China ITU filing to put ~200K satellites in low earth orbit while FCC authorizes 7.5K additional Starlink LEO satellites

China has submitted regulatory filings with the International Telecommunication Union (ITU) to put approximately 200,000 satellites in orbit.  It’s part of a national strategy to secure orbital positions and radio frequencies for a massive low-Earth orbit (LEO) broadband satellite network (aka Non Terrestrial Network or NTN).
The vast majority of these new satellites are from a new joint government-industry body called the Radio Spectrum Development and Technology Innovation Institute (RSDTII) -discussed below- which has applied to launch a total of 193,000 satellites for two non-geostationary constellations, CTC-1 and CTC-2. It is the first disclosure of these two constellations, about which no other details have been confirmed.
The ITU filings were made in December  by various Chinese entities, with two constellations alone accounting for nearly 97,000 satellites each.  These applications are subject to strict ITU “use it or lose it” provisions, which mandate that operators deploy the first satellite within seven years of application and complete the entire constellation rollout within 14 years.
  • Purpose: The planned systems are intended to provide global broadband connectivity, data relay, and positioning services, directly competing with U.S. efforts like SpaceX’s Starlink network.
  • Filing Entities: The primary filings were submitted by the state-backed Institute of Radio Spectrum Utilization and Technological Innovation, along with other commercial and state-owned companies like China Mobile and Shanghai Spacecom.
  • Status: These filings are an initial step in a long international regulatory process and serve as a claim to limited spectrum and orbital slots. They do not guarantee all satellites will ultimately be built or launched. The actual deployment will be a gradual process over many years.
  • Context: The move is part of an escalating “space race” to dominate the LEO environment. Early filings are crucial for securing priority access to orbital resources and avoiding signal interference. The sheer scale of the Chinese proposal would, if realized, dwarf most other planned constellations.
  • Regulations: Under ITU rules, operators must deploy a certain percentage of the satellites within seven years of the initial filing to retain their rights.
Several Chinese entities are actively pursuing the expansion of their low-Earth orbit (LEO) satellite constellations, signaling a significant push in the nation’s space technology sector. 
  • Shanghai Yuanxin (Qianfan), currently China’s most advanced LEO satellite operator, has submitted a regulatory request for an additional 1,296 satellites.
  • Telecommunications giant China Mobile is planning two separate constellations totaling 2,664 satellites.
  • ChinaSat, the established state-owned satellite provider, is focusing on a 24-satellite medium-Earth orbit (MEO) system.
  • GalaxySpace, a private satellite manufacturer based in Beijing, has applied for 187 satellites, and China Telecom has applied for 12. 

Image Credit: Klaus Ohlenschlaeger/Alamy Stock Photo

The RSDTII (Radio Spectrum Development and Technology Innovation Institute) is a hybrid entity merging government bodies—including the Ministry of Industry and Information Technology’s (MIIT) State Radio Monitoring Center—with local Xiongan departments, the military-affiliated electronics conglomerate CETC, and ChinaSat. The RSDTII’s creation appears to be the latest governmental restructuring effort aimed at stimulating domestic satellite development and closing the technological gap with international competitors like Starlink. 
The RSDTII’s application for an exceptionally large number of orbital slots (200,000) for projects still in the conceptual phase represents an ambitious strategic claim. To contextualize, SpaceX’s Starlink currently operates approximately 9,500 satellites and has FCC approval for a further 7,500 Gen2 satellites, with long-term plans potentially reaching 42,000 satellites. 
Achieving China’s projected deployment schedule faces logistical challenges, primarily regarding current launch vehicle capacity. China’s commercial LEO initiatives only recently matured, launching 303 commercial satellites in the past year out of a total national fleet of 800 in orbit. China currently manages three primary LEO constellations: the GW system (operated by China Sat-Net), the G60 system (operated by Shanghai Yuanxin/Qianfan), and the smaller Honghu-3 project. 
…………………………………………………………………………………………………………………………………………………..
In the U.S., the FCC has authorized 7,500 additional Starlink satellites in lower earth orbits, giving parent company SpaceX options to add capacity for fixed Internet and D2D mobile services.  The FCC order increases the number of satellites Starlink can launch by 50%, expanding approved launches from approximately 12,000 to 19,000. Half of the new satellites are required to be in orbit and operational by December 1, 2028, and the remainder by December 1, 2031.
At the end of December 2025, the Starlink system comprised more than 9,000 fixed broadband satellites in orbit and over 650 that support D2D mobile services.  SpaceX originally requested permission for nearly 30,000 new satellites, but the FCC decided to proceed “incrementally” and defer approval for the roughly 15,000 remaining satellites, which includes those proposed to operate above 600km (373 miles).

“This gives SpaceX what they need for the next couple of years of operation. They’re launching a bit over 3,000 satellites a year, so 7,500 satellites being authorized is potentially enough for SpaceX to do what they want to do until late 2027,” said Tim Farrar, satellite analyst and president at TMF Associates.

SpaceX has plans for a larger D2D satellite constellation that would use the AWS-4 and H-block spectrum it is acquiring from EchoStar. It is awaiting FCC approval for the US$17 billion deal, but the spectrum is not expected to be transferred until the end of November 2027. 

The FCC noted that the changes will allow the Starlink system to serve more customers and deliver “gigabit speed service.” Along with permission for another tranche of satellites, the FCC has set new parameters for frequency use and lower orbit altitudes. The modified authorizations will also apply to new satellites to be launched. 

Starlink’s LEO satellite network competitors are Amazon Leo, OneWeb and AST Space Mobile.

………………………………………………………………………………………………………………………………………………………..

References:

U.S. BEAD overhaul to benefit Starlink/SpaceX at the expense of fiber broadband providers

Huge significance of EchoStar’s AWS-4 spectrum sale to SpaceX

Telstra selects SpaceX’s Starlink to bring Satellite-to-Mobile text messaging to its customers in Australia

SpaceX launches first set of Starlink satellites with direct-to-cell capabilities

SpaceX has majority of all satellites in orbit; Starlink achieves cash-flow breakeven

Amazon Leo (formerly Project Kuiper) unveils satellite broadband for enterprises; Competitive analysis with Starlink

NBN selects Amazon Project Kuiper over Starlink for LEO satellite internet service in Australia

GEO satellite internet from HughesNet and Viasat can’t compete with LEO Starlink in speed or latency

Amazon launches first Project Kuiper satellites in direct competition with SpaceX/Starlink

Vodafone and Amazon’s Project Kuiper to extend 4G/5G in Africa and Europe

Leave a Reply

Your email address will not be published.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*