrate the LoRaWAN network’s energy-efficient, geolocation connectivity that is well suited for both the wide-open spaces and urban centers of New Zealand,” Kerlink Asia Pacific sales director Arnaud Boulay said.

The vendor is providing IoT stations that support bidirectional data exchange and geolocation capability and operate on the 923-MHz industrial, scientific, and medical (ISM) radio band.

Other early adopters include the National Institute of Water and Atmospheric Research (NIWA), and Spark is targeting customers in key sectors such as health, safety, transportation, asset tracking and smart cities.

Kerlink is a co-founder and board member of the LoRa Alliance, and has this year launched nationwide rollouts in India with Tata Communications and in Argentina.

Spark already has created use cases that will demonstrate the LoRaWAN networks energy-efficient, geolocation connectivity that is well suited for both the wide-open spaces and urban centers of New Zealand.

http://www.4-traders.com/KERLINK-27472140/news/Kerlink-Supports-Sparks-Nationwide-IoT-Network-Rollout-In-New-Zealand-25559327/

https://www.telecomasia.net/content/spark-deploying-nationwide-lorawan-network

Highlights of IDTechEx: IoT Connectivity Sessions and Exhibits: November 15-16, 2017

Introduction:

The Internet of Things (IoT) will connect existing systems and then augment those by connecting more things, thanks to wireless sensor networks and other technologies. Things on the ‘edge’ form mesh networks and can make their own automated decisions.  This article reviews key messages from conference technical sessions on IoT connectivity and describes a new Wireless Mesh Sensor network which is an extension of IEEE 802.15.4.

NOTE:  This post will be updated with illustrations and comments once I can get files converted to jpeg or jpg

 

Sessions Attended:

1. Overcoming Adoption Barriers To Achieve Mass IIoT Deployment, Iotium

Early adopters are realizing the complexities involved in scalable mass deployment of Industrial IoT. These includes deployment complexities, security issues starting from hardware root of trust to OS, network, cloud security and application vulnerabilities, and extensibility. This session will focus on these 3 areas in-depth to help you successfully deploy your own IIoT strategy.

2.  Overcoming The Connectivity Challenge Limiting IoT Innovation, Helium

The hardware and application layers of IoT systems are supported by robust, mature markets, with devices tailored for any use case and pre-built infrastructure platforms from Microsoft, Google and AWS.   But the connectivity layer, without which the entire system is useless, still has numerous challenges. It takes too much knowledge and time to get data from sensors to apps that most staffs don’t have.   The speaker discussed a streamlined, secure approach to connectivity that will make building a wireless IoT network as easy as designing a mobile app, thereby removing the greatest barrier to mass IoT adoption.

3.  Whitelabel The Future: How White Label Platforms Will Streamline The IoT Revolution, Pod Group

As expectations tend towards personalized, data-driven services, responding immediately to market changes is becoming a key differentiator, creating the need for mutual insight on both sides of the market. Whitelabelled platforms are an effective intermediary, allowing unprecedented levels of customer interaction and paving the way for truly end-to-end IoT systems.

Barriers to achieving a sustainable IoT business model:

-Businesses must have flexible resources and structures:
a] lacking tools to implement (new technology/billing)
b] organizational changes (retraining staff/expertise at top level)

-55% of large enterprises are not pursuing IoT (Analysys Mason)

-Digital proficiency lacking in 50% of companies (Price Waterhouse Cooper)

-IoT platforms can introduce users to systems as a whole & streamline management

There are several different types of IoT platforms:

-IoT Application Enablement Platform – in-field application (eg. device) management
-Connectivity Management Platform (CMP) – management of network connections
-Back-end Infrastructure as a Service (IaaS) – hosting space and processing power
-Hardware-specific Platform – only works with one type of hardware

Many platforms tied to specific provider/device:

– ‘Agnostic’ platforms ideal to integrate different types & retain adaptability (eg. connectivity management integrating device mgmt. & billing capabilities).

-CMPs offer a range of services: managing global connections, introducing providers to clients, integration with hardware vendors, etc.

-CMPs focus on centralized network management- not on building new services.

-Application Enablement Platforms focus on device management/insight–billing hierarchy enables new business services with additional layers, e.g. analytics.

What will the IoT landscape look like in the near future?

-Various connectivity technologies competing, platform technology and open-source driving software/service innovation.

-Hybrid platform offers ease of management, solid foundation for building recurring revenue from value-added services – ensures business is scalable and able to roll-out services quickly.

-Capable platform shifts focus from day-to-day management to building new bus. models and recurring rev. streams..

-Whitelabel platforms help to implement new business models throughout business, consolidate management of legacy and future systems, and build recurring revenue from end-to-end value-added services.

Choose right platform for your business – ease-of-use, billing hierarchies, multi-tech integration key to generating recurring revenue.

With a strong platform in place to future-proof devices and manage customer accounts and business, enterprise can be part of full IoT ecosystem, gaining value from every stage.

 

4.  From Disappointing To Delightful: How To build With IoT, Orange IoT Studio

Many engineers, designers and business folks want to work with IoT devices, but don’t know where to begin. Come learn which mistakes to avoid and which best practices to copy as you integrate with IoT or build your own IoT products. This presentation examines the consistent, systematic ways that IoT tends to fail and delight. The talk explained what makes IoT unique, and examined why it’s not at all easy to classify IoT platforms and devices.

5. Many Faces Of LPWAN (emphasizing LoRaWAN), Multi-Tech Systems 

Until recently, most M2M and Internet of Things (IoT) applications have relied on high-speed cellular and wired networks for their wide area connectivity. Today, there are a number of IoT applications that will continue to require higher-bandwidth, however others may be better suited for low-power wide-area  network options that not only compliment traditional cellular networks, but also unlock new market potential by reducing costs and increasing the flexibility of solution deployments.

Low-Power Wide-Area Networks (LPWAN)s are  designed to allow long range communications at low bit rates.  LPWANs are ideally suited to connected objects such as sensors and “things” operating on battery power and communicating at low bit rates, which distinguishes them from the wireless WANs used for IT functions (such as Internet access).

Many LPWAN alternative specifications/standards have emerged – some use licensed spectrum such as ITU-R LTE Cat-M1 and 3GPP NB-IoT, while other alternatives such as LoRaWAN™ are based on as specification from the LoRA Alliance and uses unlicensed industrial, scientific, and medical (ISM) radio band/spectrum.

IoT has many challenges – from choosing the right device, to adding connectivity and then managing those devices and the data they generate. Here are just a few IoT connectivity challenges:

  • Long battery life (5+ yrs) requires low power WAN interface
  • Low cost communications (much lower than cellular data plans)
  • Range and in-building penetration
  • Operation in outdoor and harsh environments
  • Low cost infrastructure
  • Robust communications
  • Permits mobility
  • Scalable to thousands of nodes/devices
  • Low touch management and provisioning – Easy to attach assets
  • Highly fragmented connectivity due to a proliferation of choices

The following charts, presented by Mike Finegan are courtesy of Multi-Tech:

Mike presented several LPWAN use case studies, including:  tank monitoring in Mt. Oso, CA; point of sales terminals, kiosks, vending machines; oil and gas; distributed energy resources; agriculture; and a real time control school traffic sign (T-Mobile using NB-IoT equipment from MultiTech (the first public NB-IoT demo in North America).

Mr. Finegan concluded by emphasizing the importance of security functions needed in an IoT Connectivity Platform.  A “trusted IoT platform” should reduce attack vectors, provide secure and reliable end to end communications, and device to headquarters management services.

6. What Makes a City Smart? Totem Power

The framework necessary to build holistic infrastructure that leverages capabilities essential to realizing the full potential of smart cities – concepts including curbside computing power, advanced energy resiliency and ubiquitous connectivity.

An interesting observation was that fiber trenches being dug to facilitate 5G backhaul for small cells and macro cells could accommodate electrical wiring for power distribution and charging of electronic vehicles within the city limits.

………………………………………………………………………………………………

At it’s booth, Analog Devices/ Linear Technology displayed an exhibit of SmartMesh® – a Wireless Mesh Sensor Network that was based on a now proprietary extension of IEEE 802.15.4 [1]. SmartMesh® wireless sensor networking products are chips and pre-certified PCB modules complete with mesh networking software; enabling sensors to communicate in tough Industrial Internet of Things (IoT) environments.

Note 1. IEEE 802.15.4 is a standard which defines the operation of low-rate wireless personal area networks (LR-WPANs) via PHY and MAC layers.  It focuses on low-cost, low-speed ubiquitous communication between devices.

……………………………………………………………………………………………………….

The Industrial Internet of Things (IoT) wireless sensor networks (WSNs) must support a large number of nodes while meeting stringent communications requirements in rugged industrial environments. Such networks must operate reliably more than ten years without intervention and be scalable to enable business growth and increasing data traffic over the lifetime of the network.

More information on SmartMesh® is here.

……………………………………………………………………………………………….

References:

https://www.idtechex.com/internet-of-things-usa/show/en/

https://www.idtechex.com/internet-of-things-usa/show/en/agenda

http://www.linear.com/dust_networks/

 

Recent Posts