Bloomberg: U.S. Billionaire’s Battle Over FCC’s 12 GHz Spectrum Policy

Charlie Ergen of Dish Network and Michael Dell of Dell Technologies have a plan to open up little-used wireless frequencies to millions of customers with a new 5G service.  However, another billionaire strenuously objects. Elon Musk’s SpaceX filed an objection with the U.S. Federal Communications Commission (FCC), which governs airwaves distribution, saying the “scheme” would wreck his broadband-from-orbit service.

Dish Network responded with an FCC filing that accused SpaceX of “flimsy” and “far-fetched” criticism. RS Access LLC, a Dell company, cited what it calls SpaceX’s “long history of misleading information, rule-flaunting, and ad hominem attacks.”

The billionaires paths collide in a swath of spectrum known as the 12 gigahertz band [1.] Ergen and Dell have asked the FCC to allow higher-power traffic in 12 gigahertz airwaves they control in cities around the U.S. That’s 82 markets including New York and Chicago for Dish, and 60 markets including Austin, Texas and Omaha, Nebraska for Dell’s airwaves company, RS Access.

……………………………………………………………………………………………………………………………………………

Note 1.  12 GHz (more precisely 12.2-12.7 GHz Band ) is NOT one of the approved frequency bands in the revision to ITU Recommendation M.1036-6, which specifies ALL frequency bands for the TERRESTRIAL component of IMT (including IMT 2020).  Despite that, the FCC is considering expanded terrestrial service rights in 500 megahertz of mid-band spectrum between 12.2-12.7 GHz (12 GHz band) without causing harmful interference to incumbent licensees.

………………………………………………………………………………………………………………………………………..

The 12 GHz spectrum band is currently restricted to one-way use. License holders include SpaceX, AT&T/DirecTV, Dish and other satellite providers, as well as companies that use the spectrum for downstream fixed wireless communications.

Some license holders, including Dish and fixed wireless provider RS Access, want the FCC to allow two-way use of the band. To support that view, RS Access submitted the RKF Engineering study that concluded that two-way use of the band would not interfere with incumbent users to the FCC.

Roberson and Associates found that 1 MHz of 12 GHz spectrum can carry 3.76 times as much data as 1 MHz of 28 GHz spectrum under peak throughput conditions.

Long-time 12 GHz 5G proponent RS Access refers to a report that identifies recent technology advances for making the 12 GHz band very desirable for 5G, including Massive MIMO, beamforming and 5G carrier aggregation.

………………………………………………………………………………………………………………………………………

This raucous battle of billionaires stands out on the ordinarily placid docket of the FCC, which is more often limited to detailed technical concerns such as antenna characteristics and signal power/ attenuation. It reflects the fortunes to be made as the U.S. moves toward 5G networks that will be used in many places, depending on the use case. A government auction earlier this year of 5G airwaves brought in $81 billion as the largest U.S. wireless providers snapped up frequencies; another airwaves sale that could net $25 billion is under way.

“It says they ain’t making spectrum no more!” said Tom Wheeler, a former FCC chairman. Spectrum describes the array of frequencies that companies use to offer telecommunications.

Space X also uses the 12 gigahertz frequencies. In FCC filings the company says the proposed higher-power signals could overwhelm the faint broadband signals that travel from its orbiting fleet of 1,500 or more satellites to customers’ rooftop receiving dishes.

Currently, services in the 12 gigahertz band are limited to low power under FCC rules designed to avoid interference with other users. Airwaves with higher power are typically worth more money, since their signals can travel farther and reach more customers. The increased potency can also increase the risk of overpowering other users’ signals.

Dish “has mastered the use of empty promises and attacks on competitors,” SpaceX told the FCC in a filing. Dell’s spectrum-holding RS Access told the FCC that SpaceX is offering a “false premise.” Dish then accused SpaceX of mounting an “attempt to obfuscate the issues.”

The fight has been brewing for at least five years. Dish and other holders of 12 gigahertz airwaves in 2016 asked the FCC to boost power for terrestrial users of the airwaves, citing skyrocketing demand for mobile data. At the time SpaceX’s first Starlink broadband satellite was three years from its 2019 launch. Dish and its partners at the time suggested satellite services should lose rights in the band.

Dell’s investment firm had made its purchase of 12 gigahertz airwaves via RS Access, which reached for influence inside the Beltway. It hired former House telecommunications counsel Justin Lilley, according to an October 2020 filing. Lilley’s roster of clients has included spectrum innovator Ligado Networks, wireless giant T-Mobile US and Facebook.

Lobbying expenses surged. Dell’s MSD Capital with no lobbying expenditures since its founding in 1998, spent $150,000 on lobbying in 2020, according to data compiled by Open Secrets, a non-profit that tracks money in Washington.

Dish, with a longtime presence in Washington, spent $1.8 million lobbying in 2020 and SpaceX spent $2.2 million, with each engaging more than three dozen lobbyists according to Open Secrets.

Dell called then-FCC Chairman Ajit Pai twice, in September and November of 2020. Ergen and Pai spoke in July of 2020. On Dec. 23, Musk called Pai — after two earlier calls between the two, according to FCC disclosure filings.

The FCC began its formal consideration with a 4-0 vote in January 2021, during the closing days of Ajit Pai’s tenure as FCC Chairman. The Republican left the agency following the presidential election, leaving the issue to the current FCC that is split 2-to-2 along partisan party lines.

Supporters formed a coalition that includes Dish, Dell, policy groups and two trade groups that include Dish as a member. RS Access presented a 62-page technical study that concluded coexistence between the 5G use and the satellite services can be achieved.

SpaceX, in a filing, said the airwaves are worth far less. Still it said RS Access and Dish were seeking “a windfall” by leveraging airwaves that today are useless.

“You don’t have to have them removed from the band at all,” V. Noah Campbell, chief executive officer of RS Access, said in an interview with Bloomberg. Campbell likened the proposal to a water main that’s been used at low capacity. “We just want the pipe open,” he said.

The spectrum in question could be worth as much as $54 billion if the FCC allows the change, according to a study submitted to the FCC by a Dell owned company.  SpaceX, in a filing, said the airwaves are worth far less. The company said RS Access and Dish were seeking “a windfall” by leveraging airwaves that today are useless.

Dish Network has emphasized expanded demands for its 5G service, which is designed to connect not just mobile phones, but also IoT devices including baby monitors, vehicles, aerial drones, tractors, and factory gear. Dish has emphasized expanded demands for 5G service, which is designed to connect not just mobile phones, but also devices including baby monitors, vehicles, aerial drones, tractors, and factory gear.

This band is really good for 5G,” Dish Executive Vice President Jeff Blum said in an interview with Bloomberg. “And it would be a missed opportunity if the commission left the status quo in place.”

References:

https://www.bloomberg.com/news/articles/2021-10-09/billionaires-musk-ergen-and-dell-brawling-over-spectrum-at-fcc (PREMIUM ARTICLE)

Big Names Clash over 12 GHz for 5G despite it NOT being included in ITU M.1036 – Frequency Arrangements for IMT

Battle Lines Thicken Over 5G Use of 12 GHz Spectrum, with SpaceX in the Crosshairs

https://www.fiercewireless.com/regulatory/massive-mimo-adaptive-beam-forming-spiff-up-12-ghz-band

https://www.federalregister.gov/documents/2021/03/08/2021-04115/expanding-flexible-use-of-the-122-127-ghz-band

 

India’s DoT preparing for another mega spectrum sale

India’s telecom department has set the stage for another mega spectrum sale by sending a reference to the sector regulator, seeking fresh base prices for the gamut of airwave bands, including key frequencies like 700 MHz, 3.3-3.6 GHz and the coveted millimeter waves such as 26 GHz and 28 GHz that support 5G technology (but have not been agreed upon in revision 6 of ITU-R M.1036 Frequency Arrangements for Terrestrial IMT).

India’s Department of Telecommunications (DoT) has also sought fresh base prices for 4G airwave bands such as 800 MHz, 900 MHz, 1800 MHz, 2100 MHz and 2300 MHz, two people aware of the matter said. But with the time usually taken for the consultation process, sources say it may be tough to meet government’s auction timeline of January-February, 2022.

The reference comes at a time when the government has acknowledged that high spectrum pricing is a prime reason behind the acute financial stress in the debt-laden telecom industry, and is also open to price rationalization in public interest.

In its reference, the department has sought recommendations from the Telecom Regulatory Authority of India (Trai) on the terms of reference for the next auction and the quantum of airwaves proposed to be auctioned, one of the persons cited told ET.

“We have received a detailed reference from DoT about 2-3 days back, seeking our recommendations on spectrum matters and pricing…there are a number of spectrum bands involved, and the Authority is currently examining the reference and will respond to the government,” Trai secretary V Raghunandan told ET. He, though, declined to share details.

Sector analysts expect the potential annual cash flow relief stemming from the four-year moratorium allowed on statutory payouts to give Bharti Airtel and Reliance Jio the financial headroom to participate aggressively in the next spectrum auction. They, though, don’t expect Vodafone Idea (Vi) to participate as strongly if it’s unable to close its much delayed Rs 25,000-crore fundraise.

Another official said that Trai will need to seek additional details from the DoT, before proceeding with its analysis and starting the consultation process.

After a DoT reference, Trai conducts a process which includes a four-week period for stakeholders to submit their views after a consultation paper is floated, followed by two weeks for counter comments. Then Trai holds open-house discussions before arriving at its recommendations. The whole process usually takes about four-five to months at least.

………………………………………………………………………………………………………………………….

On March 1, India concluded its first spectrum auction of 2021. India’s Department of Telecom (DoT), through a Notice Inviting Applications (NIA) issued in January 2021, had put up spectrum for auction in multiple bands, including 700, 800, 900, 1800, 2100, 2300 and 2500 MHz bands. These frequencies cut across 2G, 3G and 4G service bands and included both FDD (paired) and TDD (unpaired) bands.

The auction was a qualified success. It netted the Government $10.6 billion and was almost double initial estimates. However, barely 37% of the total spectrum put up for auction had takers, while the 700 MHz band saw no bids at all.

The main takeaway from this auction is that the focus of India’s telcos is currently on 4G, not 5G. With several licenses coming up for renewal, it was imperative that telcos bid on expiring spectrum to renew but also to consolidate with new holdings. The biggest bidders were Reliance Jio ($7.8 billion), Bharti Airtel ($2.55 billion), followed by VodafoneIDEA a distant third with bids worth $272 million.

There was heavier than expected bidding in the 800 MHz band as well as the 2300 MHz band. All of the three operators bidding have taken different approaches to this auction. The common theme for both Jio and Airtel’s auction strategies was to shore up existing spectrum, acquire new frequencies to consolidate holdings per circle and boost capacity, and lay the groundwork for an eventual 5G network launch.

For its part, Vodafone IDEA (VIL) has taken a very frugal, optimization strategy to spectrum. Their public position has been that they have abundant spectrum and therefore are not hard-pressed to bid aggressively. This is true, with VIL holding ample spectrum, but there is no doubt that they would have had very limited means due to a stressed balance sheet.

Reference:

https://telecom.economictimes.indiatimes.com/news/dot-gearing-up-for-another-mega-spectrum-sale/86469701

https://www.fiercewireless.com/operators/india-s-recent-spectrum-auction-opening-opportunities-putcha

Canada’s 3.5 GHz spectrum auction raises record US $7.2B

Canada’s 3.5GHz auction ended this week with a total of $7.2 billion (C $8.9B with US $1  = 1.2444 Canadian dollars) in winning bids. Bell Canada (BCE), Rogers Communications and Telus captured roughly 80% of the spectrum offered for sale by Canada’s government.

Out of 1,504 available licenses, 1,495 were awarded to 15 Canadian companies, including 757 licenses to small and regional providers, Innovation Minister Francois-Philippe Champagne said in a statement on Thursday.

The results would boost competition, he added, a reference to Ottawa’s push to open up a market dominated by BCE Inc, Telus Corp, and Rogers Communications Inc, known as the big three.

Canadian consumers have complained of steep wireless bills, which are among the highest in the world, and Prime Minister Justin Trudeau’s Liberal government has asked operators to cut prices by a quarter by 2021.

Preliminary results showed that BCE Inc spent C$2.1 billion, Rogers C$3.3 billion and Telus Corp C$1.9 billion.

The 3500 MHz range frequencies are seen as important to provide 5G wireless services as they carry larger volumes of data over longer distances (than mmWave, for example). Mid-band spectrum also offers faster upload and download speeds and help power everything from smart cities to driverless cars.

Vidéotron, owned by Quebecor Inc, spent C$830 million to expand its geographic footprint in Canada, buying licenses not just in its native Quebec but also in Ontario, Manitoba, Alberta and British Columbia.

The move indicates that Quebecor plans to become a service provider in those areas, said Mark Goldberg, an industry analyst. He noted that the areas where the company did not bid – Saskatchewan and Atlantic Canada – both have preexisting strong fourth competitors to the big three.

“They’re prepared to be the fourth service provider… This is showing pretty close to a billion dollars in investment in spectrum,” Goldberg said.

Vidéotron said in a statement that the investment would help the company to “realize its ambition of boosting healthy competition in telecom beyond the borders of Québec.”

Bell, Rogers and Telus said their investments will help to provide reliable 5G services.

The auction, initially set to take place in June 2020 and delayed due to the COVID-19 pandemic, closed after eight days and 103 rounds of bidding, the government said.

………………………………………………………………………………………

Xona Partners analyst Frank Rayal noted the Canadian auction clocked in at an average of $1.83 per MHz-POP. The per MHz-POP calculation is applied to most spectrum transactions and reflects the number of people covered compared with the amount of spectrum available, though it can be affected by a wide variety of factors.  Rayal said that’s a record price for mid-band spectrum and far higher than the $0.94 per MHz-POP that U.S. operators paid for similar C-band spectrum in the FCC auction earlier this year.

“Underscoring the Bell team’s goal to advance how Canadians connect with each other and the world, acquiring this significant additional 3500MHz spectrum will drive Bell’s ongoing leadership in 5G, a critical component in our multibillion-dollar program to accelerate investment in Canada’s next-generation network infrastructure and services,” Mirko Bibic, president and CEO of BCE and Bell Canada, said in a press release.

References:

https://www.reuters.com/business/media-telecom/canada-raises-72-bln-via-auction-3500-mhz-spectrum-firms-gear-high-speed-2021-07-29/

 

GSMA Calls for 2 GHz of Mid-Band Spectrum to meet ITU-R speed requirements (explained)

The mobile industry will need an average of 2 GHz of mid-band spectrum this decade to meet the ITU data speed requirements (ITU-R recommendation not stated, but this author believes it to be M.2410 (11/2017)) [1.]. Achieving this will also minimize environmental impact and lower consumer costs of 5G, according to a global study of 36 cities published by the GSMA but carried out by Coleago Consulting.

The “Vision 2030 Insights for Mid-band Spectrum Needs” study suggests that policymakers should license spectrum to mobile operators in harmonized bands, such as 3.5 GHz, 4.8 GHz and, 6 GHz to meet the ITU’s requirements by 2030. Without the additional spectrum, it will be impossible to realise the full potential of 5G in some cases. In others, the number of antennas and base stations needed will lead to higher carbon emissions and consumer prices. The additional spectrum will lower the carbon footprint of networks by two-to-three times while enhancing the sustainable development of mobile connectivity, according to the study.

This spectrum will also make 5G more affordable. Total costs would be three- to five-times higher over a decade in cities where a deficit of 800-1000 MHz would increase the number of base stations needed and increase deployment costs in each city by $782 million to $5.8 billion.

The actual amount of mid-band spectrum required varies significantly by city, mid-band being roughly 1500 MHz-6 GHz. Population density, spread of base stations, availability of small cells and WiFi offload, and 5G activity levels, amongst other things, will have an impact on how much spectrum any given city needs.

Hong Kong tops the list of 36 cities studied by Coleago Consulting with an upper estimate of 3.7 GHz of mid-band spectrum required, while Tehran ranks at the bottom with a requirement of up to 1.2 GHz. As such, the amount of additional spectrum each city needs is also variable. However, the important message is that all cities need more spectrum than they are set to have, and the additional amount required is “far greater” than that currently planned for release, the GSMA said.

“Without the additional spectrum, it will be impossible to realize the full potential of 5G in some cases. In others, the number of antennas and base stations needed will lead to higher carbon emissions and consumer prices,” GSMA warned.

…………………………………………………………………………………………………………………………………………………………………….

Note 1.  ITU-R M.2410 data rate requirements for IMT 2020 (11/2017):

Peak data rate: is the maximum achievable data rate under ideal conditions (in bit/s), which is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times). This requirement is defined for the purpose of evaluation in the eMBB usage scenario. The minimum requirements for peak data rate are:
– Downlink peak data rate is 20 Gbit/s.
– Uplink peak data rate is 10 Gbit/s

Peak spectral efficiency: is the maximum data rate under ideal conditions normalized by channel bandwidth (in bit/s/Hz), where the maximum data rate is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times).
This requirement is defined for the purpose of evaluation in the eMBB usage scenario. The minimum requirements for peak spectral efficiencies are:
– Downlink peak spectral efficiency is 30 bit/s/Hz.
– Uplink peak spectral efficiency is 15 bit/s/Hz.

User experienced data rate: is the 5% point of the cumulative distribution function (CDF) of the user throughput. User throughput (during active time) is defined as the number of correctly received bits, i.e. the number of bits contained in the service data units (SDUs) delivered to Layer 3, over a certain period of time.  This requirement is defined for the purpose of evaluation in the related eMBB test environment. The target values for the user experienced data rate in the Dense Urban – eMBB test environment:
– Downlink user experienced data rate is 100 Mbit/s.
– Uplink user experienced data rate is 50 Mbit/s.

…………………………………………………………………………………………………………………………………………………………………………..

Mid-band spectrum availability also will enhance Fixed Wireless Access (FWA). The study shows that with the additional 2 GHz, five-times more households will be covered with each base station, allowing affordable high-speed internet to reach beyond the fiber footprint at a fraction of the cost.

The World Radiocommunication Conference in 2023 is a crucial opportunity to align global policies for mid-band solutions for mobile. This spectrum will ensure mobile operators can deliver the ITU targets of 100 Mbps download speeds and 50 Mbps upload speeds to meet future needs of consumers and businesses.

Therefore, the GSMA asks that regulators:

  • Plan to make an average of 2 GHz of mid-band spectrum available in the 2025-2030 time frame to guarantee the IMT-2020 requirements for 5G;
  • Carefully consider 5G spectrum demands when 5G usage increases and advanced use cases will carry additional needs;
  • Base spectrum decisions on real-world factors including, population density and extent of fibre rollout; and
  • Support harmonized mid-band 5G spectrum (e.g., within the 3.5 GHz, 4.8 GHz and 6 GHz ranges) and facilitate technology upgrades in existing bands.

“Coordinated regional decisions will lead to a WRC which enables the future of 5G and supports wider broadband take-up by increasing capacity and reducing costs,” the GSMA said.

…………………………………………………………………………………………………………………………………………………………………

References:

https://www.gsma.com/newsroom/press-release/gsma-calls-for-2-ghz-of-mid-band-spectrum-to-meet-un-targets/

https://www.gsma.com/spectrum/wp-content/uploads/2021/07/5G-Mid-Band-Spectrum-Needs-Vision-2030.pdf

https://telecoms.com/510489/lack-of-mid-band-spectrum-could-cost-operators-billions-of-dollars-gsma/

Oxymoron: 3GPP approves (?) Ligado’s L-Band Spectrum for 5G Private Networks

Overview:

Ligado Networks today announced it received approvals from Third Generation Partnership Project (3GPP) for new technical specifications that will enable its L-band spectrum [1.] to be deployed in 5G networks.

Note 1. L band is the IEEE designation for the range of frequencies in the radio spectrum from 1 to 2 gigahertz (GHz).  The Global Positioning System carriers are in the L band, centered at 1176.45 MHz (L5), 1227.60 MHz (L2), 1381.05 MHz (L3), and 1575.42 MHz (L1) frequencies. L band waves are used for GPS units because they are able to penetrate clouds, fog, rain, storms, and vegetation.

Since World War II, radar systems engineers have used letter designations as a short notation for describing the frequency band of operation. This usage has continued throughout the years and is now an accepted practice of radar engineers.

………………………………………………………………………………………………………………………………….

Why is 3GPP “approval” of L-Band an oxymoron?  Because 3GPP specifications have no legal standing and must be transposed by SDOs (like ETSI and ITU-R) before they become de jure standards.  The best example of that were the 3GPP RIT/SRIT submissions to ITU-R WP5D which became the main part of ITU-R M.2150 (previously referred to as IMT 2020 Radio Access Network).

From the 3GPP website under the heading Official Publications:

The 3GPP Technical Specifications and Technical Reports have, in themselves, no legal standing. They only become “official” when transposed into corresponding publications of the Partner Organizations (or the national / regional standards body acting as publisher for the Partner). At this point, the specifications are referred to as UMTS within ETSI and FOMA within ARIB/TTC.

Some TRs (mainly those with numbers of the form xx.8xx) are not intended for publication, but are retained as internal working documents of 3GPP. Once a Release is frozen (see definition in 3GPP TR 21.900), its specifications are published by the Partners.

…………………………………………………………………………………………………………………………………………………

How Frequencies get standardized for International Mobile Telecommunications (IMT):

IMT frequencies for 3G, 4G, 5G are agreed upon once every four years at the ITU-R WRC.  The last one was WRC 19 in Egypt in October 2019.  After that, they are sent to ITU-R WP5D for detailed IMT terrestrial frequency arrangements, which are then included in a revision of ITU-R M.1036 – Frequency Arrangements for Terrestrial IMT.  Once that M.1036 revision is approved, it is rubber stamped by ITU-R SG5 which meets once per year in November.

As of the close of last week’s WP5D meeting, there was no consensus on approving the WRC 19 specified mmW frequencies to be used with IMT 2150.   Hence, the revision of M.1036 to include 5G frequencies has not been approved yet.  One WP 5D meeting left to get that done this year prior to SG 5 meeting this November.

Ligado or the ITU-R 3GPP representative (currently ATIS) would have to submit their L-Band frequencies to WP 5D before their October 2021 meeting to get it approved as a frequency band to be used for M.2150 (the official one and only 5G RAN standard).

The closest M.1036 frequencies in the L band are 1.427-1.518 GHz and 1.710-2.200 GHz.  Both bands use paired FDD arrangements to separate transmit and receive channels.

…….…………………………………………………………………………………………………………………………………………

Ligado wants to expand the L-Band vendor ecosystem and deploy new mid-band spectrum in 5G networks in the U.S. Ligado is currently developing a 5G Mobile Private Network Solution designed to bring the power of next-generation networks to the energy, manufacturing, health care, transportation, and other critical infrastructure sectors.

“This is a major milestone for us – in an already momentous year – and advances our vision to deploy this spectrum for a range of next-generation services,” said Ligado CEO Doug Smith. “The 3GPP green light gives us what we need to accelerate our commercial ecosystem activities and expand Ligado’s roster of partners to deploy this much-needed spectrum for U.S. businesses and consumers.”

3GPP approvals (?) of Band 24 (1.5 GHz and 1.6 GHz) may encourage vendors to build PRE-STANDARD 5G and LTE products compatible with Ligado’s mid-band spectrum. Ligado has already entered into commercial agreements with multiple 5G base station and chipset vendors. The company has also announced a collaboration with pioneering network operator Rakuten Mobile to showcase its 5G Mobile Private Network Solution, and the companies plan to deploy lab and field trials over the next 12 months.

The items that were approved at this week’s 3GPP plenary meeting include updates to Ligado’s existing LTE Band 24 (1.5 GHz and 1.6 GHz); a new 5G NR Band labeled n24; a new 5G NR Supplemental Uplink (SUL) Band labeled n99; and NR Carrier Aggregation (CA) and SUL band combinations for n24 and n99 with CBRS, C-Band and EBS/BRS spectrum. The approvals of SUL band n99 and band combinations will help facilitate the deployments of L-Band spectrum with other mid-band airwaves like the C-Band, CBRS, and EBS spectrum bands.

“Receiving these 3GPP approvals is a huge springboard to deploy the L-Band in U.S. 5G networks, and we’re excited to have continued support from several industry-leading vendors,” said Chief Technology Officer Maqbool Aliani. “Bringing this additional mid-band spectrum to the 5G market will help the U.S. roll out next-generation deployments more quickly, at lower costs, and with superior network performance.”

Ligado submitted these work items to 3GPP in June 2020 after winning unanimous, bipartisan approval from the Federal Communications Commission (FCC) to modify its existing spectrum license. In October 2020, the company announced it had successfully raised nearly $4 billion to develop and deploy the L-Band in 5G networks.

For years, it’s been rumored that Ligado wanted to sell its spectrum to the highest bidder, probably a wireless carrier desiring mid-band 5G spectrum. While that hasn’t happened, some still see it as a valuable resource for the Verizon or AT&T.  If T-Mobile or Dish acquired the L-band, they would extend their advantage even further, according to New Street Research analyst Jonathan Chaplin in a September 2020 report.

“The final major step for Ligado will involve getting chipset and radio vendors to incorporate the L-Band into their designs, paving the way for a carrier to deploy the L-Band on towers and small cells and to sell devices that contain L-Band-supporting chipsets,” Chaplin wrote in a report for investors today. “This final leg of the process is likely to take some time, but could be accelerated by the support of a large industry player (one of the carriers), who can more easily encourage their vendors to integrate the spectrum into their equipment.”

Also, several analysts believe that the demand for private wireless networking equipment could eventually double the market for public wireless networks.

About Ligado Networks:

Building on 25 years of experience providing crucial satellite connectivity, Ligado’s mission is to modernize American businesses by delivering the 5G connectivity solutions needed to transform their operations and realize the efficiencies of a digital world. Our plans to deploy licensed mid-band spectrum in public and private 5G networks will help pave the way for future innovations and economic growth across America.

For further information:

Ligado Networks Media Contact:
Ashley Durmer, Chief Communications Officer and Head of Congressional Affairs
Tel: 703-390-2008
Ashley@ligado.com

References:

https://www.prnewswire.com/news-releases/3gpp-approves-band-specifications-of-ligados-l-band-spectrum-for-5g-deployment-301316320.html

https://www.fiercewireless.com/private-wireless/ligado-obtains-3gpp-approvals-for-l-band-5g

https://ieeexplore.ieee.org/document/29086

Busting a Myth: 3GPP Roadmap to true 5G (IMT 2020) vs AT&T “standards-based 5G” in Austin, TX