Broadband Forum SDN/NFV Work Area launches four new projects at Bangkok Q4-2023 meeting

Introduction:

The Broadband Forum says their open standards and open broadband projects continue to deliver vital importance to companies, both small and large, as we focus on the latest industry trends, and extract most value to consumers, and transition to services-led broadband.

Progress on cloud based SDN/NFV was one of many accomplishments at this December’s meeting in Bangkok, Thailand.  SDN and NFV are both software components, but they are different. SDN virtualizes the management of networks, while NFV converts network processes into software applications. SDN separates the data and control planes, allowing operators to manage features from a centralized location. NFV virtualizes network infrastructure, separating functions that typically run in hardware and implementing them as software.  We believe the Forum’s SDN/NFV activity is very important as neither SDN or NFV have lived up to their potential and promise, primarily because they were premises based, rather than implemented in the cloud.

From a business perspective, the migration to SDN and NFV in the broadband network facilitates agile deployment of new customized distributed broadband services and applications. This enables new revenues and provider differentiation while managing Capex and OpEx both in the access network and in single and multi-tenant residential and business locations by implementing an agile network and enabling autonomous and automated operations.

Project Scope: Includes migration to and deployment of SDN/NFV-enabled implementations across all aspects of the broadband network. The scopes are:

  • the definition of a new cloud-based environment with its related requirements, called Cloud-based Central Office (CloudCO)
  • the architectural requirements, the interface specification among all the components with their related data models including the control-user plane separation interface for disaggregated access nodes
  • the specification of virtual network functions and interface with their related data models
  • the definition of requirements, interfaces and data models for autonomous and automated networks

Target: Define the Cloud-based Central Office (CloudCO) architecture using SDN, NFV, and cloud technologies to support network functions fundamentally redefining the architecture of access and aggregation networks. Support the migration of SDN and NFV into all aspects of broadband networks, facilitating the agile deployment of new distributed broadband services and applications for operators with greater operational efficiency and lower cost.

Progress: The SDN/NFV Work Area continues to progress the CloudCO project for virtualized network functions, SDN management and control and domain orchestration capabilities in a broadband network. The main activities currently ongoing are related to the disaggregation of the Access Node and defining the related interfaces. The Cloud Component Project Stream is continuing work on Automated Intelligence Management (AIM), Smart SD-WAN and virtual OMCI.

Three key documents near completion. TR-486 is set to be published in December 2023, WT-477 moves to Final Ballot, and WT-386 Issue 2 is currently resolving Straw Ballot comments.

Outcomes:

A productive quarterly meeting for the SDN/NFV Work Area saw four new projects approved. This was WT-403 Amendment 1 ‘PON Abstraction Interface for Time-Critical Applications’, WT-384 Issue 2 ‘CloudCO 2.0’, WT-436 Issue 2 ‘AIM Framework and Architecture’, and a project on Broadband Network Data Collection (BNDC).

A new Open Broadband proposal on CloudCO App SDK was presented to the Broadband Forum Board of Directors.

WT-477 on access node disaggregation has finished Straw Ballot review for both the baseline document and data model. The project has been approved to move to Final Ballot.

WT-413 Issue 2 on ‘SDN Management and Control Interfaces for CloudCO Network Functions’ is progressing. Previously, the SDN/NFV and Common YANG Work Areas reviewed the approach and agreed to report a detailed list of data models, so that vendors can rapidly discover the data models to be implemented for each access network function. The group will discuss the scope regarding the addition of ONU (Optical Network Unit) management and BAA chapter update before the Spring 2024 Meeting. The document is expected to enter Straw Ballot review once WT-477 and WT-486 are completed.

On the Artificial Intelligence and automation fronts, WT-486, which specifies the interfaces for the Automated Intelligence Management (AIM) framework specified in TR-436, has completed Final Ballot and will be published in December 2023. An AIM Tiger Team has completed gap analysis in WT-436 Issue 2 and WT-486 Issue 2. The Tiger Team discussed the Broadband Network Data Collection new project proposal and received approval from the group.

Straw Ballot comment resolution has been completed and WT-386i2 on Fixed Access Network Sharing.

A Tiger Team has been established to review the document on CloudCO interfaces (WT-411i2/WT-454i2) to include the Access SDN Management and Control northbound interface intent-based interactions addressing access network topology and abstraction, including inventory. An update was presented on the discussions held on the data models. The Metamodel needs further review and will be discussed in future weekly meetings.

Together with the Common YANG, the group held a joint session to discuss a new project for BAA – Access Device Abstraction Manager (BAA-ADAM). The groups will continue the discussions offline to clarify the scope and impact on CloudCO interfaces.

The group took part in this year’s CloudCO Demo at Network X in October. Key projects were involved in the demo, including WT-477 reference Disaggregated – Optical Line Terminal (D-OLT) Virtual Network Function, Northbound interface exposure of a L2-L3 network abstraction, Optical Network Terminal (ONT) telemetry over virtualized ONU Management and Control Interface (vOMCI), automation test-suite for OB-BAA, IPFIX adapter framework, and vOMCI Plugfest delta features.

References:

Shaping the future of Broadband – Broadband Forum (broadband-forum.org)

Broadband Forum Q4 2023 Meeting Roundup

More information about the SDN/NFV Work Area can be found at: https://wiki.broadband-forum.org/display/BBF/SDN+and+NFV.

 

ETSI NFV evolution, containers, kubernetes, and cloud-native virtualization initiatives

Backgrounder:

NFV, as conceived by ETSI in November, 2012, has radically changed.  While the virtualization and automation concepts remain intact, the implementation envisioned is completely different. Both Virtual Network Functions (VNFs) [1.] and Management, Automation, and Network Orchestration (MANO) [2.] were not commercially successful due to telco’s move to a cloud native architecture.  Moving beyond virtualization to a fully cloud-native design helps push to a new level the efficiency and agility needed to rapidly deploy innovative, differentiated offers that markets and customers demand.  An important distinguishing feature of the cloud-native approach is that it uses Containers [3.] rather than VNFs implemented as VMs.

Note 1. Virtual network functions (VNFs) are software applications that deliver network functions such as directory services, routers, firewalls, load balancers, and more. They are deployed as virtual machines (VMs). VNFs are built on top of NFV infrastructure (NFVI), including a virtual infrastructure manager (VIM) like OpenStack® to allocate resources like compute, storage, and networking efficiently among the VNFs.

Note 2. Management, Automation, and Network Orchestration (MANO) is a framework for how VNFs are provisioned, their configuration, and also the deployment of the infrastructure VNFs will run on.  MANO has been superseded by Kubernetes, as described below.

Note 3.  Containers are units of a software application that package code and all dependencies and can be run individually and reliably from one environment to another.  Some advantages of Containers are:  faster deployment and much smaller footprint, factors that can help in improving the resource utilization and lowering resource consumption.

An article which compares Containers to VMs is here.

High Level NFV Framework:

Kubernetes Defined:

Each application consisted of many of these “container modules,” also called Pods, so a way to manage them was needed. Many different container orchestration systems were developed, but the one that became most popular was an open source project called Kubernetes which assumed the role of MANO. Kubernetes ensured declarative interfaces at each level and defined a set of building blocks/intents (“primitives”) in terms of API objects. These objects are representation of various resources such as Pods, Secrets, Deployments, Services. Kubernetes ensured that its design was loosely coupled, which made it easy to extend it to support the varying needs of different workloads, while still following intent-based framework.

 

The traditional ETSI MANO framework as defined in the context of virtual machines along with 3GPP management functions.

ETSI MANO Framework and Kubernetes and associated constructs

Source of both diagrams: Amazon Web Services

…………………………………………………………………………………………………………………………………………………………………………………………………………………………….

ETSI NFV at 2023 MWC-Shanghai Conference:

During the 2023 MWC-Shanghai conference, ETSI hosted a roundtable discussion of its NFV and cloud-native virtualization initiatives.  There were presentations from China Telecom, China Mobile, China Unicom, SKT, AIS, and NTT DOCOMO. Apparently, telcos want to leverage opportunities in cloud-based microservices and network resource management, but it also has become clear that there are “challenges.”

Three reoccurring themes during the roundtable were the following:

1) the best approach to implement containerization (i.e., Virtual Machine (VM)-based containers versus bare-metal containers) which have replaced the Virtual Network Machine (VNF) concept

2) the lack of End-to-End (E2E) automation;

3) the friction and cost that is incurred from the presence of various incompatible fragmented solutions and products.

Considering the best approach to implement containerization, most attendees present suggested that having a single unified backward-compatible platform for managing both bare metal and virtualized resource pools would be advantageous. Their top three concerns for selecting between VM-based containers and bare-metal containers were performance, resource consumption, and security.  The top three concerns for selecting between VM-based containers and bare-metal containers were performance, resource consumption, and security.

…………………………………………………………………………………………………………………………………………………………………………………………………………….

ETSI NFV Evolution:

While the level of achievements and real benefits of NFV might not equate among all service providers worldwide, partly due to the particular use cases and contexts where these operate.  Based on the ETSI NFV architecture, service providers have been able to build ultra-largescale telco cloud infrastructures based on cross-layer and multi-vendor interoperability. For example, one of the world’s largest telco clouds based on the ETSI NFV standard architecture includes distributed infrastructure of multiple centralized regions and hundreds of edge data centers, with a total of more than 100,000 servers. In addition, some network operators have also achieved very high ratios of virtualization (i.e., amount of virtualized network functions compared to legacy ATCA-based network elements) in their targeted network systems, e.g., above 70% in the case of 4G and 5G core network systems. In addition, ETSI NFV standards are continuously providing essential value for wider-scale multivendor interoperability, also into the hyperscaler ecosystem as exemplified by recent announcements on offering support for ETSI NFV specifications in offered telco network management service solutions.

ETSI ISG NFV Release 5, initiated in 2021, had “consolidation and ecosystem” as its slogan.  It aimed to address further operational issues in areas such as energy efficiency, configuration management, fault management, multi-tenancy, network connectivity, etc., and consider new use cases or technologies developed by other organizations in the ecosystem

Work on ETSI NFV Release 6 has started.  It will focus on: 1) new challenges, 2) architecture evolution, and 3) additional infrastructure work items.

Key changes include:

  • The broadening of virtualization technologies beyond traditional Virtual Machines (VMs) and containers (e.g., micro VM, Kata Containers, and WebAssembly)
  • Creation of declarative intent-driven network operations
  • Integrating heterogenous hardware, Application Programming Interfaces (APIs), and cloud platforms through a unified management framework

All changes aim for simplification and automation within the NFV architecture. The developments are preceded by recent announcements of standards-based applications by hyperscalers: Amazon Web Services (AWS) Telco Network Builder (TNB) and Microsoft Azure Operator Nexus (AON) are two new NFV-Management and Orchestration (NFV-MANO)-compliant platforms for automating deployment of network services (including the core and Radio Access Network (RAN)) through the hybrid cloud.

As more network operators and vendors are already leveraging the potential of OS container virtualization (containers) technologies for deploying telecom networks, the ETSI ISG NFV also studied how to enhance its specifications to support this trend. During this work, the community has found ways to reuse the VNF modeling and existing NFV management and orchestration (NFV-MANO) interfaces to address both OS container and VM virtualization technologies, hence ensuring that the VNF modeling embraces the cloud-native network function (CNF) concepts, which is now a term commonly referred in the industry.

This has been achieved despite OS container and VM technologies having somewhat different management logic and resource descriptions. However, diverse and quickly changing open source solutions make it hard to define unified and standardized specifications. Nevertheless, due to the fact that both kind of virtualization technologies can and will still play a major role in the future to fulfill the various and broad set of telecom network use cases, efforts to further evolve them as well as to complement them with other newer virtualization technologies (e.g., unikernels) are needed.

Furthermore, driven by new application scenarios and different workload requirements (e.g., video, Cloud RAN, etc.), new requirements for deploying diversified heterogeneous hardware resources in the NFV system are becoming a reality. For example, to meet high-performance VNFs, requirements for heterogeneous acceleration hardware resources such as DPUs, GPUs, NPU, FPGAs, and AI ASIC are being brought forward. In another example, to meet the ubiquitous deployment of edge devices in the future, other types of heterogeneous hardware resources, such as integrated edge devices and specialized access
devices, are also starting to be considered.

NFV architectures have and will continue to evolve, especially with the rise of Artificial Intelligence (AI) and Machine Learning (ML) automation. Data centers, either cloud-based or “on-premises” are becoming complex, heterogeneous environments. In addition to Central Processing Units (CPUs), complementary Graphics Processing Units (GPUs) handle parallel processing functions for accelerated computing tasks of all kinds. AI, Deep Learning (DL), and big data analytics applications are underpinned by GPUs. However, as data centers have expanded in complexity, Digital Processing Units (DPUs) have become the third member of this data-centric accelerated computing model. The DPU helps orchestrate and direct the data around the data center and other processing nodes on the network.

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

References:

https://www.abiresearch.com/market-research/insight/7782316-etsi-gathers-points-of-view-from-asian-tel/

https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP-53-In-the-Light-of-Ten-ears-from-the-NFV-Introductory-Whitepaper.pdf

https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP-54-Evolving_NFV_towards_the_next_decade.pdf

Updates in ETSI NFV for Accelerating the Transition to Cloud (abiresearch.com)

https://docs.aws.amazon.com/whitepapers/latest/ETSI-NFVO-compliant-orchestration-in-kubernetes/mapping-etsi-mano-to-kubernetes.html

https://docs.aws.amazon.com/pdfs/whitepapers/latest/ETSI-NFVO-compliant-orchestration-in-kubernetes/ETSI-NFVO-compliant-orchestration-in-kubernetes.pdf

Omdia and Ericsson on telco transitioning to cloud native network functions (CNFs) and 5G SA core networks

Virtual Network Function Orchestration (VNFO) Market Overview: VMs vs Containers

 

SK Telecom, Samsung, HPE and Intel MOU for 5G NFV Technology Evolution; ETSI ISG-NFV?

Who needs the ETSI ISG on NFV?  Apparently, no one BUILDING 5G INFRASTRUCTURE!  Founded in November 2012 by seven of the world’s leading telecoms network operators, ETSI ISG NFV became the home of the definition and consolidation for Network Functions Virtualization (NFV) technologies.  Yet there is very little, if any, commercial deployments based on their specifications.  In particular, the greatly promoted ETSI NFV management and orchestration (NFV-MANO).

SK Telecom  today announced that it signed a Memorandum of Understanding (MOU) with Samsung Electronics, Hewlett Packard Enterprise (HPE) and Intel for cooperation in the commercialization of an evolved 5G network functions virtualization (NFV) platform

Under the MOU, the four companies will jointly develop evolved NFV technologies for 5G network infrastructure, establish a standardized process for adoption of NFV, and develop technologies that can harness the capabilities of the virtualized network.   Together, the companies will be able to reduce the time required to validate and integrate technologies from various vendors as well as verify them within the network. This will result in a more rapid introduction of new innovative technologies that enhance end user experience.   

Mobile operators will be able to benefit from a significantly reduced time-to-market for the latest 5G services such as augmented reality (AR) and virtual reality (VR) through the NFV platform. Previously, they had to install each new hardware equipment or upgrade existing ones to introduce a new service.   

The four companies will realize an evolved 5G NFV platform by applying Samsung’s 5G solution based on technologies from Intel and HPE to SK Telecom’s 5G network.  To this end, Intel will provide its latest technologies, including Intel Xeon Processors, Ethernet 800 Series Network Adapters and Solid State Drives, and HPE will provide HPE ProLiant Servers to Samsung Electronics for early development and verification purposes. SK Telecom plans to establish a process for 5G network virtualization, which includes interconnecting its 5G core network to Samsung’s virtualized 5G solutions.   

“Through this global cooperation, we will secure a solid basis for commercialization of an evolved 5G NFV platform and provide more innovative services to our customers,” said Kang Jong-ryeol, Vice President and Head of ICT Infrastructure Center of SK Telecom. “Going forward, we will continue to develop new technologies for 5G NFV evolution to play a leading role in realizing communication services of the future.” 

“Together with SK Telecom, HPE and Intel, Samsung will lay the groundwork for network virtualization to allow SK Telecom to swiftly apply Samsung’s virtualized solutions on partner hardware platforms. As more operators look to virtualized networks, this collaboration will serve as an exemplar of transforming legacy networks to virtual networks,” said Roh Wonil, Senior Vice President and Head of Product Strategy, Networks Business at Samsung Electronics. “With proven success in 5G commercialization, we will continue to extend our 5G leadership, allowing customers to experience immersive 5G services.”  

“Industry collaboration is essential to accelerate the rollout of 5G networks,” said Dan Rodriguez, corporate vice president and general manager of the Intel Network Platforms Group. “The joint work between SK Telecom, Intel, HPE and Samsung will be instrumental in helping SK Telecom implement the latest technologies and new capabilities in a faster and more agile way, ultimately delivering new innovative services to their end users.” 

“We are pleased to be providing telco optimized infrastructure for this collaboration with SK Telecom, Samsung and Intel”, said Claus Pedersen, vice president, Telco Infrastructure Solutions, HPE. “HPE believes that the future of 5G lies in open, interoperable software and hardware innovation from different vendors. This is yet another proof point that HPE is the leading open infrastructure provider for 5G, helping telcos to deploy 5G services faster, on secure telco optimized platforms.”

About SK Telecom

SK Telecom is Korea’s leading ICT company, driving innovations in the areas of mobile communications, media, security, commerce and mobility. Armed with cutting-edge ICT including AI and 5G, the company is ushering in a new level of convergence to deliver unprecedented value to customers. As the global 5G pioneer, SK Telecom is committed to realizing the full potential of 5G through ground-breaking services that can improve people’s lives, transform businesses, and lead to a better society.

SK Telecom says they have attained unrivaled leadership in the Korean mobile market with over 30 million subscribers, which account for nearly 50 percent of the market. The company now has 47 ICT subsidiaries and annual revenues approaching KRW 17.8 trillion.

References:

https://www.samsung.com/global/business/networks/insights/press-release/sk-telecom-and-samsung-forms-global-cooperation-for-5g-nfv-technology-evolution/

For more information, please contact [email protected] or visit our Linkedin page www.linkedin.com/company/sk-telecom.

 

TM Forum Survey: Communications Service Providers Struggle with Business Case for NFV & Digital Transformation

Communications Service Providers (CSPs)  are still contending with how to convince customers of the business value of network functions virtualization (NFV) and also struggling with digital transformation (CX), according to a TM Forum industry survey of 160 people from 66 CSPs.  Approximately one third of CSPs surveyed said they are deploying NFV in the packet core and 36% reported NFV deployment at the mobile edge or as virtual CPE. The number of survey respondents admitting to having no timetable for virtualization also fell from 30% a year ago to 23% this year.

The TM Forum CSP survey, conducted this past summer, was dominated by non-North American operators, with 34% based in Asia Pacific, 24% in Europe and only 3% in North America.

Most CSP respondents are also struggling with network transformation, even though many (44%) think it’s essential to their overall digital transformation process. They are also struggling to adopt new ways of working within their network operations, with 67% admitting they have not introduced DevOps, considered important to become more agile and less siloed, in network teams at all.

Speaking during a Telecom TV panel at 5G World, Franz Seiser, VP of Core Network & Services, Deutsche Telekom, explained that NFV is, indeed, a key building block for 5G, but it will take time to implement.

“We are not where we’d like to be as an industry [with NFV deployment],” Seiser said, adding that it’s less a technology issue than one of transformation. “We have a big job still head of us in progressing and transforming the way we work.” He noted, however, that there is time to catch up because the first 5G standards are for new radio access only and do not include the network core although the development of these is well underway.

Tier 1 CSPs including AT&T, China Mobile, Deutsche Telekom, Orange, Telefónica, Telstra, Verizon and Vodafone have announced publicly that they are embracing NFV and SDN, and our latest DTT survey shows that the pace of network transformation is picking up among these and other telcos. Nearly a third of CSP respondents said they are deploying NFV in the core, up from just 22% six months ago. In addition, fewer respondents said they have no timetable for virtualization, and among respondents whose companies are not yet deploying NFV, one in five said they will start deploying VNFs within the next year.

Tier 1 CSPs including AT&T, China Mobile, Deutsche Telekom, Orange, Telefónica, Telstra, Verizon and Vodafone have announced publicly that they are embracing NFV and SDN, and our latest DTT survey shows that the pace of network transformation is picking up among these and other telcos. Nearly a third of CSP respondents said they are deploying NFV in the core, up from just 22% six months ago (see graphic below). In addition, fewer respondents said they have no timetable for virtualization, and among respondents whose companies are not yet deploying NFV, one in five said they will start deploying VNFs within the next year.

Not all CSPs are taking the same approach to network virtualization. Some are focusing on virtualizing specific applications, without undertaking wider transformation programs. Others are taking an approach that focuses more on improving customer centricity, particularly for enterprise customers, while many see network transformation as part of a bigger digital or business transformation. TM Forum research shows that 44% of CSP respondents view network transformation as part of overall digital transformation.

………………………………………………………………………………………………………………………………………………………………………………………

Digital Transformation Status:

“Our technical team believes we are well along the way to (digital) transformation,” the online report quotes one survey respondent saying. “The business team has absolutely no idea what digital transformation means to them and their work. In my opinion, it feels like the technical team is using this transformation as a way to grab power within the organization.”

One of the problems, says TM Forum Chief Analyst Mark Newman, is that CEOs don’t have the confidence in their IT staff to lead a digital transformation effort.

The TM Forum Digital Transformation Tracker cites two other reasons network transformation is lagging, including the fact that there is still “a loose definition and interpretation of what a digital transformation program involves.” In addition, it says, there are “different objectives of network transformation programs and the constantly-evolving timeframe for network virtualization and cloud adoption.”

Legacy OSS/BSS systems remain the biggest challenge to network transformation, according to 60% of respondents, while 56% ranked security vulnerabilities as a major issue and 52% were concerned with how long it’s taking standards to mature.

References:

http://inform-digital.tmforum.org/digital-transformation-tracker-3

http://www.intuitive-design.co.uk/clients/TMForum/21583_DTT3/V1/DTT3-Report-Network-Transformation.pdf

https://www.lightreading.com/nfv/nfv-mano/csps-still-puzzling-over-nfv-business-case/d/d-id/746931