Satellite 2024 conference: Are Satellite and Cellular Worlds Converging or Colliding?

Converged terrestrial and satellite connectivity is a given, but the path is strewn with unknowns and sizable technological and business challengers, according to satellite operator CEOs.  Hopefully, 3GPP Release 18 will contain the necessary specifications for it to be implemented as we explained in this IEEE Techblog post.

During Access Intelligence’s Satellite 2024 conference in Washington DC this week, Viasat CEO Mark Dankberg said satellite operators must start thinking and acting like mobile network operators, creating an ecosystem that allows seamless roaming among them.  Terrestrial/non-terrestrial network (NTN) convergence requires “a complete rethinking” of space and ground segments, as well as two to three orders of magnitude improvement in data pricing, Dankberg said. Standards will help get satellite and terrestrial to fit together, but that evolution will happen slowly, taking 10 to 15 years, Iridium CEO Matt Desch said. It remains to be seen how direct-to-device services will make money, he added. Satellite-enabled SOS messaging on smartphones “is becoming free, and our satellites are not free — we need to make money on it some way,” Desch added.

The regulatory environment around satellite has changed tremendously during the past decade, with the FCC very oriented toward mobile networks’ spectrum needs and now satellite matters making up most of the agenda for the 2027 World Radiocommunication Conference, Desch said. However, there will be regulatory challenges to resolve in satellite/terrestrial convergence, he predicted. There are significant synergies in having a 5G terrestrial network and satcom assets under one roof, he said. Blurring the lines between terrestrial and non-terrestrial makes it easier for manufacturers to build affordable equipment that operates in both modes, Desch concluded.

That inevitable convergence is being driven by declining launch costs, maturing technologies and improved manufacturing, all of which make non-terrestrial network connectivity more economically competitive, said EchoStar CEO Hamid Akhavan. He said the EchoStar/Dish Network combination (see 2401020003) was driven in part by that convergence, consolidating EchoStar’s S-band spectrum holdings outside the U.S. with Dish’s S-band holdings inside the country. The deal also melds Dish’s network operator expertise with Hughes’ satellite expertise.

Wednesday Opening General Session: Are Satellite and Cellular Worlds Converging or Colliding?

To ensure space’s sustainability, missions must follow the mantra of “leave nothing behind,” sustainability advocates said. Space operators should have more universal protocols and vocabulary when exchanging space situational awareness data, as well as more uniformity in what content gets exchanged, said Space Data Association Executive Director Joe Chan. When it comes to space sustainability, clutter isn’t necessarily dangerous, and any rules fostering sustainability should avoid restricting the use of space, he said. Space lawyer Stephanie Roy of Perkins Coie said a mission authorization framework covering space operations that fall outside the regulatory domain of the FCC, FAA and NOAA is needed. Space operators and investors see sustainability rules as inevitable and want to ensure they allow flexibility and don’t mandate use of any particular technology, she added.  Many speakers called for a “circular economy” in space, with more reuse of materials via refueling, reuse or life extension.

Separately, space sustainability advocates urged a mission authorization regulatory framework and universal use of design features such as docking plates enabling on-orbit serving or towing. Meanwhile, conference organizers said event attendance reached 14,000.

Also, ITU Secretary-General Doreen Bogdan-Martin urged the satellite industry to join ITU’s Partner2Connect digital coalition aimed at addressing digital divide issues, particularly in the least-developed nations and in landlocked and small island developing countries. The digital divide “is right up there” with climate change as a pressing issue for humanity, said Bogdan-Martin. She noted the coalition has received $46 billion in commitments, with a target of $100 billion by 2026.

References:

https://communicationsdaily.com/article/view?BC=bc_65fb60473d5de&search_id=836928&id=1911572

ABI Research and CCS Insight: Strong growth for satellite to mobile device connectivity (messaging and broadband internet access)

SatCom market services, ITU-R WP 4G, 3GPP Release 18 and ABI Research Market Forecasts

https://www.3gpp.org/specifications-technologies/releases/release-18

 

Vodafone and Amazon’s Project Kuiper to extend 4G/5G in Africa and Europe

  • Vodafone and Vodacom plan to use Project Kuiper’s low Earth orbit (LEO) satellite constellation to extend the reach of their 4G/5G networks.
  • Companies plan to participate in beta testing of Project Kuiper service in 2024.

Vodafone and Project Kuiper, Amazon’s low Earth orbit satellite (LEO) communications initiative, today announced a strategic collaboration through which Vodafone and Vodacom plan to use Project Kuiper’s network to extend the reach of 4G/5G services to more of their customers in Europe and Africa.

Vodafone and Vodacom plan to use Project Kuiper’s high-bandwidth, low-latency satellite network to bring the benefits of 4G/5G connectivity to areas that may otherwise be challenging and prohibitively expensive to serve via traditional fibre or microwave solutions. Project Kuiper will connect geographically dispersed cellular antennas back to the companies’ core telecom networks. This means Vodafone and Vodacom will be able offer 4G/5G services in more locations without the time and expense of building out fibre-based or fixed wireless links back to the core networks.

As part of the collaboration, Amazon plans to partner with Vodafone to roll out Project Kuiper’s high-speed broadband services to unserved and underserved communities around the world. The companies are also exploring additional enterprise-specific offerings to provide businesses with comprehensive global connectivity solutions, such as backup service for unexpected events and extending connectivity to remote infrastructure.

Margherita Della Valle, Vodafone Group Chief Executive, said: “Vodafone’s work with Project Kuiper will provide mobile connectivity to many of the estimated 40% of the global population without internet access, supporting remote communities, their schools and businesses, the emergency services, and disaster relief. These connections will be complemented further through our own work on direct-to-smartphone satellite services.”

“Amazon is building Project Kuiper to provide fast, affordable broadband to tens of millions of customers in unserved and underserved communities, and our flexible network means we can connect places that have traditionally been difficult to reach,” said Dave Limp, Amazon’s senior vice president for devices and services. “Teaming with a leading international service provider like Vodafone allows us to make a bigger impact faster in closing the digital divide in Europe and Africa. Together we’ll explore how we can help our customers get the most value from expanded connectivity, particularly in areas like residential broadband, agriculture, education, healthcare, transportation, and financial services.”

“At Vodacom, our purpose is to connect for a better future, and we work every day to bring more people in Africa online,” said Shameel Joosub, CEO of Vodacom Group. “Collaborating with Project Kuiper gives us an exciting new path to scale our efforts, using Amazon’s satellite constellation to quickly reach more customers across the African continent.”

Vodafone, Vodacom and Project Kuiper will begin deploying services in Africa and Europe as Amazon’s production satellites come online. Amazon is preparing to test two prototype satellites in the coming months before starting to deploy production satellites in 2024. Amazon expects to begin beta testing Project Kuiper services with select customers by the end of 2024, and Vodafone and Vodacom plan to participate in that testing through this collaboration.

Vodafone’s Margherita Della Valle with Amazon’s David Lamp

……………………………………………………………………………………………………….

References:

https://www.vodafone.com/news/technology/vodafone-and-amazons-project-kuiper-extend-connectivity-africa-and-europe

KDDI Partners With SpaceX to Bring Satellite-to-Cellular Service to Japan

Japan network operator KDDI announced today that it has signed an agreement with SpaceX to introduce satellite-to-cellular service in Japan. Leveraging SpaceX’s Starlink low earth orbit (LEO) satellites and KDDI’s extensive national wireless spectrum, this partnership aims to enhance cellular connectivity in areas, including remote islands and mountains that have been traditionally hard to reach using conventional 4G and 5G networks.

The partnership is slated to introduce SMS text services as the initial step, starting as early as 2024. At a later date, voice and data services will follow suit. The company also announced the service will work with almost all existing smartphones on the KDDI network.

The service is planned to be provided based on the establishment of radio-related laws and regulations in Japan.

Source: SpaceX

…………………………………………………………………………………………………………………………………

SpaceX first announced plans to provide cellular connectivity with T-Mobile in the US last year. At the time Elon Musk invited other companies to join them, and while there were no immediate takers, KDDI is now the third company to sign a deal.

Earlier this year New Zealand’s telecommunications company, One NZ (formerly known as Vodafone), announced it has signed an agreement with SpaceX to offer mobile coverage across the country, eliminating cellular dead zones.

KDDI and SpaceX also invite carries worldwide to join the ecosystem of mobile network operators bringing next generation satellite enabled connectivity to their customers.

■About KDDI:

KDDI’s au network enables our customer’s daily lives and helps them share unforgettable moments. We are proud of providing 99.9% “population coverage” to the people of Japan. Unfortunately, only a small portion of the Japanese land mass is habitable and often it is difficult to use traditional technologies to provide coverage from coast to coast. Our extensive network continues to grow in coverage as we deploy more fiber and satellite backhauled base stations. In addition to our continued efforts, we will provide “connecting the unconnected” experience, by enabling smartphones to connect to satellites.

■About Starlink by SpaceX:

Starlink delivers high-speed, low-latency internet to users all over the world. As the world’s first and largest satellite constellation using a low Earth orbit, Starlink delivers broadband internet capable of supporting streaming, online gaming, video calls and more. Starlink is engineered and operated by SpaceX. As the world’s leading provider of launch services, SpaceX is leveraging its deep experience with both spacecraft and on-orbit operations to deploy the world’s most advanced broadband internet system, as well as a Direct to Cell constellation of satellites to provide connectivity directly to unmodified LTE cell phones.

 

References:

https://news.kddi.com/kddi/corporate/english/newsrelease/2023/08/30/6937.html

KDDI teams up with SpaceX to bring Starlink-powered cellular service to Japan

 

 

GSMA- ESA to collaborate on on new satellite and terrestrial network technologies

The GSMA and the European Space Agency (ESA) on Wednesday announced the signing of a memorandum of intent (MoI) that covers collaboration on new satellite and terrestrial network technologies.   GSMA’s Foundry innovation accelerator will work closely with the ESA’s 5G/6G Hub based at the ESA’s European Centre for Space Applications and Telecommunications in Harwell, Oxfordshire.

Non-terrestrial networking (NTN) has been incorporated into the 3GPP’s 5G specification since Release 17 (but not in the ITU-R M.2150 5G RIT/SRIT standard which covers only terrestrial networks), and work is already well underway to turn it into a commercial reality. The partnership between the GSMA and the ESA represents a more coordinated effort in that direction. What’s more, when it comes to 6G, non-terrestrial networking is expected to be baked in from the start. Again, cooperation between these two sectors will be invaluable.

The GSMA and ESA’s goal then is to create an ecosystem that can fast-track the development of new complimentary solutions for businesses and consumers. They also aim to accelerate the integration of satellite communications with 5G and, when the time comes, 6G networks.

“By collaborating more closely with the European Space Agency, and its satellite network operator ecosystem, we hope to accelerate the immense potential satellite and terrestrial telecommunications networks can create for consumers and businesses when they are more closely connected. By working together, we can help the communications industry bring innovative solutions to market, which in turn will create tremendous benefits to society by connecting even more people, wherever they are in the world,” said GSMA CTO Alex Sinclair, in a statement.

What the MoI means in practical terms is that the GSMA and ESA’s respective innovation hubs plan to start working together, sharing knowledge, ideas, and the outcomes of trials with one another.

On the telecoms side, the GSMA has the Foundry, which fosters collaboration between telcos and various industries with the aim of developing initial ideas into globally-scalable, commercial solutions. Completed projects include using 5G to enable drones to fly beyond visual line of sight (BVLOS), a 5G broadcast solution, and using 5G for automated farming solutions, among others.

Similarly, on the satellite side of the equation, the ESA has its 5G/6G Hub. Opened in February 2022, it provides a space where new 5G and satcom technologies can be developed and integrated. Developers can also use it to test and verify their 5G converged network applications and services. The ESA announced in January that it is expanding the facility to accommodate new areas of research, which it aims to identify via a consultation with industry experts.

Recent research findings by GSMAi showed that the increased adoption and integration of satellite technologies by the communications industry could lead to potential revenue gains of $35bn by 2035 (a 3% uplift on telecommunications industry revenues).

Speaking following the signing of the MOI at ECSAT in Oxfordshire, Alex Sinclair, Chief Technology Officer at the GSMA said: “By collaborating more closely with the European Space Agency, and its satellite network operator ecosystem, we hope to accelerate the immense potential satellite and terrestrial telecommunications networks can create for consumers and businesses when they are more closely connected. By working together, we can help the communications industry bring innovative solutions to market, which in turn will create tremendous benefits to society by connecting even more people, wherever they are in the world.”

Antonio Franchi, Head of Space for 5G and 6G Strategic Programme, ESA, said: “Collaboration is key to telecommunications innovation and, from our 5G/6G Hub, we are fostering industry partnerships to advance the 5G digital transformation of society and industry. We look forward to working with GSMA to explore and realise the huge potential of next-generation satellite-enabled connectivity.”

ABI Research predicts that global 5G non-terrestrial networking (NTN) service revenue will achieve a compound annual growth rate (CAGR) of 59% between 2024 and 2031, reaching $18 billion. By then, connections are expected to number 200 million.

About GSMA
The GSMA is a global organisation unifying the mobile ecosystem to discover, develop and deliver innovation foundational to positive business environments and societal change. Our vision is to unlock the full power of connectivity so that people, industry, and society thrive. Representing mobile operators and organisations across the mobile ecosystem and adjacent industries, the GSMA delivers for its members across three broad pillars: Connectivity for Good, Industry Services and Solutions, and Outreach. This activity includes advancing policy, tackling today’s biggest societal challenges, underpinning the technology and interoperability that make mobile work, and providing the world’s largest platform to convene the mobile ecosystem at the MWC and M360 series of events.

We invite you to find out more at gsma.com

For more information on GSMA Foundry, please visit: gsma.com/foundry

About the European Space Agency
The European Space Agency (ESA) provides Europe’s gateway to space.
ESA is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe’s space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world.

ESA has 22 Member States: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Slovenia, Latvia and Lithuania are Associate Members.

ESA has established formal cooperation with five Member States of the EU. Canada takes part in some ESA programmes under a Cooperation Agreement.

By coordinating the financial and intellectual resources of its members, ESA can undertake programmes and activities far beyond the scope of any single European country. It is working in particular with the EU on implementing the Galileo and Copernicus programmes as well as with Eumetsat for the development of meteorological missions.

References:

GSMA AND EUROPEAN SPACE AGENCY LAUNCH NEW COMMUNICATIONS INNOVATION PARTNERSHIP

https://telecoms.com/522665/gsma-esa-forge-stronger-ties-between-satellite-and-cellular-industries/

ABI Research and CCS Insight: Strong growth for satellite to mobile device connectivity (messaging and broadband internet access)

 

ABI Research and CCS Insight: Strong growth for satellite to mobile device connectivity (messaging and broadband internet access)

The satellite connectivity market will grow strongly in coming years, according to data from analysts ABI Research and CCS Insight.  The growing convergence of satellite technology and cellular smartphones has been made possible by integrating Non-Terrestrial Networks (NTN) connectivity into the 5G cellular ecosystem.
ABI Research’sThe role of satellite in 5G: non-terrestrial networks mobile” forecasts that the NTN-Mobile segment has the potential to reach a market value of at least $18bn, with up to 200 million connections by 2031. It added that the NTN Mobile marketspace has a positive outlook, with a projected compound annual growth rate (CAGR) of 59% from 2024 to 2031.It predicts the revenue growth in this sector will be driven primarily by the introduction of NR-NTN satellite services, which is expected in 2026. ABI believes that the potential adoption of NTN satellite services in consumer vehicles for mobile emergencies, messaging, voice, and data communications use cases would also drive the growth of NTN-Mobile connections. The market research firm said that following the release of 3GPP Release-17, the satellite-to-mobile marketplace has gained significant momentum, driven by notable product launches and major announcements.
However, it should be noted that there is no official standard for 5G NTNs!  ITU-R WP5D hasn’t even started work on it yet, focusing singularly on terrestrial 5G.
Image Credit:  ABI Research
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….
Victor Xu, satellite communications research analyst, highlighted increased traction from the device side as leaving the sector poised for the mainstream.  He cited moves to provide satellite-capable mobile devices by “major consumer smartphone manufacturers and chipset makers” including “Apple, Qualcomm, Motorola, MediaTek, Huawei, and ZTE” as a marker of the market’s readiness.
ABI also noted that these collaborations have extended beyond to include mobile network operators (MNOs) aiming to expand their network coverage. Examples given were T-Mobile partnering with satellite operator SpaceX/Starlink to provide satellite-to-mobile connectivity services, while satellite operators AST SpaceMobile and Lynk have also established strategic alliances with MNOs such as Vodafone, Rakuten Mobile, AT&T, Bell Canada, MTN Group, Orange, Zain KSA, Saudi Telecom Company (STC), and Telefónica.Xu noted the current batch of satellite-to-mobile services “will initially prioritize low data rate communications through IoT NTN.”  While services to date “have mainly focused on specialised emergency services and messaging with low data rates,” Xu predicted satellite networks will “eventually incorporate NR-NTN, a 5G-based, more advanced communication specification, in the next few years.” Xu added the standard will “increase capacity and network capabilities, enabling more concurrent users and applications with higher data rates.”
ABI Research also highlighted a growing number of deals between satellite service providers and mobile operators, but Xu said it was important to note that the recently announced satellite services will initially prioritize low data rate communications through IoT-NTN technology.”
“Currently, satellite communication services have mainly focused on specialized emergency services and messaging with low data rates. Still, satellite networks are anticipated to eventually incorporate NR-NTN, a 5G-based, more advanced communication standard, in the next few years,” said Xu. “Integrating NR-NTN will increase capacity and network capabilities, enabling more concurrent users and applications with higher data rates. As a result, new possibilities and use cases for satellite connectivity will emerge,” he added.
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….
Separately, a study from CCS Insight revealed new opportunities for enhanced global connectivity, with projected growth in satellite-connected devices and the introduction of new satellite constellations that can fill connectivity gaps in remote areas.CCS Insight forecasts that 92 million mobile phones will have built-in satellite messaging functionality by the end of 2023, a significant rise from just under 2 million devices in 2021. This shift in accessibility it said was being driven by Apple’s partnering with Globalstar for the Emergency SOS feature in the iPhone 14 range, as well as Qualcomm’s partnership with Iridium, which is bringing similar capabilities to Android phones.The research firm believes that with the integration of satellite connectivity on mobile devices, the market will soon no longer be reliant on hardware modifications. With commercial services expected to launch later in 2023, new low-Earth-orbit satellite constellations led by AST SpaceMobile, Lynk and SpaceX are set to work alongside terrestrial mobile networks to provide satellite connectivity to all unmodified phones.

CCS Insight believes that these enhanced satellite networks have the capability to grow to deliver voice and data services as the constellations evolve. It adds that network operators will be able to offer these satellite services as add-ons to existing subscription packages, catering to the growing demand for ubiquitous connectivity.

As demand for enhanced global connectivity continues to rise, the analyst forecasts that 15% of global mobile subscribers are expected to own a smartphone that supports satellite messaging by 2027 and an additional 10% will benefit from satellite plans provided by their operator.  By capitalizing on revenue streams generated through operators and supplementary services, CCCS believes that the direct-to-device satellite market is poised to amass $18bn in revenue by 2027. This market it said represented a “vast opportunity”, with an audience of more than 4.8 billion people who could access satellite services through a compatible smartphone. It calculated that as many as 493 million people worldwide lack any kind of mobile network coverage.

“Bringing satellite capabilities to mass-market smartphones marks a milestone in the telecom industry,” said Luke Pearce, senior analyst at CCS Insight.  “This development creates exciting opportunities for consumers, manufacturers and operators and promises to help bridge the digital divide. The projected growth in revenue and subscribers highlights the potential this integration holds for expanding connectivity options – we’re witnessing the start of a new era where satellite services become an integral part of everyday smartphones.”

CCS Insight’s free report, Direct Satellite-to-Device Mobile Services, shares unique insight into the market for satellite-connected phones and unpacks its developing dynamics.

 References:

https://www.abiresearch.com/market-research/product/7780386-the-role-of-satellite-in-5g-non-terrestria/

https://www.abiresearch.com/market-research/product/7781971-highlights-developments-in-the-satcom-ntn-/

Direct Satellite-to-Device Mobile Services

ABI tips NTN, 5G mobile market to reach $18B by 2031

AST SpaceMobile achieves 4G LTE download speeds >10 Mbps during test in Hawaii

FCC Grants Experimental License to AST SpaceMobile for BlueWalker 3 Satellite using Spectrum from AT&T

https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/3gpp-satellite-communication

Telstra partners with Starlink for home phone service and LEO satellite broadband services

Telstra, Australia’s #1 telco, will partner with SpaceX’s Starlink to provide phone and broadband services to rural Australia using Low Earth Orbit (LEO) satellites.  Telstra said it planned to offer the new services before year’s end according to a blog post.  It also promises higher download speeds compared to copper-based ADSL internet access.

Starlink, operated by Elon Musk’s SpaceX (private company). has built a fast-growing network of more than 3,500 satellites in Low-Earth Orbit that can provide connectivity in remote areas.

“Telstra will be able to provide home phone service and Starlink broadband services to Aussies as a bundle offer, as well as local tech support and the option of professional installation,” the telco said in the same blogpost.  “This agreement also provides connectivity options for our business customers, with a higher bandwidth business option available in areas without fixed and mobile connectivity. The business offer will be available to purchase from Telstra both locally and in select countries overseas.”

Using LEO satellites will bring new capabilities to commercial satellite services in Australia, including faster communications. Signal distances travelled are shorter, as LEO satellites are vastly closer to earth compared to geostationary satellites at around 35,000 km above earth.  It requires less power for an earthbound device to transmit to a satellite and there’s a reduced latency (delay) in transmission time.

Telstra said in its blog post:

One of the benefits of LEO satellites are that they are much closer than geostationary satellites to Earth with multiple satellites that are a part of a “constellation”, allowing them to send and receive signals much faster. As well as offering great data throughput, the proximity of these satellites reduces latency making them a great and more consistent option for services that need low latency, like voice and video calls.

The latency, download speeds and general experience in most circumstances will be far superior to copper-based ADSL and be better suited for most modern connectivity needs. Our team has been testing out in the field Starlink’s service and how we can best offer it to customers, including evolving our own modem specifically to support Starlink connectivity and Aussie households. We’re extremely excited to show you what this looks like later in the year.

Partnerships between telcos and LEO satellite providers will allow consumers to make satellite-connected calls using their regular smartphone from almost anywhere on the planet, whether there is a local cellular network or not. In Australia, mobile calls and even video calls will be possible on regular smartphones operating in remote and rural regions of Australia.

At Mobile World Congress held in Barcelona in March 2023, Telstra told ChannelNews it was working on adding LEO satellite audio and video calls to its network. Taiwanese chip designer MediaTek demonstrated the chips that phones would use for LEO satellite communications at the same conference.

UK phone maker Bullitt Group announced it was working with Motorola to bring satellite texting to regular phones in Australia this year, with video calling via LEO satellites to come within another two years. Their texting service has already rolled out in Europe and the US.

Telstra’s move is in line with emerging partnerships between telcos and satellite providers in the US, with T-Mobile forging a deal with Starlink and AT&T with AST SpaceMobile. T-Mobile and Starlink began testing their service in March.

Optus is yet to announce any service involving LEO satellite services locally, although it has been conducting tests. In November last year, Optus demonstrated satellite direct-to-mobile calls in partnership with LEO satellite provider Lynk.

Vodafone meanwhile has launched LEO satellite trials in Turkey with local operator partner SatCo.

It is a major coup for Telstra to be first among Australia-based Telcos to announce a specific service, however longer term, LEO satellites will allow Optus and Vodafone to be more formidable competition in rural and regional Australia, as LEO satellites will give them a reach that they don’t enjoy due to their lack of ground-based cellular infrastructure compared to Telstra.

Further, the Australian telco market will be opening up to increased international competition if offshore telcos want to join in. In March, ChannelNews reported that Amazon was gearing to take on the NBN with a fast satellite-based internet service.

Nevertheless LEO satellites are a fillip for Telstra in light of the Australian Competition and Consumer Commission’s (ACCC) decision late last year to veto a deal between Telstra and TPG Telecom to consolidate their presence in rural and fringe areas of the country through an infrastructure and service swap.

The coming of LEO satellite services also will be a test for the ACCC. To what extent does its jurisdiction cover LEO-satellite-based communications, particularly when it involves telecommunication services provided by foreign companies from space?

References:

We’re working with Starlink to connect more people in remote Australia

Telstra to partner with Elon Musk’s Starlink for satellite calls and broadband

https://www.reuters.com/business/media-telecom/telstra-partners-with-elon-musks-starlink-internet-remote-australia-2023-07-03/

AST SpaceMobile achieves 4G LTE download speeds >10 Mbps during test in Hawaii

AST SpaceMobile has announced a significant achievement during its testing phase with the BlueWalker 3 Low Earth Orbit (LEO) satellite. Engineers successfully conducted download speed tests on off-the-shelf smartphones, surpassing speeds of 10 Mbps. This achievement paves the way for space-based cellular communications at 4G speeds, marking another major milestone, according to the company.  AST SpaceMobile says it is building the first and only global cellular broadband network in space to operate directly with standard, unmodified mobile devices.

In a press release, AST SpaceMobile Chairman and CEO Abel Avellan called this latest achievement another groundbreaking moment in telecom history and an important step toward AST SpaceMobile’s goal of bringing broadband services to parts of the world where cellular coverage is either unreliable or doesn’t exist today.

The 4G LTE download speed testing, which used AT&T spectrum and Nokia Radio Access Network (RAN) technology, reached initial speeds up to 10.3 Mbps, with further testing of voice calls to AT&T employees.

“Successfully reaching double-digit download speeds during satellite-to-smartphone testing takes us one step closer to ensuring people across the United States will be able to stay connected no matter their location,” said Chris Sambar, head of AT&T Network, in a statement. “This milestone wouldn’t be possible without the overall focus and determination of the teams working daily to achieve our shared space-based vision of connectivity.”

The next major test activity involves the enablement of 5G broadband.

AST SpaceMobile expects to begin initial non-continuous commercial service in 2024 after the launch of its first five planned BlueBird 1 satellites, followed by the launch of 90 satellites for global, continuous broadband and direct-to-device service.

This achievement demonstrates the feasibility of accessing broadband services in areas where cellular coverage is unreliable or nonexistent, bringing connectivity to parts of the world previously underserved.

AST SpaceMobile emphasized the significance of this milestone and its impact on global connectivity: “Achieving this milestone from an unmodified, standard cell phone on the ground connecting through our low Earth orbit satellite is another groundbreaking moment in telecommunications history and an important step toward AST SpaceMobile’s goal of bringing broadband services to parts of the world where cellular coverage is either unreliable or simply does not exist today.”

AST SpaceMobile announced on April 25th that they completed the first-ever space-based voice calls using unmodified smartphones. They achieved this through the successful deployment of BlueWalker 3, which is the largest commercial communications array ever deployed in low-Earth orbit.

According to the statement, BlueWalker 3 is designed to communicate directly with cellular devices using standard frequencies, including 5G speeds. The satellite is now fully unfolded, spanning a size of 693 square feet, which is crucial in supporting a cellular broadband network in space.

The AST SpaceMobile technology helps wireless companies improve their coverage by filling in gaps and dead zones in their networks. AST SpaceMobile has agreements and understandings with over 35 mobile network operators around the world.

References:

https://www.businesswire.com/news/home/20230621154227/en/AST-SpaceMobile-Confirms-4G-Capabilities-to-Everyday-Smartphones-Directly-From-Space

AST SpaceMobile Achieves Download Speeds Above 10 Mbps During Testing in Hawaii

https://www.fiercewireless.com/tech/ast-spacemobile-touts-10-mbps-download-speeds-during-tests-hawaii

AST SpaceMobile Deploys Largest-Ever LEO Satellite Communications Array

FCC Grants Experimental License to AST SpaceMobile for BlueWalker 3 Satellite using Spectrum from AT&T

 

 

 

OneWeb and NOW Corp sign MoU to boost connectivity for critical infrastructure in the Philippines

OneWeb, the low Earth orbit (LEO) satellite communications company, and NOW Corporation, a publicly listed firm in the Philippine Stock Exchange with investments in telecom, media, and technology, announce they have signed a Memorandum of Understanding (MoU) to bring high-speed, low-latency broadband connectivity to the Philippines.  As an archipelago of more than 7,500 islands, the Philippines lends itself well to satellite connectivity. Partnering with OneWeb will augment Now’s terrestrial coverage, and give it the ability to offer connectivity services to the aviation and maritime industries, and provide backup connectivity for mission critical communications.

Now Corp’s Now Telecom unit already offers cellular fixed-wireless access (FWA) services to enterprises and SMEs across the Philippines under the Fiber Air brand. It is also in the middle of building out a 5G standalone (SA) network in partnership with Nokia and Cisco – and with a little help in the form of a grant from the US Trade and Development Agency (USTDA) – in a bid to take on Smart, Globe and Dito in the Philippines retail mobile market.

The partnership combines the innovative satellite technology of OneWeb with NOW Corp’s existing broadband service and strong local presence especially in the enterprise market. OneWeb’s LEO satellites will provide seamless connectivity, enabling NOW to offer a wide range of enhanced broadband services to sectors including government, aviation, maritime, military, energy, healthcare and banking. With an eye toward serving such critical infrastructure, NOW will work closely with OneWeb in order to deliver stable, high-speed, low latency broadband connectivity with committed information rates (CIR).

Under this MoU, OneWeb will bring to enterprise, government, and other customers in the Philippines the connectivity solutions it offers in a swiftly growing number of markets. With its constellation of LEO satellites now fully built out, OneWeb is set to complete its rollout of global coverage this year. By tapping into the power of this global network, NOW will be able to extend services into hard-to-reach areas and enhance the speed, latency, and resiliency of its existing offerings.

Source: OneWeb

Neil Masterson, CEO of OneWeb
, commented: “This is an exciting partnership that is set to bring transformational connectivity to people, businesses, and government bodies throughout the Philippines. We are thrilled to count NOW as a partner and ally in our push to bring true global connectivity. NOW has done tremendous work toward getting the people of the Philippines online, and we’re honored to have the opportunity to enhance and build upon this work with an LEO connectivity solution that is fast, secure and reliable across vast distances, seas and rugged terrain.”

Mel Velarde, Chairman of NOW Corporation, said, “The integration of multi-orbit satellites provides a surprisingly compelling customer experience in both fixed and mobile applications. Our alliance with OneWeb and with the support of the United States government to the NOW Group will provide a clean, secure, and SLA-based connectivity to critical infrastructures such as banks, hospitals, schools, mining sites, power plants, government, and all other entities under the country’s digital economy. NOW Telecom is perhaps the only franchised Philippine telecom company that includes a mandate to operate in the outer space, making us able to cover the whole archipelago.”

References:

https://oneweb.net/resources/oneweb-and-now-corp-boost-connectivity-critical-infrastructure-philippines

LEO operator Sateliot joins GSMA; global roaming agreements to extend NB-IoT coverage

Sateliot, a company operating a low-Earth orbit (LEO) nanosatellite constellation under the 3GPP/ITU-R NB- IoT standard (which is part of 5G), has joined the GSMA as a network operator member. This membership allows Sateliot to sign standard roaming agreements with any mobile network operator (MNO) and mobile virtual network operator (MVNO) that is also a member of the GSMA. Sateliot launched the first-ever 5G standard LEO satellite, named Sateliot_0 The GroundBreaker, this past April.

Source: Sateliot

According to Sateliot, The same unmodified NB-IoT cellular devices that are currently being used can now be deployed in remote areas as well, where there is a lack of terrestrial cellular infrastructure.

Sateliot’s LEO nanosatellite constellation is designed to provide coverage in areas where traditional terrestrial connectivity is limited or non-existent, such as remote locations, fields of crops, mountains, or oceans. The standard protocol will allow massive deployment of 5G IoT solutions without captivity risks or inflated prices.

Sateliot’s membership with GSMA demonstrates its commitment to democratizing access to NTN IoT, as the company is the first to sign standard roaming agreements with global MNOs and MVNOs. With this membership, Sateliot becomes the first LEO satellite operator to have standard roaming agreements with global MNOs and MVNOs.

Sateliot’s network is designed to provide coverage in areas where traditional terrestrial connectivity is limited or non-existent, such as remote locations, fields of crops, mountains or for instance oceans. The standard protocol will allow massive deployment of 5G IoT solutions without captivity risks or inflated prices.

“We are thrilled to have become a GSMA member,” said Jaume Sanpera, CEO of Sateliot. “This is a fantastic milestone we’ve accomplished, we are the first LEO satellite operators to have standard roaming agreements with global MNOS and MVNOS.”

Sateliot runs the constellation that will democratize access to NTN IoT, demonstrated first by being a major contributor to the 3GPP standard and now by joining GSMA as an operator.

The GSMA’s mission is to drive the growth and development of worldwide mobile communications and provide industry leadership and advocacy. With its membership, Sateliot is poised to become a leader in IoT connectivity, providing seamless global connectivity for 5G IoT devices and applications.“We are seeing significant developments in the area of satellite communications, and we warmly welcome Sateliot as a member of the GSMA. We look forward to having them join the GSMA’s Wholesale Agreements & Solutions Group to work collectively and gain from the benefits of our membership,” said Lara Dewar, Chief Marketing Officer, GSMA.

References:

https://sateliot.space/en/news-sateliot-space/sateliot-joins-the-gsma-and-signs-standard-roaming-agreements-with-global-telecom-operators/

AST SpaceMobile completes 1st ever LEO satellite voice call using AT&T spectrum and unmodified Samsung and Apple smartphones

Satellite communications firm AST SpaceMobile, with the help of AT&T, has announced the first two-way audio call using satellites with standard smartphones as the end points. The initial call was placed using AT&T’s cellular network in Midland, Texas, to mobile carrier Rakuten in Japan using AST SpaceMobile’s BlueWalker 3 satellite in Low Earth Orbit (LEO), a breakthrough that could improve global cellular connectivity in remote regions without access to cell towers.

AST SpaceMobile claims this is “the first time anyone has ever achieved a direct voice connection from space to everyday cellular devices.” The phone call was made from an unmodified Samsung Galaxy S22 in Midland, Texas, using mobile spectrum from AT&T and connected to an iPhone used by Japanese tech giant Rakuten. Engineers from AT&T, Rakuten, and UK-based telecommunications company Vodafone assisted with the testing.

The use of satellites could be a significant step toward increasing cellular access not only in the U.S., where large areas of the country struggle with service, but in developing countries too. Typically a mobile phone call requires nearby cell towers to provide service. Many areas across the United States, such as rural communities and national parks, are “dead zones” — yes, just like the eerie early 2000s Verizon commercials warned. The same technology could be a great solution to the same issues in developing countries. Instead, satellites could act as a sort of space-based network of cell towers — with AST SpaceMobile claiming it’s “building the first and only space-based cellular broadband network.”

AT&T aims to use satellites to provide global cellular broadband from 2G to 5G. “Achieving what many once considered impossible, we have reached the most significant milestone to date in our quest to deliver global cellular broadband from space,” Abel Avellan, CEO and chairman of AST SpaceMobile, said in a press release. “While we take a moment to celebrate this tremendous accomplishment, we remain focused on the path ahead and pivotal next steps that get us closer to our goal of transforming the way the world connects.”

Image Credit: Image: AST SpaceMobile

Margherita Della Valle, Vodafone Group Chief Executive, said: “Today, we have taken another major step in mobile communications. 30 years after Vodafone sent the world’s first text message, we supported AST SpaceMobile in successfully making the first ever direct-to-smartphone test call using satellite communications. This is just the start. As a lead investor in AST SpaceMobile, we will continue to break technological boundaries by connecting many more millions of people across the planet when the service becomes commercially available.”

Mickey Mikitani, Rakuten Chairman & CEO, commented: “It was a unique thrill and honor to have the Rakuten team talk with Abel in a world-first direct-to-satellite experience. Congratulations to AST SpaceMobile and all of its strategic collaborators on this groundbreaking event. As technological advancements like space connectivity become possible with pioneers like AST SpaceMobile, Rakuten will also progress even further along the road to democratizing connectivity for all.”

Chris Sambar, Head of AT&T Network, said: “AT&T’s heritage began with the birth of the telephone 147 years ago and has continued with many other firsts including: trans-continental call, overseas call, call from the moon, and partnering to deliver the only network built with and for America’s first responders. We connect people to greater possibility, and this important milestone with AST SpaceMobile is a big step and we can’t wait to see what’s next in our space-based journey.”

It’s unclear whether satellite access would come at an extra cost. In AT&T’s original AST SpaceMobile partnership annoucement, the company couldn’t say whether existing plans would include satellite coverage.  While satellite offerings aren’t available for consumers yet, this successful test brings widespread access one step closer to becoming a reality.

Chairman & CEO Abel Avellan and an AST SpaceMobile engineer completing test calls in Texas

Image Credit: Image: AST SpaceMobile

Other U.S. network operators are also pursuing satellite network mobile phone calls:

Verizon teamed up with Amazon’s Project Kuiper satellite network in 2021 with the intention of connecting underserved communities and industries. Amazon is in the midst of launching its satellites into space, with its FCC license requiring at least half of the 3,236 they plan to deploy to be operational by July 2026.

T-Mobile has partnered with SpaceX, a major competitor of Project Kuiper, with plans to “start getting into testing” its satellite mobile coverage this year. There are currently over 4,000 Starlink satellites in orbit, though some have experienced issues requiring them to be removed from orbit or tested further. T-Mobile has claimed customers should have satellite access through most existing plans and, like AT&T, that existing phones should work with the satellite offerings.

See References below for more global Satellite Internet initiatives.

References:

AST SpaceMobile Makes History in Cellular Connectivity, Completing the First-Ever Space-Based Voice Call Using Everyday Unmodified Smartphones

https://www.cnet.com/tech/mobile/at-t-teams-with-satellite-provider-ast-spacemobile-as-it-looks-to-boost-coverage/

Page 1 of 3
1 2 3