Will Hyperscale Cloud Companies (e.g. Google) Control the Internet’s Backbone?

Rob Powell reports that Google’s submarine cable empire now hooks up another corner of the world. The company’s 10,000km Curie submarine cable has officially come ashore in Valparaiso, Chile.

The Curie cable system now connects Chile with southern California. it’s a four-fiber-pair system that will add big bandwidth along the western coast of the Americas to Google’s inventory.  Also part of the plans is a branching unit with potential connectivity to Panama at about the halfway point where they can potentially hook up to systems in the Caribbean.

Subcom’s CS Durable brought the cable ashore on the beach of Las Torpederas, about 100 km from Santiago. In Los Angeles the cable terminates at Equinix’s LA4 facility, while in Chile the company is using its own recently built data center in Quilicura, just outside of Santiago.

Google has a variety of other projects going on around the world as well, as the company continues to invest in its infrastructure.  Google’s projects tend to happen quickly, as they don’t need to spend time finding investors to back their plans.

Curie is one of three submarine cable network projects Google unveiled in January 2018. (Source: Google)

……………………………………………………………………………………………………………………………………………………………………………………..

Powell also wrote that SoftBank’s HAPSMobile is investing $125M in Google’s Loon as the two partner for a common platform, and Loon gains an option to invest a similar sum in HAPSMobile later on.

Both companies envision automatic, unmanned, solar-powered devices in the sky above the range of commercial aircraft but not way up in orbit. From there they can reach places that fiber and towers don’t or can’t. HAPSMobile uses drones, and Loon uses balloons. The idea is to develop a ‘common gateway or ground station’ and the necessary automation to support both technologies.

It’s a natural partnership in some ways, and the two are putting real money behind it. But despite the high profile we haven’t really seen mobile operators chomping at the bit, since after all it’s more fun to cherry pick those tower-covered urban centers for 5G first and there’s plenty of work to do. And when they do get around to it, there’s the multiple near-earth-orbit satellite projects going on to compete with.

But the benefit both HAPSMobile and Loon have to their model is that they can, you know, reach it without rockets.

…………………………………………………………………………………………………………

AWS’s Backbone (explained by Sapphire):

An AWS Region is a particular geographic area where Amazon decided to deploy several data centers, just like that. The reason behind a chosen area is to be close to the users and also to have no restrictions. At the same time, every Region is also connected through private links with other Regions which means they have a dedicated link for their communications because for them is cheaper and they also have full capacity planing with lower latency.

What is inside a Region?

  • Minimum 2 Availability Zones
  • Separate transit centers (peering the connections out of the World)

How transit centers work?

AWS has private links to other AWS regions, but they also have private links for the feature AWS Direct Connect – a dedicated and private & encrypted (IPSEC tunnel) connection from the “xyz” company’s datacenters to their infrastructures in the Cloud, which works with the VLANs inside (IEEE 802.1Q) for accessing public and private resources with a lower latency like Glacier or S3 buckets and their VPC at the same time between <2ms and usually <1ms latency. Between Availability Zones (inter AZ zone) the data transit there’s a 25TB/sec average.

From AWS Multiple Region Multi-VPC Connectivity:

AWS Regions are connected to multiple Internet Service Providers (ISPs) as well as to Amazon’s private global network backbone, which provides lower cost and more consistent cross-region network latency when compared with the public internet.  Here is one illustrative example:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

From Facebook Building backbone network infrastructure:

We have strengthened the long-haul fiber networks that connect our data centers to one another and to the rest of the world.

As we bring more data centers online, we will continue to partner and invest in core backbone network infrastructure. We take a pragmatic approach to investing in network infrastructure and utilize whatever method is most efficient for the task at hand. Those options include leveraging long-established partnerships to access existing fiber-optic cable infrastructure; partnering on mutually beneficial investments in new infrastructure; or, in situations where we have a specific need, leading the investment in new fiber-optic cable routes.

In particular, we invest in new fiber routes that provide much-needed resiliency and scale. As a continuation of our previous investments, we are building two new routes that exemplify this approach. We will be investing in new long-haul fiber to allow direct connectivity between our data centers in Ohio, Virginia, and North Carolina.

As with our previous builds, these new long-haul fiber routes will help us continue to provide fast, efficient access to the people using our products and services. We intend to allow third parties — including local and regional providers — to purchase excess capacity on our fiber. This capacity could provide additional network infrastructure to existing and emerging providers, helping them extend service to many parts of the country, and particularly in underserved rural areas near our long-haul fiber builds.

………………………………………………………………………………………………….

Venture Beat Assessment of what it all means:

Google’s increasing investment in submarine cables fits into a broader trend of major technology companies investing in the infrastructure their services rely on.

Besides all the datacenters AmazonMicrosoft, and Google are investing in as part of their respective cloud services, we’ve seen Google plow cash into countless side projects, such as broadband infrastrucure in Africa and public Wi-Fi hotspots across Asia.

Elsewhere, Facebook — while not in the cloud services business itself — requires omnipresent internet connectivity to ensure access for its billions of users. The social network behemoth is also investing in numerous satellite internet projectsand had worked on an autonomous solar-powered drone project that was later canned. Earlier this year, Facebook revealed it was working with Viasat to deploy high-speed satellite-powered internet in rural areas of Mexico.

While satellites will likely play a pivotal role in powering internet in the future — particularly in hard-to-reach places — physical cables laid across ocean floors are capable of far more capacity and lower latency. This is vital for Facebook, as it continues to embrace live video and virtual reality. In addition to its subsea investments with Google, Facebook has also partnered with Microsoft for a 4,000-mile transatlantic internet cable, with Amazon and SoftBank for a 14,000 km transpacific cable connecting Asia with North America, and on myriad othercable investments around the world.

Needless to say, Google’s services — ranging from cloud computing and video-streaming to email and countless enterprise offerings — also depend on reliable infrastructure, for which subsea cables are key.

Curie’s completion this week represents not only a landmark moment for Google, but for the internet as a whole. There are currently more than 400 undersea cables in service around the world, constituting 1.1 million kilometers (700,000 miles). Google is now directly invested in around 100,000 kilometers of these cables (62,000 miles), which equates to nearly 10% of all subsea cables globally.

The full implications of “big tech” owning the internet’s backbone have yet to be realized, but as evidenced by their investments over the past few years, these companies’ grasp will only tighten going forward.

4 thoughts on “Will Hyperscale Cloud Companies (e.g. Google) Control the Internet’s Backbone?

  1. How the Internet Travels Across Oceans

    Nearly 750,000 miles of cable already connect the continents to support our insatiable demand for communication and entertainment. Companies have typically pooled their resources to collaborate on undersea cable projects, like a freeway for them all to share.

    But now Google is going its own way, in a first-of-its-kind project connecting the United States to Chile, home to the company’s largest data center in Latin America.

    “People think that data is in the cloud, but it’s not,” said Jayne Stowell, who oversees construction of Google’s undersea cable projects. “It’s in the ocean.”

    Getting it there is an exacting and time-intensive process. A 456-foot ship named Durable will eventually deliver the cable to sea. But first, the cable is assembled inside a sprawling factory a few hundred yards away, in Newington, N.H. The factory, owned by the company SubCom, is filled with specialized machinery used to maintain tension in the wire and encase it in protective skin.

    https://www.nytimes.com/interactive/2019/03/10/technology/internet-cables-oceans.html

  2. Update: Google building 1st subsea cable between Europe, Africa

    Google has announced Equiano, a new private subsea cable that will connect Portugal and South Africa. The cable will be built by Alcatel Submarine Networks and the first phase of the project is scheduled for completion in 2021. In April, the WSJ first reported the company’s plans for this cable.

    This is the company’s third private cable after Dunant between Europe and the U.S., and Curie, which spans between the U.S. and Chile. In addition, Google is also a partner in a number of cable consortiums that operate cables that span the globe.

    Equiano, which was named after Nigerian writer and abolitionist Olaudah Equiano, will be the first subsea cable that uses optical switching at the fiber pair level. This makes it easier to allocate capacity as needed.

    Google also stresses that this new cable is able to carry about 20 times the capacity of the last cable that was built to serve this region. The cable will feature numerous branching units that it can then use to connect lines to other countries along the way. The first branch will connect the cable to Lagos, Nigeria. Other branches will follow in the future.

    Unlike some of its competitors, Google does not currently operate any data centers on the African continent and has yet to share any plans to do so. This makes fast connections to Europe even more of a necessity, though it’s also possible that Google is putting this new cable in place to prepare for a data center launch in South Africa, for example.

    https://techcrunch.com/2019/06/28/google-is-building-a-new-private-subsea-cable-between-portugal-and-south-africa/
    …………………………………………………………………………………………………………………………..

    Stretching from Europe all the way to Africa, Google is introducing its new private subsea cable called ‘Equiano’

    Fully funded by Google, Equiano would start in Western Europe and run along the West Coast of Africa with branching units along the way that could be put to use to extend connectivity to additional African countries and the first phase of the project is expected to be complete in 2021.

    “‘Equiano’ would be the first subsea cable to incorporate optical switching at the fiber-pair level, which would greatly simplify the allocation of cable capacity, giving us the flexibility to add and reallocate it in different locations as needed,” Google wrote in a blogpost on Friday.

    Named for Olaudah Equiano, a Nigerian-born writer and abolitionist who was enslaved as a boy, the Equiano cable is based on space-division multiplexing (SDM) technology, with approximately 20 times more network capacity than the last cable built to serve this region.

    The contract to build the cable with Alcatel Submarine Networks was signed in Q4 2018.

    According to the post, between 2016 and 2018, Google invested $47 billion in capex and Equiano is further expected to enhance the world’s highest capacity and best-connected international network.

    “We’re excited to bring Equiano online and look forward to working with licensed partners to bring Equiano’s capacity to even more countries across the African continent,” the post added.

    Unlike some of its competitors, Google does not currently operate any data centers on the African continent and has yet to share any plans to do so. This makes fast connections to Europe even more of a necessity, though it’s also possible that Google is putting this new cable in place to prepare for a data center launch in South Africa, TechCrunch reported.

    https://cio.economictimes.indiatimes.com/news/internet/google-building-1st-subsea-cable-between-europe-africa/70006762

  3. There is definitely a great deal to find out about this issue of who will control the Internet backbone. Looks like the hyperscale cloud companies are in better position than the global telcos (AT&T, NTT, BT, Telia, etc). I like all of the points you made. Many thanks

  4. “The goal here is to work with the carriers,” explained Sunay Tripathi, Google’s new director and head of products for telecom and the “distributed cloud edge.”

    Tripathi, who spoke at a 5G Future Forum event here, typified the new trend: He cut his teeth at Sun Microsystems before helping to found software-defined networking company Pluribus Networks. For the past three years, he was the CTO of Deutsche Telekom’s MobiledgeX. According to his LinkedIn profile, he joined Google in July. “We are rearchitecting a lot of the underlying network, and that creates a lot of opportunity,” Tripathi explained.

    Google, Microsoft and Amazon have long played in the telecom industry as software, IT and cloud suppliers. And like most modern enterprises across all industries, mobile network operators have increasingly pushed their IT operations into the public cloud.

    But during the past two years, Google, Microsoft and Amazon have all begun developing cloud computing products specifically designed to host wireless providers’ network functions. Whether it’s Microsoft’s Azure for Operators or Google’s Anthos for Telecom, it’s intended to get network operators to put their crown jewels – their core network functions – into a hyperscale cloud.

    And it’s something all three cloud companies are serious about, judging from their telecom hiring sprees or their acquisitions in the space. Microsoft, for example, last year spent an estimated $1.8 billion buying longtime telecom vendors Affirmed Networks and Metaswitch Networks.

    New ideas and new disruption

    According to analysts, the entry of the public cloud hyperscalers represents a major new strategic turn in the industry, considering network operators have historically retained tight control over their networking systems. And though most have been moving toward cloud technologies they own and operate, few have agreed to run their networking software in a public cloud operated by a hyperscaler.

    “In outsourcing the infrastructure to cloud providers, telcos risk losing control of different aspects of their network and technology roadmap over the long term,” warned analyst Frank Rayal of Xona Partners in a post to his website titled “How telcos outsourced their brains.”

    Nonetheless, there are increasing indications that operators around the world are more than open to the idea. “The technologies that we will build [with the cloud] will let others consume our network,” explained Luciano Ramos, SVP of network development, planning and engineering for Rogers Comunications in Canada.

    Indeed, AT&T recently announced it would transition its 5G core network operations into Microsoft’s cloud over the next three years. And Dish Network plans to run all of its network operations in the Amazon Web Services cloud.

    According to Rakuten’s outspoken mobile chief, Tareq Amin, it’s ultimately necessary. He said he designed Rakuten’s mobile network in Japan to natively run in the cloud, and that it required a major shift in his team’s thinking. “I wanted to pick the right mentality” when staffing up Rakuten Mobile, he said. “It was easier to deploy cloud because the Rakuten people wanted to be open to new ideas,” he said. “They were open to new ideas and new disruption.”

    Amin made his comments during a keynote address at the MWC LA show here. He made sure to point out that Rakuten Mobile in Japan now counts around 5 million customers, and boasts leading network metrics. It was essentially Amin’s victory lap after announcing his plan to build such a network just a few years ago, at the MWC Barcelona show in 2019.

    https://www.lightreading.com/service-provider-cloud/that-time-public-cloud-hyperscalers-invaded-mwc-la/a/d-id/773111?

Comments are closed.