OpenSignal
OpenSignal reports shed light on 5G mmWave and 5G User Experiences
According to a new report, “Quantifying the mmWave 5G experience in the US — July update“ by OpenSignal, the average U.S. mobile user connects to a 5G millimeter wave (mmWave) network less than 1% of the time. The difference between AT&T, Verizon, and T-Mobile’s 5G mmWave network access is miniscule with Verizon customers at 0.7% of the time, AT&T’s at 0.4% of the time, and T-Mobile’s at 0.2% of the time. OpenSignal’s latest mmWave 5G report features data collected from March to June, 2021. The network monitoring company obtained its data from software installed in more than 100 million smartphones around the world, which send back anonymized usage data to OpenSignal on a daily basis.
Regarding 5G mmWave network speeds, T-Mobile users experienced the fastest average 5G mmWave network download speeds of 618.4 Mbps with Verizon, which was nearly twice as fast as users’ average experience on T-Mobile, and more than two and a half times faster than what our users experienced on AT&T. Verizon users continue to experience the fastest average 5G mmWave download speed which Opensignal has seen to date. Users’ average download speed on AT&T’s 5G mmWave was 245 Mbps, while we recorded an average 5G mmWave download speed of 312 Mbps on T-Mobile. AT&T and T-Mobile’s scores were statistically tied.
T-Mobile users experienced the fastest average 5G upload speeds on 5G mmWave networks with a score of 39.9 Mbps, which was 29.7-33.1% faster than what was observed on both AT&T and Verizon. Average upload speeds for AT&T and Verizon’s mmWave 5G services were 30 Mbps and 30.8 Mbps, respectively.
…………………………………………………………………………………………………………………………………………………………..
5G technology promised to support high-speed mobile operations in the mmWave spectrum bands, thus allowing operators to raise their peak network speeds from around 100Mbit/s to above 1Gbit/s. However, distance is extremely limited and line of sight connectivity is required. Transmissions in mmWave spectrum can’t travel more than a few thousand feet, and usually cannot penetrate through glass or trees. So many small cells close to the 5G mmWave user are needed which are often difficult to get permits for and install on public property (like street lights, lamps, rooftops, etc).
In contrast, wireless transmissions in traditional, lowband cellular spectrum bands, such as 800MHz or 1900MHz, can often travel miles and reach deep inside homes or office buildings.
Furthermore, ITU-R WP 5D has not agreed on the revisions of ITU-R M.1036 Frequency Arrangements for terrestrial IMT which MUST include (but do not now) the mmWave bands approved at WRC 19. Therefore, there is no standard for exactly what 5G mmWave frequencies should be used along with their duplexing and other arrangements.
………………………………………………………………………………………………………………………………………………………
In a companion report on 5G User Experiences, OpenSignal found that T-Mobile doubled its lead in the 5G Download Speed category. T-Mobile users saw average 5G Download Speeds of 87.5 Mbps, ahead of our users on AT&T and Verizon which both scored 52.3 Mbps. Our T-Mobile users’ average 5G Download Speed has increased by an impressive 16.3 Mbps compared to our April 5G report, and 29.4 Mbps compared to our January 5G report. By comparison, our users on AT&T saw their average 5G Download Speeds reduce by 2.7 Mbps since our last report, while our users on Verizon experienced a 4.5 Mbps improvement.
T-Mobile won the 5G Upload Speed award with a score of 15.1 Mbps, which is statistically unchanged compared to our previous report. Verizon places second showing an improvement of 1.2 Mbps and reaching 14.2 Mbps, while AT&T follows behind with 8.8 Mbps — a 1.2 Mbps decline since our April 2021 5G report.
SOURCE: OpenSignal
AT&T and Verizon shared the award for 5G Video Experience, scoring 61.3 points and 61.2 points, respectively. AT&T claimed the award in April 2021, while Verizon was the sole winner in January 2021. T-Mobile has placed third across all 5G Video Experience awards, this time scoring 54.8 points. Video Experience quantifies the quality of video streamed to mobile devices by measuring real-world video streams over carriers’ networks.
Finally, Verizon won the 5G Voice App Experience award scoring 83.3 points and moving past AT&T, which was the previous winner. Verizon has improved its score by 0.7 points since our previous report, while we have observed 0.6-0.8 points declines on both AT&T and T-Mobile. All three mobile operators place in the Good category (80-87 points). Voice App Experience measures the quality of experience real-time communications using over-the-top (OTT) voice apps. Examples of these types of apps include WhatsApp, Skype and Facebook Messenger.
References:
https://www.opensignal.com/2021/07/13/quantifying-the-mmwave-5g-experience-in-the-us-july-update
https://www.opensignal.com/reports/2021/07/usa/mobile-network-experience-5g
https://www.lightreading.com/5g/the-age-of-mmwave-5g-sputters-to-dusty-death/a/d-id/770838?
How fast is 5G really? OpenSignal and Reviews.org provide answers
Most IEEE Techblog readers know that 5G speeds are dependent on the spectrum used, with mmWave providing by far the fastest bit rates.
- Millimeter wave spectrum, championed by Verizon, is available in very large block widths, and can therefore deliver very high speeds. But coverage (propagation) is very poor.
- Low frequency spectrum offers very good coverage, but poor speeds.
- The sweet spot for 5G is therefore mid-band spectrum*, which offers the most compelling blend of coverage and capacity/speed.
* According to telecom research analyst Craig Moffett, not all mid-band spectrum is the same. The propagation differences between T-Mobile’s 2.5 GHz spectrum and the 3.7 to 4.2 GHz C-Band spectrum that will be auctioned off in a matter of weeks (and which is likely to be the cornerstone of Verizon’s future mid-band deployments) are dramatic. For a given cell site, the area covered in open space by T-Mobile’s 2.5 GHz will likely be 10x greater than that covered by a cell site in the C-Band.
OpenSignal examined 5G download speeds in five U.S. cities and found that Verizon is crushing it compared to the other big wireless carriers, so far. But some, including T-Mobile’s President of Technology Neville Ray, have questioned the wisdom of leading a 5G strategy with mmWave deployments. Verizon’s early lead with the high-band spectrum could begin to vanish as the other two carriers’ 5G deployments mature.
In each of the five cities, the average 5G download speed was over three times faster using Verizon than on either AT&T or T-Mobile. But OpenSignal notes that most of these measurements were taken before Verizon’s launch of its Nationwide 5G, which includes the use of lower frequency bands. As Verizon adds more lower frequency spectrum into the mix, its lead on speed will likely decline.
OpenSignal’s lead analyst Ian Fogg said the variation in mmWave download speeds depends on how each carrier has deployed. Verizon has deployed very densely in some urban areas while the other two carriers have deployed less densely. One of the big downsides to mmWave is its limited propagation. Fogg said, “If you’re on the edge of the range of the signal, you may get more error correction,” among other factors that will slow the speed.
OpenSignal also reported on mmWave upload speeds, which are drastically lower than mmWave download speeds.
Since cellular networks are asymmetric, upload speeds are always much slower. “If you are sending information from a large antenna on a cell site, it’s easy to transmit down to a small phone,” said Fogg. “But when the phone is transmitting back, you have a small battery device that’s transmitting in the other direction.”
But since upload is used for such things as sharing photos and videos, consumers are going to want faster and faster upload speeds. Fogg noted that the cameras of smartphones get improved in each new generation, becoming more capable of high-resolution images that result in larger file sizes.
Aside from 5G being used to improve mobile broadband, the technology also promises to earn its return on investment for business use cases. One of those use cases will be fixed wireless access (FWA) deployments. In that case, the upload constraints could be mitigated by the types of devices deployed. Fogg noted that for FWA “you don’t have a battery constraint in the same way.” He said, “You’ll probably have a smaller antenna than you would on a cell tower. There’s still an asymmetry dynamic, but not quite the same.”
There are three notable 5G developments:
- Verizon nationwide 5G. After October 13, Verizon started its nationwide 5G rollout using dynamic spectrum sharing (DSS) to allow Verizon to offer 5G on lower frequency spectrum bands that are also available for use simultaneously for Verizon’s 4G users. The use of lower frequency bands will change the nature of Verizon’s 5G service compared with the exclusively mmWave service used beforehand, likely increasing 5G Availability but lowering average 5G Download Speeds.
- T-Mobile’s mid-band 5G extension. Similar to Verizon, T-Mobile is also altering the mix of 5G spectrum it uses for its 5G service. In the last quarter of 2020, T-Mobile is aiming to greatly expand the reach of its 2.5GHz mid-band 5G service to many more cities which should enable faster speeds. The company claims its mid-band coverage will increase from 30 million to 100 million people by the end of 2020. It is also looking to extend the reach of its standalone 5G technology which should help T-Mobile to improve its 5G Availability as well.
- The arrival of the 5G iPhone. All iPhone 12 models support both 5G and mmWave 5G in the U.S. and their arrival should accelerate 5G adoption. The first units arrived in customers’ hands on October 23. Apple’s smartphones are a key part of the U.S. wireless market. AT&T in particular was the first carrier to market the iPhone and it continues to have a strong iPhone share. This launch means all major smartphone makers offer 5G models. It also means that the U.S. wireless customers who prefer Apple — approximately half of U.S. mobile users — now have a 5G option that the carriers can market.
…………………………………………………………………………………………………………………………………………………………………………………………………………..
To help consumers understand the difference between current 4G internet speeds and 5G internet speeds, Reviews.org crunched the numbers to put these speeds into perspective:
What this illustrates is that the jump from 4G to 5G is not a minor boost, according to Joe Hanlan of Reviews.org. A decade ago it seemed impossible to imagine watching TV and movies on our phones, and now it is something that lots of people do every day. New 5G networks will open up our gadgets to a range of new possibilities, and while it is hard to imagine exactly the kinds of things we’ll be doing in a decade from now, our 5G future makes it possible.
To compare flight durations to mobile network speeds, REVIEWS.org sourced average download speeds from 4G and 5G networks from Opensignal. The research firm then converted the difference in speeds between networks to a non-stop flight from Perth to London (17:20 duration).
References:
https://www.opensignal.com/2020/11/24/understanding-5g-availability-in-us-cities
https://www.fiercewireless.com/5g/verizon-s-5g-mmwave-crushing-it-but-for-how-long
5G speeds: here’s how much faster new internet speeds will be
T-Mobile shutters Sprint’s 5G network; OpenSignal 5G User Experience report highlights
As expected following the April 1st close of T-Mobile’s acquisition, Sprint’s 5G network (which uses 2.5GHz mid-band spectrum) has been deactivated while the “new T-Mobile” works to re-deploy it across its own network.
The integration of the Sprint mid-band spectrum is a key part of T-Mobile’s 5G strategy, which aims to combine low-band 600MHz spectrum for broad, nationwide 5G coverage with faster but lower-range midband (Sprint’s 2.5GHz network) and short-range mmWave networks for a balance of coverage and speed.
T-Mobile has already deployed its new 2.5GHz spectrum in New York, the first market to benefit from the wireless network operator’s spectrum in low-, mid-, and millimeter wave bands. The operator’s 2.5GHz 5G is also live in “parts” of Chicago, Houston, Los Angeles, New York, and Philadelphia.
Most existing Sprint customers won’t be able to use their current devices going forward to access 5G. Newer devices that feature Qualcomm’s X55 modem, like the Galaxy S20 5G lineup, will still be able to access the 2.5GHz 5G when they relaunch as part of the new T-Mobile’s 5G network (along with the rest of T-Mobile’s low-band and mmWave 5G spectrum). T-Mobile is offering credits for affected customers to lease a new 5G device.
“We are working to quickly re-deploy, optimize and test the 2.5 GHz spectrum before lighting it up on the T-Mobile network. In the meantime, legacy Sprint customers with compatible devices can enjoy T-Mobile’s nationwide 5G network,” a T-Mobile spokesperson said.
According to data from a new Opensignal 5G User Experience report, customers using T-Mobile’s mid-band 5G are benefitting from average download speeds of around 330Mbps. The mobile analytics company ranks T-Mobile first for 5G availability; with customers receiving a 5G signal around twice as often as AT&T and 56 times more than Verizon.
T-Mobile’s press release about the Opensignal report said customers are seeing average download speeds of 330 Mbps on its mid-band 2.5 GHz network.
From that OpenSignal report:
T-Mobile wins the 5G Availability award, as its 5G users spend 22.5% of time connected to 5G:
The time connected to a 5G service is extremely important if users are to enjoy all of 5G’s benefits. In the U.S., T-Mobile won the 5G Availability award by a large margin with Sprint and AT&T trailing with scores of 14.1% and 10.3%, respectively. Verizon users saw their extremely fast 5G service 0.4% of the time because of the limited geographical reach of the mmWave wireless technology Verizon currently relies upon for 5G and the early stage of the 5G deployment.
Sprint’s 5G users’ experience is already changing as new T-Mobile combines its network capabilities:
When we previously looked at the 5G Download Speed of Sprint’s users some time ago we saw average 5G speeds of 114.2 Mbps reflecting the mid-band 5G wireless spectrum Sprint relied upon. But following the completion of T-Mobile’s acquisition of Sprint, the new T-Mobile is starting to provide Sprint 5G users with access to old T-Mobile’s 600MHz spectrum and so average 5G speeds are now 49.5 Mbps but 5G Availability has risen from 10.3% to 14.1% of time. T-Mobile is still in the process of merging its original network with Sprint and we expect the mobile network experience of Sprint users will continue to change for some time.
………………………………………………………………………………………………………………………………………………………………………….
“Building the fastest 5G network is easy if you only cover less than 50 square miles. Opensignal’s report shows that only T-Mobile is doing the hard work to deliver BOTH 5G coverage and speed. And we’re just getting started,” said Neville Ray, President of Technology at T-Mobile.
“With the addition of Sprint, the Un-carrier’s 5G is getting bigger, better and faster every day, moving quickly on our mission to build the world’s best 5G network, one unlike any other, to people all across the country!”
T-Mobile and Sprint were finally cleared to merge on April 1st, following discussions which began in 2013.
To appease regulators, T-Mobile agreed to sell Sprint’s prepaid business, Boost Mobile, and Virgin Mobile to Dish network for $1.4 billion. The deal also included selling Sprint’s entire 800 MHz portfolio of spectrum to Dish. Those deals formally completed yesterday.
Last month, T-Mobile asked California’s Public Utilities Commission (CPUC) to ease other conditions it agreed to in order for the merger to be granted – including job creation promises following the COVID-19 pandemic, average 5G coverage and speed commitments, and to remove a “burdensome” third independent test of its network.
……………………………………………………………………………………………………………………………………………………………………
References:
T-Mobile switches off Sprint’s 5G network following $26.5 billion merger
https://www.opensignal.com/reports/2020/06/usa/mobile-network-experience-5g
OpenSignal reports on 5G Speeds and 4G LTE Experience in South Korea & Other Countries
Introduction:
South Korea wireless telcos have all deployed pre-standard versions of “5G,” based on 3GPP Release 15 NR NSA. That relies on a “LTE anchor” for signaling, mobile packet core, etc. Are those “5G” speeds significantly greater than 4G LTE Advanced Pro which AT&T claims is 5GE?
Opensignal has published what it says is the first “real analysis” of 5G download speeds as of June 20, 2019. Their latest report (June 2019) is on the performance of various 4G LTE wireless carriers and devices in South Korea.
5G Speeds in South Korea:
The market research firm reveals that the average 5G download speeds in South Korea (for the Samsung S10 5G and LG Electronics V50 ThinQ 5G) is 111.8 Mbps (see illustrations below), or 48% faster than comparable recent 4G smartphones, and 134% faster than other 4G LTE phones.
While those average 5G speeds outpace what 4G devices obtain, Opensignal’s results show that those averages track well behind the maximum capabilities supported by 5G in South Korea. The vast majority of South Korean 5G smartphone users currently have either the Samsung S10 5G or LG V50 smart phone. Therefore, we compared these 5G users with owners of 4G flagship smartphone from those two brands released in 2018 and 2019, this includes: Samsung S9, S9+, Note 9, S10e, S10, S10+ and LG G7 range, V40, and G8.
…………………………………………………………………………………………………………………………………………………………………………………………………….
Opensignal lists maximum 5G download speeds of 1.2 Gbit/s in the U.S. and 988 Mbit/s in South Korea.
“While 1.2 Gbps is the maximum (download) speed experienced by Opensignal users in real-world conditions, Opensignal has seen speeds as high as 1.5 Gbps in the U.S. using our software but in test conditions that do not reflect the real-world experience.”
Currently, 5G smartphone users connect to both a 4G spectrum band and a (3GPP Release 15) 5G New Radio (NR) band simultaneously in what is called Non-Standalone Access (NSA) mode. Effectively, the system is using 5G for raw download bandwidth, but uses 4G for other network functions. When operators launch services based on Standalone Access, 5G smartphones will be able to connect exclusively to a 5G NR signal and latencies should decrease significantly, improving the experience for consumer applications such as online multiplayer games like Fortnite or PUBG, as well as internet-based voice communication like FaceTime, Tango, WhatsApp, KakaoTalk, LINE, etc. Opensignal expects the experience of 5G users to change during the course of 2019 as 5G’s coverage improves and vendors resolve initial 5G problems.
While there is a significant increase in the average download speeds experienced by 5G smartphone users, both upload speeds and latency — a measure of the responsiveness of the network — are similar between 4G smartphone users and 5G smartphone users. This upload and latency finding is what Opensignal would expect at this early stage of the 5G era because initial 5G technology does not yet seek to improve either characteristic.
As vendors fix 5G teething issues and refine their solutions, peak and average 5G speeds will improve. And, while some 5G frequency bands are not available in particular countries yet – for example 3.5Ghz in the U.S., mmWave in Europe – they will be over the next few years and experience gained from other countries will help carriers improve these later 5G roll outs.
4G LTE Speeds in South Korea and other countries:
South Korea was the only country where smartphone users enjoyed average mobile Download Speeds over 50 Mbps, although Norway was close behind with 48.2 Mbps. Then there was a bit of a drop in speeds to the next two countries, Canada and the Netherlands, where OpenSignal measured Download Speed Experience at just over 42 Mbps. The remaining six of the top 10 markets scored in the 33-40 Mbps range. The global average score of the 87 countries analyzed was 17.6 Mbps — barely a third of the top score.
Canada’s impressive third place is little surprise. Users experienced over 35 Mbps in Download Speed Experience, while speeds of over 60 Mbps weren’t uncommon in the country’s biggest cities.
……………………………………………………………………………………………………………………………………………………………………………………………….
4G LTE Mobile Experience in South Korea:
OpenSignal said there was a wide variety of of their metrics in Download Speed Experience, with average speeds ranging from over 50 Mbps to less than 2 Mbps. There were 13 countries with Download Speed Experience scores over 30 Mbps, while 35 of the 87 markets measured fell into the 10-20 Mbps range, and 20 scored under 10 Mbps.
For 4G Availability, LG U+ achieved a near-perfect score. All three South Korean wireless operators were able to deliver a 4G signal to their users more than 95% of the time, putting them among the global elite in 4G reach. LG U+ went further. Its 4G Availability score of 99.5% means that there was practically no instance where our users couldn’t find a 4G connection during our data collection period.
South Korea rates highly in Video Experience. U+ and SK telecom both landed in the Very Good range (65-75 in our 100-point scale) in Video Experience, while KT was less than a point shy of achieving the same rating. That indicates that the consumer Video Experience in South Korea is commendable, exhibiting short load times and little stalling during playback. But South Korea’s operators didn’t score as highly in Video Experience as operators in many other countries, despite their superiority in most of our other metrics. Extremely fast speeds and ubiquitous 4G reach don’t always translate into an Excellent consumer Video Experience.
…………………………………………………………………………………………………………………………………………………………………………………..
Conclusions:
Opensignal believes that these early results will improve and change as 5G matures. The firm notes that early 5G networks, like those in South Korea, use the non-standalone 5G spec (3GPP Release 15 NR NSA), which relies on the 5G data plane for downloads, but utilizes 4G LTE for control plane functions.
Opensignal says that average speeds will improve as standalone 5G is deployed and more 5G frequency bands are used.
…………………………………………………………………………………………………………………………………………………………………………………..
References:
https://www.opensignal.com/reports/2019/06/southkorea/mobile-network-experience
Key findings in OpenSignal’s “State of the Mobile Network Experience” report
According to a new OpenSignal report, South Korea is well ahead of any other country in the world when it comes to Download speed experience, with average speeds topping 50 Mbps. Only Norway comes close, with even third-placed Canada a clear 10 Mbps behind. OpenSignal saw a huge range of scores in this metric, with the lowest average score being less than 2 Mbps.
The biggest variation between Upload speed experience scores of our users was at the top end of the table, where the gap between leader Denmark and tenth-placed Canada was over 5 Mbps.
In only 13 of the 87 countries we rated our users averaged Latency experience scores under 40 milliseconds, while none scored under 30ms. One continent dominated our Latency Experience analysis, with six European countries in our top 10.5G’s designers target much improved latency as one of their goals.
At the other end of the scale we inevitably have developing countries, but it’s surprising to see India still lagging at 6.8 Mbps average despite all the investment from Reliance Jio, which has been focused on coverage rather than speed. India is doing a lot better in terms of 4G availability. The average Indian mobile user has access to 4G about 91% of the time according to OpenSignal.
Only four European countries made OpenSignal’s 4G Availability top 10 — the fewest of any of our award metrics. And both the U.S. and India made the top 10, despite being distinctly mid-table in all other key metrics. One of the standout countries to feature in the top five of our 4G Availability rankings was the U.S. which was distinctly mid-table across all other key award metrics but managed a fifth-place finish in 4G Availability. In our most recent Mobile Network Experience USA report, we saw Verizon overtake T-Mobile following a fierce battle in this metric. This rivalry has driven up 4G Availability in the country, leading to a world-class position for the U.S. in our rankings.
Indeed, 4G is becoming more and more ubiquitous, even in developing markets. OpenSignal’s analysis shows that the average 4G Availability
across the 87 countries experienced by our users is close to 80%, with 15 markets scoring over the 90% mark. The top ends of our tables were
largely dominated by European countries, but no one country appeared in the top 10 for all five of our key metrics. European countries, however,
dominated, racking up far more top 10 entries than any other region.
In a ranking of the 10 countries who scored highly across all five key metrics, only two were from outside Europe.
Norway was #1 in the Video Experience category despite of being even worse than Korea when comes to latency. Hungary was #2. Astonishingly, only six non European countries among the top 25 who all scored a Very Good rating (65-75 out of 100).
5G should mean more consumers will be able to enjoy a good mobile Video Experience more often because of the increased mobile capacity new high frequency 5G spectrum will provide to mobile operators.
You can download the complete OpenSignal (free) report here.
OpenSignal: Cellular networks getting faster than Wi-Fi; but not in U.S.
According to a new report by OpenSignal, cellular network speeds have gotten faster and often greater than average Wi-Fi speeds. In 33 countries, smartphone users now experience faster average download speeds using a mobile (cellular) network than using Wi-Fi. The upshot is that cellular networks (some type of LTE) are no longer inferior to Wi-Fi in every country and the mobile industry must change a number of design decisions as a result.
Australia smartphone users experienced the biggest advantage with average download speeds 13 Mbps faster on mobile networks than on Wi-Fi. The mobile network advantage for a few other countries: France (+2.5 Mbps); Qatar (+11.8 Mbps); Turkey (+7.3 Mbps); Mexico (+1.5 Mbps) and South Africa (+5.7 Mbps).
In sharp contrast to the above, U.S. Wi-Fi is still 25Mbps faster than mobile networks on average. Same is true for Hong Kong, South Korea, and Singapore.
Hong Kong’s mobile networks deliver average speeds that are 38.6Mbps lower than that experienced over Wi-Fi. Hong Kong’s mobile users experience an average speed over Wi-Fi of nearly 55Mbps, compared to just 15Mbps for its mobile network.
In China by contrast, average Wi-Fi speeds were recorded at 23.9Mbps, compared to overall mobile download speeds of 13.8Mbps.
Of the Asia-Pacific countries studied, only Japan, South Korea and Singapore recorded faster Wi-Fi compared to mobile speeds, and the difference between the two was a lot closer in each market. South Korea recorded the fastest average mobile speeds of around 45Mbps, compared to 56Mbps for Wi-Fi, while Singapore had the fastest Wi-Fi speeds of 73Mbps, compared to around 39Mbps over Wi-Fi.
OpenSignal states that telecom operators in markets where there is little difference between mobile and Wi-Fi speeds are using fixed wireless networks effectively to support their cellular networks. They also experience greater mobile network consumption as consumers in the market have little incentive to switch networks.
With 5G coming in various flavors, cellular networking speeds are bound to get faster and better. However the next generation of Wi-Fi – IEEE 802.11ax or Wi-Fi 6 is designed for cellular data offloading to a fixed broadband wireless network. Hence, both technologies are meant to be complementary.
Another interesting observation from the study is a mobile device’s tendency to favor Wi-Fi over cellular, even if the Wi-Fi connection is not as good (that’s my experience with a Samsung smart phone). With the exception of smart phones made by Huawei, most cellular devices will automatically switch from cellular networks to Wi-Fi without performing a speed test. Huawei phones will switch from a slow Wi-Fi link to a faster cellular connection where appropriate. We think the entire mobile phone industry should do this type of speed test and wireless network switching in both directions (Wi-Fi to cellular and cellular to Wi-Fi).
References:
https://www.theregister.co.uk/2018/11/23/mobile_v_wifi_speed_report/
https://www.techspot.com/news/77559-opensignal-mobile-networks-getting-faster-than-wi-fi.html
https://www.cw.com.hk/it-hk/hong-kong-mobile-networks-significantly-slower-than-wi-fi