Who Stole 5G Technology? Huawei ban has huge impact on semiconductor industry

NOTE:  There are no U.S. cellular equipment manufacturers.  The only two in the west are Ericcson and Nokia- both based in Europe.  However, U.S. based Qualcomm has been developing 5G silicon and is the only 5G (fabless) semiconductor vendor in the U.S.  They will likely have an IMT 2020 compliant chip set as the company regularly attends ITU-R WP 5D meetings.  The only other 5G merchant market semiconductor company we know of is Taiwan based MediaTek.  Samsung and Huawei have developed 5G silicon but are using it ONLY for their own devices- not sold to merchant semiconductor market.

The only U.S. semiconductor companies that we know of that make their own chips are Intel and Micron.

…………………………………………………………………………………………………………………………………………………………………………………………….

IHS Markit says Huawei fall- out on memory market is huge:

Huawei in recent years has carved out prominent positions in the global smartphone and mobile infrastructure markets (not to mention fiber optics infrastructure and IT markets).  In 2018, Huawei rose to take second place in the smartphone business, with 206.1 million shipments, according to the IHS Markit Smartphone Intelligence Service. This put it just slightly ahead of Apple, at 204.7 million.

In 2017, the company  became the leader in the worldwide mobile infrastructure equipment market, surpassing Ericsson. Huawei has retained the top position and rose to account for nearly one-third of the market, with a 31 percent share of global revenue in 2018, as reported by the IHS Markit Mobile Infrastructure Intelligence Service.

Huawei’s market position has translated directly into purchasing power, with the company ranking as the world’s fourth-largest OEM semiconductor buyer in 2018.  Huawei spent $15.9 billion on semiconductors in 2018, according to the IHS Markit OEM Semiconductor Spending & Design Activity Intelligence Service. Memory represents a considerable slice of that spending, with the company buying $1.7 billion worth of DRAM and $1.1 billion worth of NAND flash memory for the year.

In the memory business, the wireless communications market was the second-largest global market for DRAM in 2018, following computer platforms, with revenue of $21.3 billion. Wireless was also the second largest market for NAND flash memory after computers, with revenue of $14.6 billion in 2018.   HDD and solid-state drive (SSD) products enjoy major usage in the enterprise segment where Huawei operates. The enterprise market generated 72.8 million HDD unit shipments in 2018, while SDD demand amounted to 34 million, according to the IHS Markit HDD and SDD Storage Intelligence Service.  For Micron and Western Digital, the revenue lost because of the ban is not likely to be replaced easily or quickly.

IHS-Markit says No Winners:

While the ban was ostensibly designed to penalize Huawei and benefit the U.S. tech industry, the reality is the pain will be felt by companies on both sides of the Pacific, affecting key U.S. suppliers along with Huawei.​

Is a new 5G Iron Curtain emerging:  Russia and China Tech Cold War vs the U.S.?

A decision by Russian telco MTS to select Huawei Technologies to develop its 5G network comes just as the U.S. ban of the Chinese telecom gear provider could leave the U.S. lagging behind other global powers, analysts say in a CNN article.

Huawei Chairman Guo Ping and MTS boss Alexei Kornya signed the agreement in the Kremlin on Wednesday, with Russian President Vladimir Putin and Chinese leader Xi Jinping watching.

“We both add momentum to strategic cooperation between the two companies in high tech, thus building a foundation for commercial 5G rollouts in Russia in the nearest future,” Kornya said in an emailed statement. Guo highlighted that Huawei’s more than 16,000 5G-related patents make it “number one worldwide.” “We hope that our joined efforts will help Russia enter the 5G era sooner,” he added.

Guo Ping -chairman of Huawei- shaking hands with Alexei Kornya- head of MTS- at the Kremlin in Moscow, Russia.

The Kremlin noted that several business deals had been signed in a ceremony attended by Russia President Vladimir V. Putin and China Premier Mr. Xi.

It’s not clear Russia will have a national 5G network, using Chinese or Western equipment, as the military has so far declined to free up the necessary radio frequencies.

“The situation there is a bit complicated,” a deputy prime minister, Maksim Akimov, said at a meeting with Mr. Putin in April. “We’d like to ask you for relevant orders,” to the military, so Russia can keep up with the new (5G) cellphone technology.

MTS’ pending 5G Huawei deal comes as Chinese authorities moved this week to license its first array of 5G wireless service providers.   China approved its first batch of 5G licensing for commercial use, unveiling, in the words of state media, “a new era for the telecom industry.” Huawei will be deeply involved in that effort, adding to the more than 45 commercial 5G contracts the firm has signed in 30 countries around the world.

………………………………………………………………………………………………

The referenced CNN article stated:

The US has also been urging allies to restrict or ban the use of Huawei equipment in their 5G networks, warning that Beijing could use the sensitive data infrastructure for spying. Huawei has repeatedly denied that any of its products pose a national security risk.
While some US cities have begun rolling out 5G technologies, analysts have warned the Huawei ban risks slowing down countrywide adoption, and could see it lag behind China. Now even Russia, not usually thought of as a tech leader, may be poised to pull ahead.
Outside of the US, whether to buy from Huawei or not is increasingly becoming a political litmus test, one that threatens to exacerbate the bifurcation of the global internet into separate spheres, and hasten the demise of the open, truly worldwide web as we know it.
Those that choose to avoid Huawei also risk falling behind as the world moves towards the next stage of internet and communications technology.
“Having mutually exclusive technological spheres doesn’t simply mean supply chains will mirror each other on different continents,” technology analyst Tim Culpan wrote recently. “Rather, for countries around the world, it means that every business and investment decision becomes a political one.”
…………………………………………………………………………………………………………………………………………………………………………………………………………….
“If the lights go out in the West, the East will still shine,” Huawei founder Ren Zhengfei said in February. “And if the North goes dark, there is still the South. America doesn’t represent the world. America only represents a portion of the world.”  Ren  previously suggested there were plenty of business opportunities outside the U.S.
Of course that is true and is how Huawei became the top telecom equipment maker without selling anything in the U.S. other than to rural telcos (as noted in this IEEE Techblog post).
USA vs. Huawei
On June 6th, China’s Commerce Ministry said it planned to draw up its own list of “unreliable” foreign companies to retaliate against the U.S. government ban of Huawei.
The MTS-Huawei deal came as Russia is courting Chinese investment at a business conference this week, the St. Petersburg International Economic Forum. Russian media reported about 1,000 Chinese businessmen attended, while the United States ambassador, Jon M. Huntsman Jr., boycotted the conference over the arrest this year of an American investor, Michael Calvey.
………………………………………………………………………………………………….
Ron Amadeo wrote on ars Technica:
According to a report from The Financial Times, Google’s recent discussions with the US government actually argue that the Huawei ban is bad for national security. Google is reportedly asking for an exemption from the export ban.
The argument, reportedly, is that Huawei is currently dependent on Google for its Android smartphone software, and that dependence is a good thing for the US. The Financial Times quotes “one person with knowledge of the conversations” as saying, “Google has been arguing that by stopping it from dealing with Huawei, the US risks creating two kinds of Android operating system: the genuine version and a hybrid one. The hybrid one is likely to have more bugs in it than the Google one, and so could put Huawei phones more at risk of being hacked, not least by China.”
Banning Huawei from dealing with U.S. companies is definitely a double-edged sword. Huawei would have a tough time building smartphones or an app ecosystem without the help of U.S.-originated technology and app developers, but US hardware and software companies would lose access to the second largest smartphone maker in the world.
……………………………………………………………………………………………………………………………………………………………………………………………………………
Huawei faces loss of Google’s Android and Facebook Apps:
Huawei is preparing the release of its operating system, as it will soon lose access to Google’s version of Android in three months.  However,  Huawei’s operating system is not a solution for any market but China, and that’s mainly because of the Play Store that comes with Google’s Android.

Facebook will no longer allow its apps to be pre-installed on Huawei phones as the Chinese tech giant faces the ongoing fallout of a blacklisting of its services in the U.S.  That means that people who already own Huawei phones with apps such as Facebook, WhatsApp and Instagram will not be impacted, Facebook confirmed Friday that new phones from the tech company will not come with the applications.  However, Huawei devices (smartphones and tablets) that are already in the hands of consumers will still be able to run the apps and receive regular software updates, Facebook told Reuters.

Huawei, the second biggest smartphone brand in the world, has denied it cooperates with the Communist Party in Beijing. In retaliation to the administration’s blacklisting, China announced last month it would establish an “unreliable entity list” of foreign companies and individuals that “seriously damage” Chinese enterprises.
……………………………………………………………………………………………………………………………………………………………………………………………………………
Conclusions:
Chinese President Xi Jinping and his Russian counterpart Vladimir Putin have vowed to bolster Sino-Russian ties and oppose unilateralism, as the two nations seek to counterbalance the United States’ power on the international stage.  According to China’s state broadcaster CCTV, Xi told Putin that the frequent high-level exchanges between the two countries reflected the “uniqueness and distinction” of their relationship.
“Both nations have to oppose unilateralism and trade protectionism, and build a new type of international relations and shared human destiny,” Xi said.  Putin acknowledged Xi’s commitment to boosting ties between Moscow and Beijing, which he said were based on trust in areas ranging from politics to defense.

“We have a relationship of trust in the sphere of politics, security and defense,” he said. “We know that you [Xi] personally pay great attention to the development of Russian-Chinese relations.”

The new era of closer Sino-Russian relations is born out of concerns that the US-China trade war – sparked by US President Donald Trump’s “America first” foreign policy and which has cost Beijing billions of dollars in export tariffs – could escalate into a cold war between the two countries.  As China and Russia get ever closer and agree to boost ties in the face of U.S. pressure, we are seeing the beginnings of a new 5G iron curtain and tech cold war.

5G Telecom Investments, Hype, Huawei & 5G replacement for cable broadband?

Wharton’s Kevin Werbach and Jeffrey Reed from Virginia Tech discuss whether 5G technology will live up to its promise.

Telecom companies and other providers will have to invest billions to make 5G a reality — not only to buy more spectrum, but also to build out the infrastructure. Because it’s yet uncertain how much revenue 5G will bring, for now the most prudent path for telecom firms is to upgrade the capacity of their 4G networks by reclaiming airwaves allocated for 2G and 3G, as well as buying more spectrum, according to a report by McKinsey. (The lower bands can be used for 5G as part of the carrier’s network management plan, even though data capacity won’t be as good.)

But there will come a time when these tactics won’t be enough. Historically, data traffic rises by 20% to 50% a year, and 5G could put the traffic increases at the higher end of that range, the McKinsey report said. That means most telecom companies will have to embark on a “significant new build out” between 2020 and 2025. Also, to handle higher traffic, carriers have to install fiber in their wired networks, where wireless connects to the internet. “It’s rather ironic that the projected performance goals of 5G wireless will depend on the availability of wireline fiber,” an executive at telecom equipment maker Ciena said.

Carriers can’t just label their service 5G, which is a lesson AT&T learned when it was sued by Sprint for putting “5GE” on its service despite not using true 5G. AT&T reportedly settled the lawsuit, explaining that “E” stands for “Evolution.” A Verizon spokesman tweeted that “5GE” stood for “5G Eventually.”

Regarding using millimeter wave spectrum for 5G:

“When you’re transmitting and receiving at very high frequencies, it is very efficient for carrying lots and lots of data,” said Gerald Faulhaber, Wharton professor emeritus of business economics and public policy and former FCC chief economist. “You can carry much, much more data than you ever could using our 4G phones.”

But a key drawback is that these signals travel only short distances. The wavelengths in this band range from 1 mm to 10 mm — the FCC’s December auction is called the millimeter wavelength auction — so these can’t reach very far and are easily degraded. “Very high frequency radio signals travel in direct, straight lines, and they attenuate very quickly,” Faulhaber said. In comparison, very low frequency 30 hertz signals can travel more than 10,000 km, or 6,200 miles. Lower frequencies also can better penetrate solid objects like buildings and walls.

Because millimeter wavelengths are short, they need more antennas to connect. “One of the things that 5G requires is a much denser network,” Werbach said. “You need many more nodes. That is partly how the capacity increases, which means either more towers or more cells in more places. You need equipment that is running on those cell sites, and then you need chips that go into people’s handsets and devices.” At least, the 5G antennas are small and can be installed easily on top of telephone poles and other locations, Faulhaber said.

Because it requires density, 5G mainly is feasible for more populated areas where many antennas can be placed close together. “The nature of the infrastructure is that it works in dense areas; it doesn’t work as well in other areas,” Faulhaber said. “Will there be 5G in [rural areas]? The answer is yes, but it won’t be over these high-frequency antennas. It will be basically where 4G is today, so you won’t get the high-capacity [service].”

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..

Telecom carriers have deployed limited 5G commercial service.

  • In April, AT&T said mobile 5G is live in parts of 19 cities, with more cities to come. In the same month,
  • Verizon said 5G service has launched in parts of Chicago and Minneapolis, where typical early adopters experience download speeds of 450 Mbps and peak speeds of 1 Gbps. That is six and 14 times faster than the median fixed broadband speed of 72 Mbps respectively, according to a December 2018 FCC report. Verizon expects to deploy limited 5G in more than 30 cities this year. Last fall, it launched a limited 5G home internet service in four cities.
  • Sprint is rolling out 5G in nine markets this year.  On May 31st Sprint announced the availability  for its first two 5G devices, LG V50 ThinQTM 5G and HTC 5G Hub. Both devices will initially be available to customers in the first four 5G markets – Atlanta, Dallas, Houston and Kansas City.
  • T-Mobile is calling out its rivals over their 5G hype. “I have the exact same 5G mmWave network equipment and software that AT&T and Verizon do, and there’s no way we would launch this for customers right now,” CTO Neville Ray wrote in a blog. The millimeter wave signal “doesn’t travel far from the cell site and doesn’t penetrate materials at all,” he said. Ray’s blog even embedded a moving image showing that millimeter waves can’t even go through a door. T-Mobile will bring 5G to market, he said, “when the technology is ready for everyday customer use.”

Telecom analyst Craig Moffett of MoffettNathanson echoed similar doubts on CNBC. “There’s zero chance that 5G is ubiquitous technology” by 2021, he said. “The promises around 5G being insanely fast are partly because the standards for 5G were set for insanely wide blocks of spectrum. But you can’t find insanely wide blocks of spectrum anywhere except in these kind of stratospherically high frequencies,” which has its own technical problems. He noted that China, which is surging ahead on 5G, doesn’t use millimeter wave but rather lower band spectrum below 6 GHz, while Europe is using a combination of the two.

Politics also influences U.S. carrier adoption of 5G. The government has security concerns about using 5G telecom equipment from China’s Huawei because of fears over spying. Huawei is the world’s largest maker of telecom equipment, including that needed for 5G. It became a colossus, and “a key reason for that is they produce very inexpensive equipment. It is much cheaper than [that of] their European competition,” Reed said. Huawei doesn’t have any U.S. competition, because infrastructure providers left the business about 20 years ago, he added.

Today, Europe and other parts of the world are customers of Huawei. Britain and Germany specifically are resisting pressure from the U.S. to stop using Huawei. Their carriers have used Huawei in their networks for years, so “for them, it is very difficult to say … ‘rip it all out and go find someone else,’” Werbach said. “They’re just not going to do it.” Added Reed: “Even though a security threat exists with Huawei, companies tend to look the other way to maximize profits, lower costs.” As for security, “that’s way down on their list,” Reed said.

Werbach explained that the U.S. can’t address these security concerns by merely saying it will not use this equipment. It has to be more proactive. “We need to invest in companies in the U.S. and bring trust around the world that, for example, the U.S. is not putting similar kinds of back doors into equipment made by U.S.-based service providers.”
Will 5G Replace Cable?

Even with 5G’s drawbacks, enthusiasm for it remains unabated. One big hope is that 5G could be a viable alternative to the wired broadband service provided by cable and telecom companies. “Could 5G … be the new single pipe into the home?” Faulhaber asked. But before one gets excited about competition bringing lower prices and better service, remember that the same companies currently providing wired broadband to the home are the ones launching 5G. “Guess who are the two dominant wireless operators that have … a big chunk of the spectrum in the service? AT&T and Verizon, who, of course, are also major wired broadband providers,” Werbach noted.

However, Werbach acknowledged that there potentially could be other players in 5G, such as T-Mobile, Sprint and Comcast. Indeed, T-Mobile and Sprint have been trying to convince regulators to let them merge because then they would have the heft to deploy 5G nationally. But The Wall Street Journal reported in April that the deal is unlikely to be approved as structured.

As for Comcast, Faulhaber pointed out that the cable giant already has installed plenty of Wi-Fi receivers, including in customers’ routers that other folks on its network can use to access the internet. “Xfinity Wi-Fi is all over the place and I would suspect we would see something like that with 5G,” he said. But Faulhaber also pointed out that Comcast has time to figure out a response to 5G since it won’t have to worry about competition from this new technology in the near future.

Comcast CFO Michael Cavanaugh put it this way at a recent conference: “The threat of 5G to our broadband business is not significant any time soon. That’s because [cable is] going to be the most economic way to deliver high-quality broadband, period.”

Any cable rival will need “high capacity, high speed and … high reliability,” he said. “Between the different ways, different levels of spectrum and approaches to 5G, it’s really hard to see how there’s a path to any one of those being a broadly addressable solution for residential [broadband] in the U.S.”

Reference:

http://gonzaloraffoinfonews.blogspot.com/2019/06/the-promise-and-pitfalls-of-5g-will-it.html

Huawei to build Public Cloud Data Centers using OCP Open Rack and its own IT Equipment; Google Cloud and OCP?

Huawei:

On March 14th at the OCP 2019 Summit in San Jose, CA, Huawei Technologies (the world’s number one telecom/network equipment supplier) announced plans to adopt OCP Open Rack in its new public cloud data centers worldwide. The move is designed to enhance the environmental sustainability of Huawei’s new public cloud data centers by using less energy for servers, while driving operational efficiency by reducing the time it takes to install and maintain racks of IT equipment.  In addition to Huawei’s adoption of Open Rack in its cloud data centers, the company is also expanding its work with the OCP Community to extend the design of the standard and further improve time-to-market, and high serviceability and reduce TCO.  In an answer to this author’s question, Jinshui Liu CTO, IT Hardware Domain said the company would make its own OCP compliant compute servers and storage equipment (in addition to network switches) that would be used in its public cloud data centers.  All that IT equipment will ALSO sold to its customers building cloud resident data centers.

The Open Rack initiative introduced by the Open Compute Project (OCP) in 2013, seeks to redefine the data center rack and is one of the most promising developments in the scale computing environment. It is the first rack standard that is designed for data centers, integrating the rack into the data center infrastructure.  Open Rack integrating the rack into the data center infrastructure as part of the Open Compute Project’s “grid to gates” philosophy, a holistic design process that considers the interdependence of everything from the power grid to the gates in the chips on each motherboard.

“Huawei’s engineering and business leaders recognized the efficiency and flexibility that Open Rack offers, and the support that is available from a global supplier base. Providing cloud services to a global customer base creates certain challenges. The flexibility of the Open Rack specification and the ability to adapt for liquid cooling allows Huawei to service new geographies. Huawei’s decision to choose Open Rack is a great endorsement!” stated Bill Carter, Chief Technology Officer for the Open Compute Project Foundation.

 

OCP specified Open Rack v2:

 

Last year Huawei became an OCP Platinum Member. This year, Huawei continues investment in and commitment to OCP and the open source community. Huawei’s active involvement within the OCP Community includes on-going participation and contributions for various OCP projects such as Rack and Power, System Management and Server projects with underlying contributions to the upcoming specs for OCP accelerator Module, Advanced Cooling Solutions and OpenRMC.

“Huawei’s strategic investment and commitment to OCP is a win-win,” said Mr. Kenneth Zhang, General Manager of FusionServer, Huawei Intelligent Computing Business Department. “Combining Huawei’s extensive experience in Telco and Cloud deployments together with the knowledge of the vast OCP community will help Huawei to provide cutting edge, flexible and open solutions to its global customers. In turn, Huawei can leverage its market leadership and global data center infrastructure to help introduce OCP to new geographies and new market segments worldwide.”

During a keynote address at OCP Global Summit, Huawei shared more information about its Open Rack adoption plans as well as overall OCP strategy. Huawei  also showcased some of the building blocks of these solutions in its booth, including OCP-based compute module, Huawei Kunpeng 920 ARM CPU, Huawei Ascend 310 AI processor and other Huawei intelligent Compute products.

Huawei’s Booth at  OCP 2019 Summit

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

In summary, Huawei has developed an optimized rack scale design that will become the foundation of its cloud and IT infrastructure roll out.   This extends the company’s product portfolio from telecom/networking to cloud computing and storage as well as an ODM for compute and storage equipment.  Hence, Huawei will now compete with Microsoft Azure as well as China CSPs Alibaba, Baidu and Tencent in using OCP compliant IT equipment in their cloud resident data centers,.  Unlike the other aforementioned OCP Platinum members, Huawei will design and build its own IT equipment (the other  CSPs buy OCP equipment from ODMs).

There are now 124 OCP certified products available with over 60 more in the pipeline.  Most of the OCP ODMs are in Taiwan.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Google:

While Google has been an OCP Platinum member since 2015, they maintained a very low profile at this year’s OCP Summit, so it’s not clear how much OCP compliant equipment they use in Google Cloud or in any of their cloud resident data centers.  Google did present 2 tech sessions at the conference:

Google’s 48V Rack Adaptation and Onboard Power Technology Update” at the OCP 2019 Summit early Friday morning March 15th.  Google said that significant progress has been made in three specific applications:

1. Multi-phase 48V-to-12V voltage regulators adopting the latest hybrid switched-capacitor-buck topologies for traditional 12V workloads such as PCIEs and OTS servers;

2. Very high efficiency high density fixed ratio bus converters for 2-stage 48V-to-PoL power conversions;

3. High frequency high density voltage regulators for extremely power hungry AI accelerators.

Google and ONF provided an update on Stratum — a next generation, thin switch OS that provides silicon and hardware independence, which was first introduced at the 2018 OCP Summit.  Stratum was said to enable the next generation of SDN.  It adds new SDN-ready interfaces from the P4 and OpenConfig communities to ONL (Open Network Linux) that enable programmable switching chips (ASICs, FPGAs, etc.) and traditional switching ASICs alike. The talk described how the open source community has generalized Google’s seed OVP contribution for additional whitebox targets, and demonstrate Stratum on a fabric of OCP devices controlled by an open source control plane.

I believe Google is still designing all their own IT hardware (compute servers, storage equipment, switch/routers, Data Center Interconnect gear other than the PHY layer transponders). They announced design of many AI processor chips that presumably go into their IT equipment which they use internally but don’t sell to anyone else (just like Amazon AWS).

Google Cloud Next 2019 conference will be April 9-11, 2019 at the Moscone Center in San Francisco, CA.

References:

https://www.huawei.com/en/press-events/news/2019/3/huawei-ocp-open-rack-public-cloud-datacenters

https://www.globenewswire.com/news-release/2019/03/14/1754946/0/en/Huawei-to-Adopt-OCP-s-Open-Rack-across-New-Public-Cloud-Datacenters-Globally.html

 

Huawei launches 5G multi-mode chipset and 5G CPE Pro Smartphone

Huawei officially launched its 5G multi-mode chipset Balong 5000 — along with the first commercial 5G device powered by it, the Huawei 5G CPE Pro. The Chinese tech giant claims that together, these two new products provide the world’s fastest wireless connections for one’s smartphone, home, at the office and on-the-go.  We don’t doubt that.

Balong 5000 officially unlocks the 5G era, according to Huawei. This chipset supports a broad range of 5G products in addition to smartphones, including home broadband devices, vehicle-mounted devices and 5G modules.

HUAWEI launches 5G multi-mode chipset and 5G CPE Pro

Photo courtesy of Huawei.  Huawei’s 5G CPE Pro achieves a high speed of 3.2 Gbps in live network tests. 

……………………………………………………………………………………………………………………………………………………………………………….

“The Balong 5000 will open up a whole new world to consumers,” said CEO of Huawei’s Consumer Business Group Richard Yu. “It will enable everything to sense, and will provide the high-speed connections needed for pervasive intelligence. Powered by the Balong 5000, the Huawei 5G CPE Pro enables consumers to access networks more freely and enjoy an incredibly fast connected experience. Huawei has an integrated set of capabilities across chips, devices, cloud services and networks. Building on these strengths, as the leader of the 5G era, we will bring an inspired, intelligent experience to global consumers in every aspect of their lives.”

Balong 5000 supports 2G, 3G, 4G and 5G on a single chip. It reduces latency and power consumption when exchanging data between different modes, and will significantly enhance user experience in the early stages of commercial 5G deployment.

“Balong 5000 is the first chipset to perform to industry benchmarks for peak 5G download speeds. At sub-6 GHz (low-frequency bands, the main spectrum used for 5G), Balong 5000 can achieve download speeds up to 4.6 Gbps. On mmWave spectrum (high-frequency bands used as extended spectrum for 5G), Balong 5000 can achieve download speeds up to 6.5 Gbps — 10 times faster than top 4G LTE speeds on the market today,” Huawei said.

On a 5G network, a 1-GB HD video clip can be downloaded within three seconds, and 8K video can be streamed smoothly without lag. This sets a new benchmark for home CPEs. In addition to homes, the Huawei 5G CPE Pro can also be used by small and medium-sized enterprises for super-fast broadband access.

Adopting new Wi-Fi 6 (IEEE 802.11ax) technology, the Huawei 5G CPE Pro delivers speeds of up to 4.8 Gbps. It is the first 5G CPE that supports HUAWEI HiLink protocols, bringing smart homes into the 5G era.

As a 5G pioneer, Huawei began research and development in 5G as early as 2009, and is currently the industry’s only vendor that can provide end-to-end 5G systems. Huawei has more than 5700 engineers dedicated to 5G R&D, including over 500 5G experts. In total, Huawei has established 11 joint innovation centers for 5G solutions worldwide

………………………………………………………………………………………………………………………………………………………………………………………………

The NY Times reported that in 2018, Huawei edged out Apple as the second-biggest provider of cellphones around the world. Richard Yu, who heads the company’s consumer business, said in Beijing several days ago that “even without the U.S. market we will be No. 1 in the world,” by the end of this year or sometime in 2020.

Last year, AT&T and Verizon stopped selling Huawei phones in their stores after Huawei began equipping the devices with its own sets of computer chips — rather than relying on American or European manufacturers. The National Security Agency quietly raised alarms that with Huawei supplying its own parts, the Chinese company would control every major element of its networks. The N.S.A. feared it would no longer be able to rely on American and European providers to warn of any evidence of malware, spying or other covert action.

For months, the White House has been drafting an executive order, expected in the coming weeks, that would effectively ban United States companies from using Chinese-origin equipment in critical telecommunications networks. That goes far beyond the existing rules, which ban such equipment only from government networks.  “China’s 2017 National Intelligence Law requires Chinese companies to support, provide assistance and cooperate in China’s national intelligence work, wherever they operate.”

The White House’s focus on Huawei coincides with the Trump administration’s broader crackdown on China, which has involved sweeping tariffs on Chinese goods, investment restrictions and the indictments of several Chinese nationals accused of hacking and cyberespionage. President Trump has accused China of “ripping off our country” and plotting to grow stronger at America’s expense.

References: 

https://consumer.huawei.com/en/press/news/2019/huawei-launches-5g-multi-mode-chipset-and-5g-cpe-pro/

https://www.nytimes.com/2019/01/28/us/politics/meng-wanzhou-huawei-iran.html

 

ZTE makes prototype smartphone call on China Unicom’s trial 5G network vs Huawei’s 5G NR @ 2.6GHz?

ZTE, which recently completed the 3rd phase of CMIIT IMT-2020 5G core network tests, just  announced it made the a 5G mobile call using its 5G prototype smartphone on the Guangdong branch of China Unicom’s trial 5G network in Shenzhen, China.  The trial was conducted in collaboration with China Unicom and involved placing a 3GPP Release 15 compliant New Radio (NR) non-standalone (NSA) mobile call using the prototype smartphone.  It used ZTE’s 5G end-to-end solution, including radio access network, core network, transport network and prototype device.   In addition to demonstrating a 5G call, the test verified key 5G technologies including Massive MIMO, 5G NR, non-standalone (NSA) dual connectivity, FlexE transport technology and 5G common core architecture (defined by who?).

 ZTE says “the future 5G system should be a unified network adaptable to different scenarios.”

…………………………………………………………………………………………………………………………………………………………………………………

“ZTE’s 5G solution has passed the end-to-end test in the three months after the release of the 3GPP Rel-15,” ZTE said in a statement.  “It showcases ZTE’s strong competency in 5G R&D and commercialization, demonstrating ZTE’s role as a reliable partner to global 5G operators and a key player in the 5G industry.”

Last year, ZTE announced a series of new-generation 5G base stations. The Chinese telecom and mobile phone vendor said that the new generation of 5G high/low frequency Active Antenna Unit (AAU) base stations support 3GPP release 15 “5G NR” NSA specification for the data plane.  The latest ZTE base stations combine the radio and antenna parts.  It is capable of integrating multiple frequency bands, which create what is known as the “AAU solution.” AAU supports 5G functions such as Massive MIMO and Beamforming.

Meanwhile, Huawei says it completed a 5G New Radio (NR) trial in the 2.6 GHz spectrum band.  Huawei said 2.6 GHz is one of the “excellent choices for operators to deploy 5G NSA/SA commercial network.”  The company noted that 2.6 GHz is an “abundant spectrum resource around the world, but not fully used in many areas.”  Huawei’s tests in the 2.6 GHz band follows earlier trials in the 3.5 GHz and 4.9 GHz bands.

The two Chinese telecom vendors are vying to take the lead in 5G testing under the jurisdiction of China’s IMT-2020 (5G) Promotion Group, which was established in 2013 as China’s platform to promote 5G research in that country. The 5G R&D trial established three separate phases for verifying a 5G solution: key technologies, technical solutions, and system networking.

References:

https://www.zte.com.cn/global/about/press-center/news/201901/20190118

https://www.zte.com.cn/china/topics/zte-5g-en/index.html

https://www.sdxcentral.com/articles/news/huawei-takes-5g-supremacy-shot-at-zte/2019/01/

http://techblog.comsoc.org/tag/chinas-imt-2020-promotion-group/

Verizon’s “5G” FWA Progess in Sacramento vs Huawei’s Home Broadband System

Verizon’s “5G” FWA Progresses in Sacramento, CA:

Sacramento Chief Innovation Officer Louis Stewart said in an interview with Government Technology that the California state capital became one of the first four cities nationally to debut Verizon’s (proprietary) “5G” fixed wireless access (FWA) network, along with Los Angeles, Houston and Indianapolis on October 1st.  The purpose of this and other FWA broadband networks is to deliver residential triple play services.

More “5G” offerings should arrive in Sacramento during 2019:

• Sacramento is on schedule to be one of the nation’s first 11 cities that will have the infrastructure needed to underpin “5G” and a connected future.  That includes: in-ground fiber to link light poles and traffic signals and materials to support free Wi-Fi via kiosks in 27 parks. Much of this should arrive in early 2019, the innovation officer said, calling the digital kiosks “not on hold indefinitely,” implying “the conversation is still happening.”

• Emilie Cameron, public affairs and communications director for Downtown Sacramento Partnership (DSP), the nonprofit that manages the assessment for the property-based improvement district, said the city reached out to the group in late 2017 with “high-level” information about the Verizon partnership. But she described the conversation as “conceptual.” She described the response to the kiosks as generally positive but agreed district members are interested to learn where the devices will be located, what they’ll look like and what content and services will be offered. “You don’t want anything to be in conflict with the streetscape,” Cameron said.

• Stewart said a great deal of coordination must happen to enable deployment of infrastructure and services in 2019, which he described as “a fairly heavy lift.” Sacramento, the innovation executive said, wants to ensure the project is “done right” for the community whether in the parks or in the downtown corridor, to enable “the right user experience.” Much content development for the kiosks’ digital displays remains to be completed, he said, but officials are currently in the “ideation phase.”

“If the future that everybody’s looking at is how do you build, ultimately, a connected city, kiosks fit into that, whether it be providing additional connectivity to connect the cars and autonomous cars as they essentially geolocate, driving down the streets. They could provide other smart city solutions, be they charging stations or power down the road, in some kind of way,” Stewart said.

……………………………………………………………………………………………………………………………………………………………………….

Huawei’s 5G Home Broadband System:

Huawei and U.K. carrier Three showcased a 5G home broadband demonstration using Three’s 100 megahertz of C-Band spectrum last week at the Huawei’s Global Mobile Broadband Forum in London, which IEEE Techblog has been reporting on this week and last.

The demonstration leveraged Huawei’s latest 5G-based home broadband routers to allow forum attendees to experience ultra-high-speed 5G broadband services such as cloud gaming and 4K video streaming, Huawei said.  The world’s #1 network equipment vendor highlighted that the 5G broadband service will deliver a maximum download speed of 2 Gbps, with an average of 1 Gbps for a single user.

Huawei and Three U.K. carried out a pre-commercial network test of this technology earlier this year. The two companies plan to carry out further 5G service tests in the U.K. in the coming months, which are expected to be released to the public in densely-populated urban areas and train stations, paving the way for the full commercial use of 5G networks in 2019.

“The 5G trials we carried out today demonstrate the opportunity this technology brings to the home broadband market. Huawei will continue to work with Three UK to bring customers more market-leading commercial applications of 5G,” said Yang Chaobin, President of Huawei 5G Product Line.

“Huawei is the only true 5G supplier right now,”  said Neil McRae, chief architect at British Telecom. “Others need to catch up. I’ve been to Shenzhen recently and there’s nowhere else in the world where you can see” the kind of 5G technology developments that Huawei has achieved. Other suppliers need to learn from Huawei. Others are held back by old telco issues,” McRae added.

In the UK, Three, EE and BT have all said they’re launching a 5G network in some form in 2019 (that’s 1 year before IMT 2020 standard will be completed and with no standards for virtual RAN, Cloud RAN, network slicing, scheduling, OA&M, etc).  EE has announced which cities will be first to get its 5G service.

………………………………………………………………………………………………………………………………………………………….

Analysis:

Some pundits say that 5G FWA networks have the potential to complement fiber to the home (FTTx) deployments by providing an alternative “last-mile” solution consumer and business services. In both urban and suburban regions, the ability to deploy 5G FWA will help reduce costs for operators and increase accessibility of high speed broadband for residential FWA customers.  5G FWA networking equipment also requires a much smaller footprint than traditional mobile networks, reducing requirements for government approvals of new tower locations.

Market research firm Ovum has this assessment of Huawei’s “5G” FWA strategy:

Huawei has gradually built its WTTx fixed wireless access (FWA) business into a key component of its wireless broadband portfolio. At the Huawei Global Analyst Summit earlier this month, the vendor reported significant successes for WTTx and high expectations for its future development. Although still small in scale relative to mobile broadband services, the FWA market is experiencing rapid growth, even outpacing FTTx and copper for new subscription additions in many world markets, according to Huawei’s figures.  WTTx is central to Huawei’s wireless broadband strategy.

Even though other large network equipment vendors including Nokia and Ericsson provide their own fixed wireless broadband solutions, Huawei is arguably more aggressive in its public backing of FWA. Huawei’s work with WiMAX has given it more experience with fixed wireless and it has existing FWA operator relationships it can leverage. Huawei’s FWA strategy also differs from that of competitors such as Nokia in that it places WTTx as part of its mobile products line rather than part of its fixed broadband offering.

Huawei already claims a substantial installed base for its WTTx fixed wireless offering, with 200 WTTx commercial networks in service and 50 million households connected as of end-2017. The vendor says 82 operators launched WTTx for home broadband in 2017 alone, and it expects to see a surge in demand over the next two years.

The future growth of FWA will depend on a number of factors, including the ability to deliver efficient and sustainable home broadband services to underserved and unconnected communities more economically than fiber alternatives. Huawei has identified the following four major deployment models where it believes WTTx can provide a fiber-like experience to complement fixed broadband:

  • As a home fixed broadband service for mobile operators to deliver triple-play services

  • As a complement to wireline broadband services for converged operators

  • As a DSL upgrade for wholesale broadband providers

  • As a 5G-oriented fixed wireless broadband service.

Along with a maturing WTTx ecosystem, a number of factors support the expansion of fixed wireless services. On the network side, spare cell capacity arising from the uneven traffic distribution associated with smartphones can be used more efficiently by operators introducing FWA services. On the equipment side, advances in self-install CPE, along with performance and efficiency gains from the incorporation of multiple receiver and antenna technologies and the use of massive MIMO and 256QAM at the eNodeB, is helping to deliver a high-capacity equivalent to evolved LTE. This will support the evolution toward 5G FWA.

Even so, the business case for FWA is likely to be challenging, particularly in emerging markets where population densities and ARPU are low. Huawei believes governments and regulators can promote the benefits of universal network coverage by providing more practical encouragement and financial stimulus to local mobile operators. It offers a business operation and management platform as part of its WTTx pre-sales service suite, which helps operators evaluate the potential opportunity for a fixed wireless solution based on aspects such as network capacity trends and coverage gaps in existing FTTx and wireline networks.

Ultimately, the success of fixed wireless broadband will depend on the scope it provides for operators to monetize services.

Related Content:

Huawei’s “All Bands Go to 5G” Strategy Explained; Partnership with China Telecom Described

Huawei unveiled its “All Bands Go to 5G” strategy for the evolution towards a 5G wireless network at its  Global Mobile Broadband Forum 2018 in London last week. This strategy provides suggestions for future development of the wireless network in three key aspects: simplified site, simplified network, and automation.

Huawei graphic

Huawei Launches the Evolution Strategy for 5G-oriented Wireless Target Network

……………………………………………………………………………………………………………………………………………………………………………

I. Global commercial use of 5G networks has now entered the fast lane.

Massive wireless connectivity has become an inevitable trend.  Data traffic on global mobile broadband (MBB) networks has increased rapidly. By 1st half of 2018, the data of usage (DOU) for a number of global operators has exceeded 10 GB, and that in certain Middle East regions has even reached 70 GB. Releasing data traffic helps to promote a positive MBB business cycle in the global wireless industry and ushers in a new era of traffic operation.

By October 2018, new fixed wireless access (FWA) services have been put into commercial use on about 230 networks. About 75 million families can now enjoy the benefits of FWA-based home broadband (HBB) services. In the future, the larger bandwidth capability of 5G will provide fiber-like HBB user experience and enable diverse home entertainment applications such as 4K/8K UHD video and AR/VR. At the same time, new IoT connections are becoming a new source of potential growth for operators. LTE NB-IoT is undergoing rapid development and has seen 58 commercial networks around the world, with industry applications providing millions of connections such as smart gas, water, white goods, firefighting, and electric vehicle tracking. 5G technologies will offer more reliable connection capabilities with shorter latency. Massive wireless connectivity has become an inevitable trend.

The development of the global 5G industry is accelerating in 2018. According to the 5G spectrum report published by GSA in November 2018, the UK, Spain, Latvia, Korea, and Ireland have officially released spectrum resources dedicated for 5G by August 2018. In addition, 35 countries have scheduled related plans. The 5G industry supply chain is steadily growing more and more mature.

Huawei claims to have released 5G commercial CPEs in 2018 (???), and multiple 5G smartphones will be launched in 2019. According to the report released by GSMA, 182 global operators are conducting tests on 5G technologies and 74 operators have announced plans for 5G commercial deployment. Global commercial use of 5G networks has now entered the fast lane, according to Huawei (but not this author).

5G development will enable more commercial application scenarios and promote the continuous development of a digital society. Under such circumstances, Huawei has proposed a new eMBB (enhanced Mobile Broad Band) industry vision for Cloud X featuring smart terminals, broad pipes, and cloud applications. For example, Huawei has shifted the most complex processes of rendering, real-time computing, and service content to the cloud. Thanks to transmission data streams using large bandwidth and ultra-low latency on the 5G network, as well as encoding and decoding technologies that match the cloud and terminals, applications such as Cloud AR/VR can be deployed anywhere anytime, according to the company.

Huawei believes that AI technologies can be adopted in the communication industry. AI-based automation of network planning, deployment, optimization, and service provisioning will enable network O&M to be simplified, unleash network potential, and make networks more intelligent.

II. “LTE Evolution+5G NR” is gaining industry’s consensus for 5G wireless networks.

In the 5G era, wireless spectrum evolution is divided into two phases:

Phase 1: Sub-3 GHz spectrum resources evolve to LTE and 5G non stand alone (based on 3GPP release 15 NR) high frequency bands are introduced.

Phase 2: Sub-3 GHz spectrum resources evolve to 5G NR. “LTE Evo+NR” is realized on the target network.

Therefore, target network evolution in the 5G era can be summarized as “LTE Evolution+5G NR.” In the process of achieving this goal, the global wireless network faces the following challenges:

1.  OPEX increases year by year. From 2005 to 2017, global operators’ OPEX/revenue percentage is increased from 62% to 75%. In the future, the coexistence of 2G, 3G, 4G, and 5G will increase the complexity of network O&M. In particular, site TCO is high. Site deployment still faces several issues such as difficult site acquisition, high engineering costs, and high site rentals.

2. 4G-LTE basic services fall back to 2G or 3G. Generally, insufficient 4G network coverage causes VoLTE services to fall back to 2G or 3G, deteriorating voice experience. NB-IoT/eMTC services also require better 4G network coverage. As a result, it is difficult for operators to shut down 2G and 3G networks.

–>The coexistence of four RAN technologies leads to more complex network operation and presents difficulties in reducing OPEX.

III. 5G-oriented simplified networks are built to effectively meet challenges and promote 5G business success.

Peter Zhou, CMO of Huawei Wireless Network Product Line, illustrated the evolution strategy for 5G-oriented wireless target network. This strategy aims to help operators resolve the preceding challenges and commercialize 5G. The evolution strategy includes three key aspects: simplified site, simplified network, and automation.

Simplified site enables full outdoor base stations and facilitates site acquisition, deployment, and TCO saving.

Along with the development of Moore’s Law, the 7 nm technology has enjoyed widespread commercial adoption throughout the chip manufacturing industry, and BBUs are becoming more and more integrated. In recent years, lithium battery technology has seen rapid development, and the energy density of lithium batteries is far more superior to that of lead-acid batteries. The development of new technologies makes full outdoor wireless base stations a reality. Peter Zhou pointed out, “Using componentized outdoor BBUs, blade power modules, and blade batteries, full outdoor macro base stations can be deployed on poles without shelters or cabinets. This greatly reduces the upgrade cost of existing sites, decreases the difficulty and cost of obtaining new sites, and helps operators reduce TCO by 30% and above.”

Antenna reconstruction is required for 5G deployment on the C-band. Currently, 70% urban sites cannot deploy new antennas due to insufficient antenna space. In order to resolve this problem, Huawei proposes the “1+1” antenna solution. That is, one multi-band antenna is used to support all sub-3 GHz bands, and one Massive MIMO AAU is used to support C-band NR. In total, two antennas are able to support all operator’s frequency bands. This solution greatly simplifies site space, reduces site OPEX, and realizes 5G NR deployment with insufficient antenna space.

Simplified network realizes the construction of an LTE full-service foundation network and ensures “Zero Fallback” for three basic services.

In the 5G era, the coexistence of multiple RAN technologies (2G/3G/4G/5G) results in complex networks and high O&M costs. Therefore, basic voice, IoT, and data services need to be migrated to the LTE network so that the LTE network becomes the bearer network for basic services and 2G and 3G networks enter the life cycle development phase. Huawei’s Peter Zhou emphasized that, “The LTE network needs to be built as a full-service foundation network to achieve ‘Zero Fallback’ for basic services such as voice, IoT, and data. Therefore, LTE must be planned based on the coverage of basic services rather than the traditional population coverage.”

“Simplified site, simplified network, and automation help operators reduce TCO, simplify the network architecture, reduce operation costs, and fully unleash the network potential. This lays a solid foundation for the successful commercial use of 5G networks and helps the industry to identify the goal and direction for future network evolution. Huawei also wishes to work more closely with industry partners to innovate continuously, build a 5G business ecosystem, and finally achieve a better connected digital society.”

……………………………………………………………………………………………………………………………………………….

Separately, China Telecom announced it had partnered with Huawei for  investment in 5G innovation and has begun researching how to commercialize 5G technology. Both parties intend to leverage their advantages to develop the 5G service innovation base, build an industry ecosystem alliance, and research the usage scenarios and business models of 5G services. Huawei Wireless X Labs in Shenzhen, simulates 5G technologies and usage scenarios, and works with upstream and downstream industry partners to jointly develop industry standards and plans. China Telecom leverages the resources of 5G trial networks and existing industry customers to develop new 5G applications, driving the development of the entire 5G industry and improving China Telecom’s influence in the 5G field.

Application Models

Based on the first of six 5G trial network, China Telecom Shenzhen is exploring 5G application models. During the 5G Unmanned Aerial Vehicle (UAV) flight test and inspection demonstration, remote control personnel experienced VR capabilities and remote HD video transmission over a low-latency 5G network. Both the maiden test flight and inspection were completed successfully, demonstrating the ability of 5G to support UAV applications. This means that aerial photography, unattended inspection, logistics transportation, security identification, and other industrial applications will be driven by the rapid development of 5G in the telecom sector, creating a strong foundation for China Telecom to explore new vertical industries. In tests on Gbps-level experience buses, 5G provided an average speed of more than 1 Gbps and a peak rate of 3 Gbps, allowing passengers to experience mobile 4K IPTV, 16-channel HD video streams, and VR applications while traveling. This paves the way for China Telecom’s plans of 5G and IPTV convergence.

To achieve its goal of connecting 50 5G sites by the end of 2018 while constructing its transport network, China Telecom Shenzhen upgraded its existing IP RAN to deploy and verify 5G technologies, enabling the co-existence of both 4G and 5G. In addition, the operator gained valuable engineering experience and developed scenario-based solutions for subsequent 5G construction.

Addressing 5G challenges for the smooth evolution of live networks

While bringing a wide variety of services, 5G also brings challenges in terms of bandwidth, latency, connections, and the slicing of transport networks. GNodeBs, however, deliver five to ten times more bandwidth than eNodeBs. 5G services such as Internet of Vehicles (IoV) require the latency to be one-tenth of what they are with 4G. In terms of connections, the cloudification of wireless and core networks brings full-mesh connections, requiring flexible scheduling on the transport network. In addition, 5G’s differentiated services require network slicing, with a focus on isolation and the automated management of network slices on transport networks. To cope with these challenges, China Telecom Shenzhen assessed the existing IP RAN, opting to upgrade and expand core and aggregation devices and replace specific access devices for 5G transport. To quickly deploy 5G services and fully reuse the existing network, China Telecom Shenzhen implemented the smooth evolution solution for the transport network in pilot areas.

Network upgrade for co-existence of 4G and 5G

The co-deployment of eNodeB and gNodeB is the optimal choice for transport networks, and China Telecom Shenzhen verified different co-existence solutions. Access ring devices can be upgraded and expanded to satisfy the requirements of 50GE ring networking and allow 4G and 5G services to share the same access ring. When access devices need to be replaced, China Telecom Shenzhen can establish a new 5G access ring, which can share the core and aggregation layer to achieve unified service bearing.

E2E large capacity to meet HD video transmission requirements

As China Telecom continues to explore 5G services, the convergence of 5G and IPTV has become its focus. To meet the requirements of 4K IPTV video transmission using 5G, the transport network must have large bandwidth transmission capabilities. China Telecom Shenzhen upgraded the access layer from an eNodeB GE ring to a 50GE ring, and upgraded the core and aggregation layer from a 10GE network to a 100GE network, allowing high-bandwidth connections between base stations and the core network.

References:

https://globenewswire.com/news-release/2018/11/26/1657057/0/en/Huawei-Launches-the-Evolution-Strategy-for-5G-oriented-Wireless-Target-Network.html

https://www.lightreading.com/partner-perspectives/5g-field-trials-show-the-power-of-applications-/a/d-id/747787?

http://techblog.comsoc.org/2018/11/23/huawei-has-22-commercial-5g-contracts-u-s-government-warns-allies-about-the-company/

http://techblog.comsoc.org/2018/11/06/gsma-5g-spectrum-guide-vs-wrc-2019/

Huawei has 22 commercial 5G contracts; U.S. government warns allies about the company

1.  Huawei has signed 22 commercial contracts for 5G as operators prepare for the commercial launch of the new technology.

The company’s executive director and president of carrier business group Ryan Ding made the announcement during a keynote speech at the Global Mobile Broadband Forum (MBBF) in London.

null

 

During his speech, Ding noted that a number of operators are expediting 5G commercial deployment in order to secure the first mover advantage. Major countries representing a third of the global population are among the first adopters of the technology.

“So far, we have signed 22 commercial contracts for 5G, and we are working with over 50 carriers on 5G commercial tests,” Ding said.

“Through heavy investment and continuous innovation, we are committed to helping carriers deploy 5G networks easily, rapidly, and cost-effectively. And we are ready to work with all stakeholders to drive robust development of the 5G industry.”

Ding spoke of the technical capabilities of Huawei’s 4G/5G kit, such as an uplink and downlink decoupling that can achieve co-coverage of 4G and 5G using C-band spectrum, and the ability to offer end-to-end solutions meant it was an ideal partner for operators.Ding added that the first 5G smartphones will be available next year, and phone makers are expected to launch budget 5G phones priced at around $100 soon after the commercial roll-out of 5G networks.

He also mentioned the relatively small size and lightweight of Huawei’s wireless networking equipment. This will appeal to operators struggling to add more equipment to mobile sites, especially in urban areas

“Every new generation of network comes with new challenges, and this applies to 5G commercial deployment, too,” said Ding. “We take complexity and deliver simplicity. That means we will provide innovative solutions to address challenges in 5G commercialization. Our close collaboration with carriers will help them find the easy way to 5G.

“Huawei has earned customer recognition for our leading 5G end-to-end capabilities and innovative products and solutions. So far, we have signed 22 commercial contracts for 5G, and we are working with over 50 carriers on 5G commercial tests. Through heavy investment and continuous innovation, we are committed to helping carriers deploy 5G networks easily, rapidly, and cost-effectively. And we are ready to work with all stakeholders to drive robust development of the 5G industry.”

The 5G contracts could also be viewed as a vote of confidence in Huawei. It has effectively been frozen out of the U.S. and Australian markets due to national security fears, specifically that the use of its equipment risks the possibility of Chinese government backdoors.

–>The effort to ban Huawei is further described in 2. below.

………………………………………………………………………………………………………………….

2. U.S.  Asks Allies to Drop Huawei – worried about potential Chinese meddling in 5G networks, but foreign carriers may balk

WSJ article front page lead story on 23 November 2018

The U.S. government has initiated an extraordinary outreach campaign to foreign allies, trying to persuade wireless and internet service providers in these countries to avoid telecommunications equipment from China’s Huawei Technologies Co., according to people familiar with the situation.

American officials have briefed their government counterparts and telecom executives in friendly countries where Huawei equipment is already in wide use, including Germany, Italy and Japan, about what they see as cybersecurity risks, these people said. The U.S. is also considering increasing financial aid for telecommunications development in countries that shun Chinese-made equipment, some of these people say.

One U.S. concern centers on the use of Chinese telecom equipment in countries that host American military bases, according to people familiar with the matter. The Defense Department has its own satellites and telecom network for especially sensitive communications, but most traffic at many military installations travels through commercial networks.

The initiative also coincides with rising tensions between Washington and Beijing on other fronts this year as the Trump administration moves to counter what some U.S. officials say they see as years of unbridled Chinese aggression. Washington has placed tariffs on some imports from China, drawing retaliation from Beijing. The U.S. has also tightened up foreign-investment rules targeting Chinese deal making.

Officials familiar with the current effort say concerns about telecom-network vulnerabilities predate the Trump era and reflect longstanding national-security worries.

The overseas push comes as wireless and internet providers around the world prepare to buy new hardware for 5G, the coming generation of mobile technology. 5G promises superfast connections that enable self-driving cars and the “Internet of Things,” in which factories and such everyday objects as heart monitors and sneakers are internet-connected.

U.S. officials say they worry about the prospect of Chinese telecom-equipment makers spying on or disabling connections to an exponentially growing universe of things, including components of manufacturing plants.

“We engage with countries around the world about our concerns regarding cyberthreats in telecommunications infrastructure,” a U.S. official said. “As they’re looking to move to 5G, we remind them of those concerns. There are additional complexities to 5G networks that make them more vulnerable to cyberattacks.”

The briefings are aimed at dissuading governments and telecom executives from using Huawei network components in both government and commercially operated networks. A core focus of the briefings is Beijing’s ability to force Chinese corporations to comply with government requests from government authorities, a U.S. official said.

Some major carriers say Huawei’s broad offering of components, lower costs and high quality make it a difficult provider to do without.
Some major carriers say Huawei’s broad offering of components, lower costs and high quality make it a difficult provider to do without PHOTO:MICHAEL HANSON FOR THE WALL STREET JOURNAL
………………………………………………………………………………………………………………………………………………………………

The talking points also emphasize how wireless and internet networks in a few years could be more susceptible to cyberattacks or espionage, people familiar with the briefings said. Today’s cellular-tower equipment, for instance, is largely isolated from the “core” systems that transfer much of a network’s voice and data traffic. But in the 5G networks telecom carriers are preparing to install, cellular-tower hardware will take over some tasks from the core—and that hardware could potentially be used to disrupt the core via cyberattacks. For that reason, U.S. officials worry that Huawei or ZTE cellular-tower equipment could compromise swaths of a telecom network.

Huawei is the world’s No. 2 smartphone maker behind Samsung Electronics Co. It is the global leader for telecom equipment, such as the hardware that goes into cellular towers, internet networks and other infrastructure that enables modern communication.

Huawei has long said it is an employee-owned company and isn’t beholden to any government, and has never used its equipment to spy on or sabotage other countries. It said its equipment is as safe as that of Western competitors, such as Finland’s Nokia Corp. and Sweden’s Ericsson , because all manufacturers share common supply lines.

In a statement Friday, Huawei said it has its customers’ trust and was “surprised by the behaviors of the U.S. government” detailed in this article. “If a government’s behavior extends beyond its jurisdiction, such activity should not be encouraged,” it said.

The Trump administration and Congress this year initiated a multipronged push to tighten up restrictions on Huawei and other Chinese telecom-equipment manufacturers, including ZTE Corp. The Federal Communications Commission, for instance, moved to restrict federal subsidies to some carriers if they buy Chinese gear.

Even without U.S. business, Huawei dominates the world’s telecom-equipment market. Last year, the company held a 22% share globally, according to research firm IHS Markit Ltd. Nokia had 13%, Ericsson had 11% and ZTE was in fourth at 10%.  Dell’Oro Group says Huawei has a 38% revenue market share in Asia Pacific, a 30% share in Europe, but only a 2% share in North America.

Some other members of the “Five Eyes,” a five-member intelligence pact among English-speaking countries that includes the U.S., have also publicly challenged Huawei. The Australian government in August banned Huawei and ZTE from its 5G networks. In October, U.K. authorities said they were reviewing the makeup of its telecom-equipment market, a move industry leaders said was clearly aimed at Huawei.

Still, there is a big hitch to U.S. efforts to curb Huawei overseas: The company is already popular among carriers in allied countries, including some of America’s closest military partners. Some major carriers in these places say Huawei offers the most products and often customizes them to fit a carrier’s needs. They also cite lower costs and high quality.

In an effort to narrow that advantage in some countries, Washington is considering ways to increase funding from various U.S. government sources to subsidize the purchase and use of non-Chinese equipment, according to people familiar with the matter. Countries buying Chinese telecommunications equipment would be ineligible for such subsidies.

In the past year, U.S. officials, including representatives from the National Security Council and Commerce, Defense and State departments, worked together to produce briefing notes about why they believe Chinese telecom equipment poses national-security risks, people familiar with the matter said. One U.S. government official said they focused on Huawei but also included ZTE, a Chinese rival with a much smaller business outside China.  A ZTE representative declined to comment on the U.S. effort.

Washington has circulated the notes to national-security officials as well as to embassies, with the idea that they can deliver the message to foreign officials and telecom executives, some of the people said.

A spokesman for the Commerce Department said it would “remain vigilant against any threat to U.S. national security.” Spokesmen for the National Security Council and the State Department declined to comment. The Defense Department didn’t return a request for comment.

U.S. officials have briefed counterparts in Germany, which has signaled a new wariness toward Huawei, according to people familiar with the matter. Huawei this month opened a lab in Germany similar to one it already operates in Britain, where Huawei products are inspected for security flaws. The U.K. government said in July it found shortcomings in the process.

Germany’s Federal Office for Information Security declined to comment.

American officials have also briefed Japanese officials about Huawei, people familiar with the matter said. A Japanese government official said “we share various information with the U.S.,” but declined to comment on specifics. Japanese officials in August said they were studying restrictions on Huawei.

………………………………………………………………………………………………………………………………………………………………….
Related Content:

 

 

 

Huawei launches “5G Power Solution” for global wireless telcos

Huawei has launched what it says is the industry’s first full-range 5G power solutions for wireless network operators which will address an expected 100% increase in 5G energy consumption when compared to 4G power dissipation.

The 5G Power series of products are designed to deliver an end-to-end, scalable energy solution for both newly built and upgradeable cell sites.

It has been designed utilizing technology including peak shaving, linked voltage boosting and energy slicing to provide a ‘one site one cabinet’ design.

Huawei said its research suggests that more than 70% of cell sites will face challenges such as insufficient power, battery and distribution capacity, and more than 30% of sites need grid modernization to match the power demands of 5G.  Its solution has been designed to help network operators reduce capex and opex while improving energy reliability to meet the high reliability and low latency requirements of future mobile applications.

Huawei launched 5G Power series solutions to ensure that energy evolution is simpler, more reliable and more efficient in the 5G network process.  Huawei believes that site synergy, network synergy, business synergy will be the direction for telecom energy in the future.

From its press release (reference below):

With the design concept of ‘one site, one cabinet’ and ‘one band, one blade power,’ Huawei’s new Power Solution adopts innovative technology of peak shaving, linked voltage boosting and energy slicing, and fully considers the capacity expansion of cooling and battery backup. Facing the capacity expansion requirement in the future, Huawei Power Solution enables carriers to avoid energy modernization and get 5G network overlaid quickly.

“Based on our deep understanding of pain points carriers are facing in the progress of network evolving, Huawei 5G Power Solution achieve end-to-end synergy from wireless network to telecom energy, which will further enable carriers to build networks quickly, reduce site energy consumption, and maximize their investment value,” Huawei president of telecom energy Tao Hongming said.

“As a telecom energy supplier who is able to provide end-to-end ICT solutions, Huawei is willing to work with carriers and industry partners on continuous innovation and exploration, and jointly solve the energy challenges in 5G era,” Tao added.

https://www.huawei.com/en/press-events/news/2018/10/huawei-first-5g-power-solution

 

Recent Posts