GSMA Calls for 2 GHz of Mid-Band Spectrum to meet ITU-R speed requirements (explained)

The mobile industry will need an average of 2 GHz of mid-band spectrum this decade to meet the ITU data speed requirements (ITU-R recommendation not stated, but this author believes it to be M.2410 (11/2017)) [1.]. Achieving this will also minimize environmental impact and lower consumer costs of 5G, according to a global study of 36 cities published by the GSMA but carried out by Coleago Consulting.

The “Vision 2030 Insights for Mid-band Spectrum Needs” study suggests that policymakers should license spectrum to mobile operators in harmonized bands, such as 3.5 GHz, 4.8 GHz and, 6 GHz to meet the ITU’s requirements by 2030. Without the additional spectrum, it will be impossible to realise the full potential of 5G in some cases. In others, the number of antennas and base stations needed will lead to higher carbon emissions and consumer prices. The additional spectrum will lower the carbon footprint of networks by two-to-three times while enhancing the sustainable development of mobile connectivity, according to the study.

This spectrum will also make 5G more affordable. Total costs would be three- to five-times higher over a decade in cities where a deficit of 800-1000 MHz would increase the number of base stations needed and increase deployment costs in each city by $782 million to $5.8 billion.

The actual amount of mid-band spectrum required varies significantly by city, mid-band being roughly 1500 MHz-6 GHz. Population density, spread of base stations, availability of small cells and WiFi offload, and 5G activity levels, amongst other things, will have an impact on how much spectrum any given city needs.

Hong Kong tops the list of 36 cities studied by Coleago Consulting with an upper estimate of 3.7 GHz of mid-band spectrum required, while Tehran ranks at the bottom with a requirement of up to 1.2 GHz. As such, the amount of additional spectrum each city needs is also variable. However, the important message is that all cities need more spectrum than they are set to have, and the additional amount required is “far greater” than that currently planned for release, the GSMA said.

“Without the additional spectrum, it will be impossible to realize the full potential of 5G in some cases. In others, the number of antennas and base stations needed will lead to higher carbon emissions and consumer prices,” GSMA warned.

…………………………………………………………………………………………………………………………………………………………………….

Note 1.  ITU-R M.2410 data rate requirements for IMT 2020 (11/2017):

Peak data rate: is the maximum achievable data rate under ideal conditions (in bit/s), which is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times). This requirement is defined for the purpose of evaluation in the eMBB usage scenario. The minimum requirements for peak data rate are:
– Downlink peak data rate is 20 Gbit/s.
– Uplink peak data rate is 10 Gbit/s

Peak spectral efficiency: is the maximum data rate under ideal conditions normalized by channel bandwidth (in bit/s/Hz), where the maximum data rate is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times).
This requirement is defined for the purpose of evaluation in the eMBB usage scenario. The minimum requirements for peak spectral efficiencies are:
– Downlink peak spectral efficiency is 30 bit/s/Hz.
– Uplink peak spectral efficiency is 15 bit/s/Hz.

User experienced data rate: is the 5% point of the cumulative distribution function (CDF) of the user throughput. User throughput (during active time) is defined as the number of correctly received bits, i.e. the number of bits contained in the service data units (SDUs) delivered to Layer 3, over a certain period of time.  This requirement is defined for the purpose of evaluation in the related eMBB test environment. The target values for the user experienced data rate in the Dense Urban – eMBB test environment:
– Downlink user experienced data rate is 100 Mbit/s.
– Uplink user experienced data rate is 50 Mbit/s.

…………………………………………………………………………………………………………………………………………………………………………..

Mid-band spectrum availability also will enhance Fixed Wireless Access (FWA). The study shows that with the additional 2 GHz, five-times more households will be covered with each base station, allowing affordable high-speed internet to reach beyond the fiber footprint at a fraction of the cost.

The World Radiocommunication Conference in 2023 is a crucial opportunity to align global policies for mid-band solutions for mobile. This spectrum will ensure mobile operators can deliver the ITU targets of 100 Mbps download speeds and 50 Mbps upload speeds to meet future needs of consumers and businesses.

Therefore, the GSMA asks that regulators:

  • Plan to make an average of 2 GHz of mid-band spectrum available in the 2025-2030 time frame to guarantee the IMT-2020 requirements for 5G;
  • Carefully consider 5G spectrum demands when 5G usage increases and advanced use cases will carry additional needs;
  • Base spectrum decisions on real-world factors including, population density and extent of fibre rollout; and
  • Support harmonized mid-band 5G spectrum (e.g., within the 3.5 GHz, 4.8 GHz and 6 GHz ranges) and facilitate technology upgrades in existing bands.

“Coordinated regional decisions will lead to a WRC which enables the future of 5G and supports wider broadband take-up by increasing capacity and reducing costs,” the GSMA said.

…………………………………………………………………………………………………………………………………………………………………

References:

https://www.gsma.com/newsroom/press-release/gsma-calls-for-2-ghz-of-mid-band-spectrum-to-meet-un-targets/

https://www.gsma.com/spectrum/wp-content/uploads/2021/07/5G-Mid-Band-Spectrum-Needs-Vision-2030.pdf

https://telecoms.com/510489/lack-of-mid-band-spectrum-could-cost-operators-billions-of-dollars-gsma/

Assessment of COVID-19 impact on telecom industry; C-Band Spectrum Update

COVID-19 Impact on Telcos:

Source:  Analysys Mason  

The telecommunications industry has suffered limited damage as a result of the COVID-19 pandemic.  Revenue figures for most network operators have fallen slightly, but few have encountered anything that is particularly severe or long-lasting. As a result, few telcos have made significant changes to their strategy.

However, some aspects of the telecoms sector have been significantly affected by the pandemic. The most obvious is business services; revenue in this segment declined sharply for most operators in 2020 and prospects for 2021 are uncertain. Operators may have to rethink important parts of their strategies related to these aspects.

The telecoms industry has been affected by the pandemic in many different ways, and have been grouped these into three main categories depicted in the figure below:

                    Summary of the impact of the COVID-19 pandemic on the telecoms industry

Fig1.png

Assumptions of a stable economy and a continuation of existing service and technology trends often underpin an operator’s strategic plan. For some of the services offered by operators, business services in particular, these assumptions look outdated and may need a rethink.

………………………………………………………………………………………………………………………………………………………………………………………..

C-Band Auction Update:

Source: MoffettNathanson Research

Heading into the FCC’s C-Band auction, Wall Street analysts saw Verizon as the leading bidder for 5G wireless radio spectrum. Bidding for licensed spectrum in the telecom industry’s most expensive auction ever reached more than $75 billion on Monday amid speculation over how much each of the big wireless telcos and cable companies have paid.

In a note to clients, analyst/colleague Craig Moffett of MoffettNathanson is assuming that Verizon will end up being the largest buyer at the ongoing auction of mid-band spectrum targeted for new 5G deployments.  As a result, Verizon’s balance sheet will be more heavily burdened and more of their future cash flows will be diverted to debt service so their future profits will be lower.

AT&T, on the other hand, will “be disadvantaged for a generation” if they don’t get a significant chunk of the mid-band spectrum being auctioned.  Craig believes that AT&T was probably “one of the two big bidders that more or less backed away after round 24 or round 38.”

An important issue is “whether “winners” in this auction acquired reasonably uniform contiguous blocks, or whether they instead (worst case scenario) ended up with a patchwork of licenses and a hefty bill to burden the balance sheet. If so, will their footprints be largely erased by subsequent topping bids from others.”

With respect to using the purchased mid-band spectrum for accelerated 5G deployments, Craig wrote: “At best, the huge sums paid here for spectrum risk displacing the capital investment needed to put the acquired spectrum to use. At worst, they risk financially destabilizing one or more players.”

In conclusion, Craig asks if the large amounts of money being spent for an asset (licensed mid-band spectrum) that is best thought of as simply maintaining the status quo will be worth the price paid?  “Again, the most important question is this: is anyone going to change their revenue forecast just because the industry had to spend twice as much as expected to buy spectrum for 5G.”

………………………………………………………………………………………………………………………………………………………………………………………

References:

https://www.analysysmason.com/research/content/comments/post-pandemic-landscape-ren02-ren01-rdmz0-rdmm0-rdmb0-rdmd0-rdmv0-rdmy0-rdcs0-rdvs0/

Mid-band Spectrum for 5G: FCC C-Band Auction at $70B Shattering Records