Author: Alan Weissberger
O2 UK and Microsoft to test MEC in a Private 5G Network
UK mobile network operator O2 (Telefónica UK) has partnered with Microsoft to test the benefits of on-premise Mobile Edge Computing (MEC) within a Private 5G network, with a focus on low latency and security.
The MEC Proof of Concept (PoC) involves technology running on Microsoft Azure, which will be the first Azure deployment using a UK Private 5G network. It is designed to support secure data management, with all confidential data staying on premises at all times.
Image credit: Microsoft Azure for Operators
O2 (Telefónica UK) will provide Secure 5G Network capabilities and various Industry 4.0 applications. The computing service will be delivered via Azure Private Edge Zones, bringing compute, intelligence and storage to the edge where data is created. O2 and Microsoft will also support start-ups in developing new 5G solutions through the ‘Microsoft for Startups’ program.
O2 recently announced it had launched a Private 5G Network initiative with Leonardo, a global high technology company in the Aerospace, Defence & Security sector. This trial with Microsoft will be similar, however will involve MEC to broaden the use cases and benefits.
Jo Bertram, MD of Business at O2, said, “We’re incredibly proud of our track record of supporting business partners with innovative network solutions. This particular trial with the Microsoft Azure platform will provide secure and superfast capabilities that will maximise productivity and efficiency, as well as peace of mind. We pride ourselves on having a secure 5G network and being champions of coverage and reliability, as recognised in industry awards.”
Yousef Khalidi, corporate vice president, Azure for Operators at Microsoft, said: “Through our collaboration with O2, we will enable enterprises to leverage 5G to unlock new scenarios that accelerate digital transformation within their own private, on-premises environments. Combining Azure technology with O2 services is critical to bringing MEC to the enterprise edge, and we look forward to seeing customers leverage this platform to drive innovation across a broad range of information and operational technology applications.”
Key Deliverables:
- O2 partners with Microsoft to trial the benefits of on premise Mobile Edge Computing (MEC) within a Private 5G Network, focusing on security and low latency
- The Proof of Concept (PoC) aims to pave the way for secure data management, enabling confidential information to stay on premises at all times
- Technology will be run via the Microsoft Azure platform, its first deployment utilizing a UK Private 5G Network
References:
https://azure.microsoft.com/en-us/industries/telecommunications/
GMSA vs ITU-R, FCC & U.S. Tech Companies on use of 6GHz band: Licensed 5G or Unlicensed WiFi?
Introduction:
There’s a huge disagreement on the use of the 6 GHz band for wireless communications. GSMA strongly says it’s needed for 5G, ITU-R WRC-23 only has it on their agenda for world region 1, the FCC has opened up that band for unlicensed operation, while a group of big tech companies say 6 GHz unlicensed WiFi is an economic winner and have asked the FCC for additional communications capabilities.
GSMA Position – Licensed 6 GHz for 5G:
In a May 17th GSMA blog post, the GSMA trade group warns that the 6GHz band is urgently needed for licensed (terrestrial) 5G operations, but that governments are diverging [1.] in their plans for same. “The global future of 5G is at risk says GSMA in the first sentence of their post.
“The 6 GHz band is essential not only for mobile network operators to provide enhanced affordable connectivity for greater social inclusion, but also to deliver the data speeds and capacity needed for smart cities, transport, and factories. It is estimated that 5G networks need 2 GHz of mid-band spectrum over the next decade to deliver on its full potential. [reference 1]”
Note 1. Different Approaches for the 6 GHz band
China will use the entire 1200 MHz in the 6 GHz band for 5G. Europe has split the band, with the upper part considered for 5G, but a new 500 MHz tranche available for Wi-Fi. Africa and parts of the Middle East are taking a similar approach.
At the other extreme, the U.S. and much of Latin America have declared that none of this valuable resource will be made avail able for 5G, but rather will be offered to Wi-Fi and other unlicensed band technologies. Also see the section Worldwide Status of Unlicensed 6 GHz below for more on this controversial topic.
……………………………………………………………………………………………………………………………………………
“5G has the potential to boost the world’s GDP by $2.2 trillion,” said John Giusti, Chief Regulatory Officer for the GSMA. “But there is a clear threat to this growth if sufficient 6 GHz spectrum is not made available for 5G. Clarity and certainty are essential to fostering the massive, long-term investments in this critical infrastructure.”
GSMA opines that 5G is accelerating the digital transformation of all industries and sectors, unleashing new waves of innovation that will benefit billions. This technology is crucial for the environment and climate goals as connectivity replaces carbon. In order to reach all users, however, industries will require the extra capacity that the 6 GHz band offers.
The GSMA calls on governments to:
- Make at least 6,425-7,125 MHz available for licensed 5G;
- Ensure backhaul services are protected; and
- Depending on countries’ needs, incumbent use and fiber footprint, the bottom half of the 6 GHz range at 5,925-6,425 MHz could be opened on a license-exempt basis with technology neutral rules.
The GSMA also published a statement with Ericsson, Huawei, Nokia and ZTE that further details the importance of the 6 GHz band for the future of 5G. That document states, “Extending the bandwidth of 5G through the harmonization of 6 GHz spectrum will provide more bandwidth and improve network performance. On top of this, the broad, contiguous channels offered by the 6 GHz range will reduce the need for network densification and make next-generation connectivity more affordable for all.
About GSMA:
The GSMA represents the interests of mobile operators worldwide, uniting more than 750 operators with almost 400 companies in the broader mobile ecosystem, including handset and device makers, software companies, equipment providers and internet companies, as well as organisations in adjacent industry sectors. The GSMA also produces the industry-leading MWC events held annually in Barcelona, Los Angeles, and Shanghai, as well as the Thrive Series of regional conferences. The GSMA continues to work with partners that share its commitment to sustainable development and economic growth. Click here to find out more.
For more information, please visit the GSMA corporate website at www.gsma.com. Follow the GSMA on Twitter: @GSMA.
Media Contact: [email protected]
……………………………………………………………………………………………………………………………………………..
ITU-R (WRC-2023) and FCC Positions:
1. GSMA says the World Radiocommunication Conference in 2023 (WRC-23) will provide the opportunity to harmonize the 6 GHz band across large parts of the world and help develop the ecosystem. That is not entirely correct as their related work item 1.2 only covers 6 GHz IMT for region 1, which comprises Europe, Africa, the former Soviet Union, Mongolia, and the Middle East west of the Persian Gulf, including Iraq.
2. The FCC voted last year to allocate the entire 6 GHz band for unlicensed operations, including Wi-Fi. Commercial Wi-Fi devices working in the 6 GHz band have already begun hitting the market.
The FCC’s vote represented a setback to some players like Ericsson, Verizon and T-Mobile that had urged the Commission to set aside some or all of the 6GHz band for licensed uses, including 5G.
In it’s latest WRC-23 related document, the FCC made no move to reverse their decision on unlicensed 6 GHz. More importantly, they have not requested a broadening of the 6 GHz band for 5G to include the U.S. or any other world region besides region 1. According to that FCC document:
WRC-23 agenda item 1.2 will consider the possibility of identifying IMT in the frequency bands 3 600-3 800 MHz and 3 300-3 400 MHz (Region 2); 3 300-3 400 MHz (amend footnote in Region 1); 7 025-7 125 MHz (globally); 6 425-7 025 MHz (Region 1); 10 000-10 500 MHz (Region 2).
Sharing and compatibility studies will need to be conducted, with a view to ensuring the protection of existing services to which the frequency band is allocated on a primary basis, without imposing additional regulatory or technical constraints on those services, and also, as appropriate, protection of services in adjacent bands.
……………………………………………………………………………………………………………………………………….
Tech Companies Meet with FCC on Unlicensed Use of the 6 GHz band:
Mike Dano, Editorial Director, 5G & Mobile Strategies at Light Reading said that representatives from Apple, Broadcom Facebook, Google, Qualcomm (the #1 supplier of 5G silicon) and two attorney’s from Wiltshire & Grannis LLP met (via video conference) with the legal advisor to FCC Commisioner Carr on May 13th to discuss the “Unlicensed Use of the 6 GHz Band.”
The 5 big tech companies collectively supported the FCC’s 6 GHz decision noting that the FCC unlicensed 6 GHz order adopted carefully considered rules that will protect incumbents while permitting innovation in fixed unlicensed equipment and operations.
The next step is to meet consumers’ expectation for mobility and portability through the pending FCC Public Notice and Further Notice of Proposed Rulemaking (FNPRM) for expanded use of the 6 GHz band in the U.S. They recommend the following additional capabilities:
- Client-to-client communications (which would allow devices to talk directly to each other).
- Very Low Power operations (which would allow low-power communications without Automatic Frequency Coordination technology).
- Mobile operations (which would permit mobile connections using Automatic Frequency Coordination technology for services such as mass transit connectivity).
The companies said that WiFi has been “an economic powerhouse.” In particular:
• Wi-Fi is projected to contribute nearly $1 trillion to the U.S. economy in 2021
• $3.3 trillion contributed globally in 2021
• That contribution will grow to $1.58 trillion by 2025 in the U.S.
• $4.9 trillion global contribution by 2025
• Wi-Fi 6 and 6 GHz devices are significant contributors to this expected growth
Unlicensed bands (NOT 5G) are the workhorses of the wireless economy:
- Unlicensed bands carry half of all internet traffic in the U.S., a figure that is growing each year
- LTE offload to unlicensed will increase with 5G, from 54% of traffic in 2017 to 59% by 2022
- Unlicensed is the on-ramp to broadband for American homes, enterprise wireless, rural
communities, schools, healthcare facilities, and more - Unlicensed spectrum is also the backbone for new IoT networks
- Key economic sectors—manufacturing, logistics, and research—depend on Wi-Fi for business
processes and internal connections - Quotient and Qualcomm studies have demonstrated an enormous unlicensed
spectrum shortfall in the mid-band - The 6 GHz band is central to addressing this pressing need
Worldwide Status of Unlicensed 6 GHz:
Of the top 20 economies in the world, fully half have opened, or are in the process of opening the 6 GHz band to unlicensed use—the U.S., Japan, Germany, UK, France, Canada, South Korea, Brazil, Mexico, and Saudi Arabia. In Europe, the CEPT decision opening 6 GHz is expected to become European law in March 2021 and will shortly be followed by country-specific implementations.
Proposed 6 GHz Channel Map for Unlicensed WiFi:
Image Credit: Wireless Training Solutions
………………………………………………………………………………………………………………………………………
References:
https://www.gsma.com/newsroom/press-release/gsma-calls-on-governments-to-license-6-ghz-to-power-5g/
https://www.gsma.com/spectrum/wp-content/uploads/2021/05/6-GHz-Capacity-to-Power-Innovation.pdf
https://www.lightreading.com/5g/gsma-5g-is-at-risk-if-6ghz-remains-unlicensed/d/d-id/769600?
https://ecfsapi.fcc.gov/file/1051767219870/6%20GHz%20Thumann%20Ex%20Parte%20(May%2013%202021).pdf
https://www.coleago.com/app/uploads/2021/01/Demand-for-IMT-spectrum-Coleago-14-Dec-2020.pdf
Strong Growth Forecast for 5G Security Market; Market Differentiator for Carriers
Some key findings from ResearchAndMarkets.com’s “5G Security Market by Technology, Solution, Category, Software, Services, and Industry Vertical Support 2021 – 2026” new report:
- The overall global 5G security market will reach $9.2 billion by 2026 [1.]
- The fastest-growing segment will be communications security at 49.2% CAGR
- North America [2.] will be the leading region projected to reach $4.1 billion by 2026
- Integrated 5G security and blockchain solutions will reach $183.1 million by 2026
- AI-based solutions for edge computing infrastructure will reach $253.2 million by 2026
- Distributed denial of service (DDoS) protection for 5G networks will reach $583 million by 2026
- Major drivers for carrier 5G security include 5G core network implementation and support of private wireless networks
- Leading carriers will transform 5G security from a cost of doing business into a major market differentiator for business customers
Note 1. In February 2021 report, Markets and Markets said that 5G security market size is projected to grow from $580 million in 2020 to $5.226 billion by 2026, at a compound annual growth rate (CAGR) of 44.3%. The market research firm believes the major drivers for the 5G security market include rising security concerns in the 5G networks, increasing ransomware attacks on IoT devices, rising attacks on critical infrastructure, and increasing IoT connections paved way for mMTC with enhanced security requirement.
The “cloud native mode” of 5G core/SA deployment is expected to exhibit a higher CAGR during the forecast period. By deploying 5G security solutions and services on the cloud, organizations can avoid spending on hardware, software, storage, and technical staff.
The cloud deployment type is often used for both private and public clouds and may vary from case to case, depending on the requirement of the client.
Additionally, organizations can scale up or down, depending on their use of cloud-based 5G security services. The cloud deployment segment has witnessed strong demand in the early phase of the 5G standalone network. It offers a wide range of benefits, such as scalability, accessibility, flexibility, and cost-effectiveness.
Note 2. Markets and Markets expects the APAC region to hold the largest market share during the forecast period. China, Australia, and Japan are the prime APAC countries that have started several 5G-related activities; which would provide growth opportunities for 5G security vendors in the region.
Asian telecom service providers, vendors, and government firms are determined to take the lead in 5G R&D. The infrastructural growth in APAC, especially in Japan, South Korea, Australia, Singapore, China, and India, and the increasing deployment of 4G and 5G networks present huge opportunities for the implementation of the 5G security solutions.
……………………………………………………………………………………………………………………………………………
The ResearchAndMarkets.com report evaluates the 5G threat landscape as well as technologies and solutions to secure networks, platforms, devices, data, and applications [3.]. The report also assesses the 5G security market outlook and potential for many solutions, services, and support. It also evaluates the impact of security functions across various technologies including Mobile Edge Computing (MEC), IoT networks, and mobility infrastructure. The report includes market forecasts for all major technologies, industry verticals, solutions, and service types from 2021 to 2026.
The 5G security market must be robust as solutions need to be deployed on multiple levels including devices, air interface equipment, cloud RAN infrastructure, mobile backhaul facilities, and more.
Note 3. There’s likely to be an increasing adoption of 5G security solutions by carriers. It will be used for identity management, differentiated security protection, privacy protection and growing demand for data protection worldwide. 5G security technology offers various benefits such as diversified system level protection of IT-aware infrastructure, security as service, and rapid detection and response.
The growing demand for a security monitoring and threat analysis to help the business to protect the integrity of systems and data is expected to create a huge opportunity for the global 5G Security market.
In addition, the need for E2E security for vertical industries from protection to detection and increasing importance of a unified security view across enterprise, are anticipated to drive the 5G Security market growth.
Reference: https://www.futuremarketinsights.com/reports/5g-security-market
……………………………………………………………………………………………………………………………………..
Among other areas, the 3GPP Security architecture and procedures for 5G System (Specification #: 33.501) specifies requirements for E1 and f1 interfaces as well as requirements for an overall secure environment. The organization specified many areas necessary for 5G security including subscription authentication, UE authorization, access and serving network authorization and more. Other areas include user and signaling data integrity to ensure seamlessness and interoperability between network elements.
Note that there are no ITU-T recommendations on 5G/IMT 2020 security.
One of the import areas emerging with 5G security that is a greater concern than ever before is data security and private. Much more so than LTE, 5G networks must be concerned with the confidentiality and integrity of user and signaling data. The 5G gNB must support encryption as per security policies for various potential vulnerability areas such as user data in transit as well as signaling for radio resource control. Access control is equally important as well as ensuring that serving networks are authorized by home networks.
5G mobile network operators need to expedite implementation of a more integrated 5G security approach, one of the primary areas of focus will be support of 5G-based private wireless networks for enterprise and industrial customers. While today’s private networks take a more old-school approach to security, more security-minded enterprise, industrial and government sector customers will realize greater cybersecurity through interconnection and managed services with leading carrier 5G security solutions.
Leading carriers will transform 5G security from a cost of doing business into a major market differentiator for business customers including direct to enterprise/industrial/government customers and via hybrid models involving neutral hosts and/or direct interconnect with private wireless networks. The challenging task for mobile network operators is to simultaneously convince business customers that they are more secure with them than without them, while not causing alarm about security holes that existed prior to implementation of 5G security solutions.
For more information about this report please visit: https://www.researchandmarkets.com/r/vqa21q
………………………………………………………………………………………………………………………………………….
In a recent IEEE Future Networks presentation titled, Security Considerations for Evolving RAN Architectures, Scott Poretsky and Jason Boswell of Ericsson wrote about “the trust stack in 5G Cloud RAN.” Here’s what they said (emphasis added):
Network security is built upon a trust stack of trusted hardware, trusted software, trusted deployment, trusted applications, and trusted operations. Cloud deployments have an expanded attack surface due to decoupling of the software from the hardware, multiple organizations sharing the same hardware, a third-party organization managing the cloud infrastructure, and use of open source software components.
The chain of trust between these disparate components is not standardized and is implementation dependent, making it challenging to determine the level of risk, such as defined by the NIST Risk Management Framework (RMF). In a cloud environment an external attacker could gain access to a compromised container and from there escalate privilege to gain access to services and infrastructure. Likewise, an attacker that gains access to a service can use it as platform to gain access to containers and infrastructure.
Reference:
https://www.ericsson.com/en/reports-and-papers/white-papers/security-in-5g-ran-and-core-deployments
………………………………………………………………………………………………………………………………
India’s Success in 5G Standards; IIT Hyderabad & WiSig Networks Initiatives
by Prof. Kiran Kuchi, PhD & Dean of Research at Indian Institute of Technology Hyderabad (IITH) -edited by Alan J Weissberger, ScD EE
The development of 5G happens through a global forum called the 3rd Generation Partnership Project (3GPP). It’s a partnership between seven global Standards Development Organizations (SDOs) of which Telecommunications Standards Development Society, India (TSDSI) is a member. 3GPP kickstarted the 5G project in 2016 where we made substantial contributions to three successive releases of 5G specifications to date. IITH primarily led the efforts with significant support from CEWiT, IITM, and other Indian corporations (Tejas Networks and Reliance Jio are our major industry partners) with well over 300 technical documents submitted to date.
These sustained efforts led to the incorporation of several innovations introduced into the global 5G standards. One significant contribution that stands out is the introduction of a new transmit waveform, the only new waveform that is adopted in 5G, which is a generational change.
Both 4G and 5G adopted a waveform technology called OFDM (Orthogonal Frequency Division Multiplexing) that is quite suitable for the downlink transmission (that is the link between a base station (BS) and user equipment (UE)) but not so well suitable for the reverse link (that is the link between UE and BS). The limitations of OFDM owes to low-power efficiency (of about 10%). Prof Kuchi has designed a new waveform called “pi/2 BPSK with spectrum shaping” that provides close to 100% power efficiency and yet retains all the other advantages offered by OFDM.
This new transmit waveform allows the power amplifier in the UE to operate near its saturation level thus delivering a 3-4fold increase in the transmission power, and a hardware cost similar to that of OFDM. The overall gain in the cell range compared to OFDM will be at least twofold, hence this became a driver behind the design of the large cell 5G concept.
This indigenous waveform technology is developed for over a decade and is covered by a family of patents developed by IITH and CEWiT. There are well over 100 patents filed by IITH and WiSig to date. These patents will likely become the backbone of our indigenous 5G ecosystem. India’s 5G at ITU There are two parallel tracks that India took during the 5G development. The first effort is the aforementioned contributions to the 3GPP-based 5G standard, and our second noteworthy contribution is through TSDSI and the ITU (International Telecommunication Union). The second effort is led by IITM on the ITU front with significant backing and support from IITH, CEWiT (and Indian Industry such as Tejas networks, Reliance Jio).
ITU is a United Nations body that specifies requirements and radio standards for 5G known generically as IMT 2020. ITU-R WP5D had adopted India’s proposed Low-Mobility-Large-Cell (LMLC) use case as a mandatory 5G requirement in 2017. This requirement was adopted by ITU-R WP5D mainly as a result of sustained effort by the Indian entities through the Department of Telecommunications (DoT) to address the unique Indian rural broadband deployment scenario. Several countries supported this use case as they saw a similar need in their jurisdictions as well. TSDSI took this opportunity to develop the so-called LMLC based 5G technology that is a modification of 3GPP-based 5G specification.
This indigenously developed standard designated as 5Gi will deliver ultra-fast, low-latency mobile internet and next-generation IoT services in both cellular and mm-wave spectral bands that are common to all 5G candidate standards and adds “pi/2 BPSK with spectrum shaping waveform” as a mandatory technological enhancement that can provide broadband connectivity to rural users using ultra-long range cell sites.
This enhancement will ensure that 100% of India’s villages are covered from towers located at panchayat villages, whereas nearly a third of such villages would be out of coverage otherwise. Both 5G and 5Gi are fully compatible and interoperable systems that are being leveraged for the upcoming deployments in India. Adoption of the LMLC based 5G standards in India will enable India to leap forward in the 5G space, with key innovations introduced by Indian entities accepted as part of global wireless standards for the first time. The nation stands to gain enormously both in achieving the required 5G penetration in rural and urban areas as well as in nurturing the nascent Indian R&D ecosystem to make a global impact. The current national efforts are aligned with the national digital communication policy that promotes innovation, equipment design, and manufacturing out of India for the world market.
MeitY has been funding our wireless research for the past 10 years and these efforts have led to the development of larger wireless programs. More recently, the DoT (India Dept of Telecom) has sanctioned the “Indigenous 5G Testbed” program with a project outlay of 224 crores to IITH, IITM, CEWiT, IITK, IITB, IISc, and SAMEER.
This 3-year program, already close to completion, started yielding results in the form of prototype base stations, CPE/UE and NB-IoT chipsets. IITH stands out with major contributions to key 5G technologies such as cloud RAN base station with massive MIMO capability and cellular NB-IoT chipset for connecting sensors and meters to the internet. We are gearing towards full-fledged demonstration and field trials.
An upcoming player in the 5G space WiSig Networks (WiSig) is a 5G start-up incubated at the IITH tech incubator (i-tic foundation). WiSig has developed a 5G radio access network (5G-RAN) based on an emerging technology called O-RAN (Open-Radio-Access Network), that is being touted as the next major disruptor in the 5G landscape. This technology allows rapid deployment of low-cost, software upgradable 5G base stations in significantly higher volumes and larger densities than the current 4G network.
O-RAN is a disaggregated 4G/5G base station based on open interfaces and general purpose hardware. It is being defined by the O-RAN alliance, TIP Open RAN project and ONF SD-RAN v1.0 Software Platform for Open RAN.
Some operators have initiated the deployment of O-RAN based software-defined network and virtualization networks that enable self-organization, low operational cost and ease of introduction of new features and service upgrades. New 5G use cases can be introduced rapidly on the fly using software upgrades as opposed to costly and time-consuming hardware development cycles. WiSig has created commercial grade IP in this space and is well on track to carry out one of India’s first O-RAN compliant demonstrations of a software defined 5G massive MIMO base station. Overall, WiSig is well on its path to deliver 5G RAN intellectual property components to the global 5G supply chain.
LMLC based 5G technology is a modification of 3GPP-based 5G New Radio (NR) specification. This indigenously developed LMLC ITU-R standard, designated as 5Gi, will deliver ultra-fast, low-latency mobile internet and next-generation IoT services in both cellular and mm-wave spectral bands that are common to all 5G candidate standards and adds “pi/2 BPSK with spectrum shaping waveform” as a mandatory technological enhancement that can provide broadband connectivity to rural users using ultra-long range cell sites.
In contrast to high-speed mobile broadband, a vast number of IoT applications requires few bits to be exchanged with the internet intermittently. The key considerations of these kind of IoT devices are that they are ultra-low-cost and have a long battery life – up to 10 years. Narrowband IoT (NB-IoT) (Belongs to the 5G family of technologies is well suited for this purpose and is quietly emerging as a killer application for lowbit rate IoT applications. IITH and WiSig joined hands in commercializing a NB-IoT SoC (System on a Chip) that was successfully taped out in Q1 2021.
The chip is named “Koala” after an animal indigenous to Australia that sleeps about 20 hours a day – typical behavior of the NB-IoT modem.
Given that this is the first time a standards compliant cellular modem is designed in India and that both the software and hardware that goes into the chip is developed indigenously, this chip should preferably be leveraged to serve the security needs of critical national IoT infrastructure.
In summary, the investments made by Meity and DoT on 5G research have started to bear fruit in delivering the basic technological components and sub-systems required to build 5G. The time is ripe for the Government to nurture domestic design and manufacturing of 5G equipment. The country has enough talent and the technological depth required to support a domestic 5G ecosystem. With the right kind of policy support, then India is likely to see a 5G/IoT domestic manufacturing revolution within this decade. IITH will continue to play a pivotal role in shaping the 5G ecosystem not only in India but globally as well.
About Kiran Kumar Kuchi, PhD:
Kiran is a Professor Department of Electrical Engineering IIT-Hyderabad (IITH) and Dean of Research. He also started WiSig Networks that has been incubated at IITH. He received PhD and MS degrees in Electrical Engineering from the University of Texas at Arlington, TX. His current projects include: Cloud radio, Heterogeneous networks (HeNets), Next generation wireless test-bed development.
References:
https://pcr.iith.ac.in/Kiriith-Issue-6,April,20215GandNext-GenCommunicationTechnologies.pdf
AT&T to spin off Warner Media group and combine it with Discovery Inc.
With great fanfare, AT&T thundered its way into the media business three years ago with grand visions of streaming video to millions of its customers’ cellphones, etc. Now the telecom and media giant implicitly admits its mistake: AT&T has agreed to spin off its Warner Media group and merge it with a rival content provider, Discovery Inc., the companies announced today.
[We hinted that this might happen in a recent article titled, “Verizon Explores Sale of Media Assets; Wake up Call for AT&T?” We also chronicled AT&T’s spin off of their TV business in the article titled: Analysis: AT&T spins off Pay TV business…. Finally, we voiced our objection to the June 2018 AT&T-Time Warner deal in Analysis & Huge Implications of AT&T – Time Warner Merger.]
The transaction will combine HBO, Warner Bros. studios, CNN and several other cable networks with a host of reality-based cable channels from Discovery, including Oprah Winfrey’s OWN, HGTV, The Food Network and Animal Planet.
The new company will join together two of the largest media businesses in the country. AT&T’s Warner Media group includes the sports-heavy cable networks TNT and TBS. In addition to Discovery’s strong lineup of reality-based cable channels, the company has a large international sports business.
The new company will be bigger than Netflix or NBC Universal. Together, WarnerMedia and Discovery generated more than $41 billion in sales last year, with an operating profit topping $10 billion. Such a sum would have put the new company ahead of Netflix and NBCUniversal and behind the Walt Disney Company as the second-largest media company in the United States.
Under the terms of the agreement, which is structured as an all-stock, Reverse Morris Trust transaction, AT&T would receive $43 billion (subject to adjustment) in a combination of cash, debt securities, and WarnerMedia’s retention of certain debt, and AT&T’s shareholders would receive stock representing 71% of the new company; Discovery shareholders would own 29% of the new company. The Boards of Directors of both AT&T and Discovery have approved the transaction.
As part of the deal, AT&T will be able to shed some of its debt and get some cash and bonds that altogether would amount to $43 billion. AT&T shareholders will own 71 percent of the new business, with Discovery investors owning the rest.
The new company will be run by David Zaslav, 60, a media veteran and the longtime chief executive of Discovery, casting into doubt the future (yet again) of the top ranks of WarnerMedia. Jason Kilar, 50, who was hired to run AT&T’s media group only last year, could lose his job.
“Jason is a fantastic talent,” Mr. Zaslav said on a call with reporters following the announcement. He also praised other executives within WarnerMedia, including Toby Emmerich, the head of the film division, Casey Bloys, who runs HBO, and Jeff Zucker, the leader of CNN. Mr. Zucker and Mr. Zaslav are also longtime golfing buddies.
Mr. Zaslav said he would be looking for ways to “get the best people to stay,” but he didn’t elaborate on his plan for the new company’s management team.
John Stankey, the head of AT&T, who appeared alongside Mr. Zaslav in the news conference via Zoom, said “Jason remains the C.E.O. of WarnerMedia.” He added: “David’s got decisions he’s got to make across a broad cross section of how he wants to organize the business and who will be in what roles moving forward during this transition period.”
The companies said they expected the deal, which must be approved by Discovery shareholders and regulators, to be finalized in the middle of next year. The companies anticipate they will cut annual costs by $3 billion as a result of the transaction. AT&T will also cut its dividend (more below).
The deal highlights the need for even large media companies to get bigger. Traditional entertainment firms are struggling to maintain their grip on viewers as the likes of Facebook, YouTube and TikTok
continue to draw big audiences. Consolidation appears to be the quickest way to buy more eyeballs — the deal could set off another round of media mergers. ViacomCBS, the smallest of the major entertainment conglomerates, is often seen as a possible target.
To compete with Netflix and Disney, both AT&T and Discovery have invested heavily in streaming. AT&T has spent billions building HBO Max, which now has about 20 million customers. Discovery has 15 million global streaming subscribers, most of them for its Discovery+ app.
The new company expects to generate $52 billion in sales and $14 billion in pretax profit by 2023. Streaming will be a big driver of that growth and is estimated to bring in $15 billion in revenue.
Our analyst colleague Craig Moffett wrote in a note to clients:
This deal makes strategic sense for each side. Discovery’s linear networks are helped by the inclusion of CNN for news and by the inclusion of TV rights to the NBA, NFL, MLB and NCAA Basketball for sports. By our math, the new company will instantly become the largest home of linear impressions, sourcing 28% of the 2020 U.S. viewing time and 24% of U.S. national advertising. Better still, it will be under-monetized, as it will generate only 20% of national affiliate fees. While we rightly worry about the long-term health of TBS and TNT, we would assume that Discovery will move key Turner sports and news content to Discovery+, to make it a broader and more attractive offering which will help
their ability to grow those more valuable impressions. Internationally, Discovery’s linear and SVOD offerings will be strengthened by the inclusion of CNN and Cartoon Network into their offerings. Simply put, Discovery+ becomes a more relevant service for a wider group of people in the world.For WarnerMedia, they benefit from having a more natural destination for Turner’s product in a DTC world. We have noted time and time again that TNT and TBS were poorly positioned, and appeared to have no clear path forward to a DTC world. We have similarly lamented that HBO Max, while immensely attractive to U.S. audiences, were not nearly so well positioned outside the U.S. Discovery’s international footprint and focus creates both an accelerator and greater scope for HBO Max’s international rollout.
The new company will now be able to have unified conversations with the same set of global distribution partners – Roku, Amazon, Apple, wireless operators, broadband services – with greater strength and urgency. We assume that both brands Discovery+ and HBO Max will maintain separate identities but will be offered in a bundle a la Disney. In short order, the new company will be able to join the upper tier of global SVOD/AVOD players: Netflix, Disney and Amazon.
For AT&T, while the timing was surprising, the action was not. The market was never going apply a Disney-like multiple (say, by using on 2024 revenue multiple for HBO Max) that would give AT&T full sum-of-the-parts credit for the potential value of HBO Max. Moreover, AT&T’s balance sheet allowed neither the aggressive investment required for HBO Max nor the 5G wireless push (nor, for that matter, for the consumer fiber business). Ultimately, they had no choice. The die was cast even before the ink was dry on their initial acquisition.
Not at all unexpected, AT&T said its 52-cent-a-share dividend would be cut if its merger of Warner Media and Discovery is approved. AT&T’s dividend’s health had been in question given a debt load that was exacerbated by the company’s 2018 acquisition of the WarnerMedia assets, which include TNT, CNN, HBO, and the Warner Bros. movie studio. As of March 31st, long-term debt totaled about $160.7 billion, up from $153.8 billion at the end of 2020.
In an interview with CNBC Monday morning, AT&T CEO John Stankey said “there’s been some overhang on our equity that’s been driven by the balance sheet dynamic,” notably debt. The deal will allow AT&T to “accelerate our deleveraging of the business,” he added
References:
https://about.att.com/story/2021/warnermedia_discovery.html
https://www.nytimes.com/2021/05/17/business/att-discovery-merger.html
Verizon Explores Sale of Media Assets; Wake up Call for AT&T?
Analysis: AT&T spins off Pay TV business; C-Band $23.4B spend weakens balance sheet
Ericsson ConsumerLab report highlights + 40M 5G India smartphone users forecast
A study conducted by Ericsson ConsumerLab has the following key findings:
1. Consumer intent to upgrade to 5G accelerates despite the pandemic. At least 300 million smartphone users could take up 5G in 2021. By the end of 2020, 22 percent more smartphone users with 5G-ready smartphones could have adopted 5G if knowledge gaps had been addressed.
2. 5G triggers changes in usage behavior, starts to displace Wi-Fi. 5G users spend two hours more per week using cloud gaming and one hour more on augmented reality (AR) apps compared to 4G users. 20 percent say they have decreased their usage of Wi-Fi after upgrading.
3. Indoor 5G coverage more important for consumers. 5G early adopters rate indoor 5G coverage as two times more important than speed or battery life in driving satisfaction.
4. Early adopters are pleased with 5G speeds but expect more innovation. Seventy percent are dissatisfied with the availability of innovative services and expect new applications making use of 5G.
5. Consumers value 5G plans bundled with digital services and are willing to pay 20–30 percent more. However, two-thirds of use cases highly valued by consumers have not yet been commercialized.
Ericsson’s ConsumerLab insight report, is claimed to be the biggest ever 5G consumer study, covering opinions of 1.3 billion consumers and 220 million 5G users, to uncover the key trends that are influencing the adoption, usage and perception of consumers towards 5G, and suggest five important steps service providers can take to meet consumer expectations now and in the future.
Image Credit: Reuters
The report suggests five ways that service providers can meet consumer expectations and improve their 5G experience, now and in the future:
1. Enhance the value: address the knowledge gap to educate and better market the value of 5G.
2. Consumers expect the quality of indoor and outdoor coverage to be consistent.
3. Adapt to network requirements of new services enabled by 5G.
4. Focus on the jobs consumers want 5G to do, to envision new use cases.
5. Go beyond just showcases: accelerate the commercialization of existing and new use cases
The study revealed that at least 40 million smartphone users are likely to be 5G subscribers in the first year of it being introduced in India. The study further suggests that users are willing to pay up to 50 percent more for 5G plans if they are bundled with digital services.
According to the report, 67 percent of users in India are eager to upgrade to 5G once it is available, which is an increase of 14 percent over 2019. Reportedly, seven out of 10 potential early adopters expect higher speeds from 5G, and six out of 10 expect “pricing innovation from Communication Service Providers”, meaning 5G data will be used to transfer media from one device to another.
The report suggests that more than one-third of urban internet users would prefer using 5G home broadband instead of the existing fixed home wireline broadband. The report further reveals users of 5G-ready smartphones in India expect to spend more time on enhanced video streaming and multiplayer mobile gaming. Ericsson predicts India residence will be spending 7.5 to 8 hours a week on iPhone XR 5G apps by 2025.
……………………………………………………………………………………………………………………………………………..
References:
https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/five-ways-to-a-better-5g
IDC: Microsoft Azure now tied with AWS as top global cloud services provider
Spending continued to consolidate in 2020 with the combined revenue of the top five public cloud service providers (Amazon Web Services (AWS), Microsoft (Azure), Salesforce.com, Google, and Oracle) increased their spending by 32% and captured 38% of the worldwide total market.
Thanks to an expanding portfolio of SaaS and SISaaS offerings, Microsoft now shares the top position with Amazon Web Services in the whole public cloud services market with both companies holding 12.8% revenue share for the year.
“Access to shared infrastructure, data, and application resources in public clouds played a critical role in helping organizations and individuals navigate the disruptions of the past year,” said Rick Villars, group vice president, Worldwide Research at IDC. “In the coming years, enterprises’ ability to govern a growing portfolio of cloud services will be the foundation for introducing greater automation into business and IT processes while also becoming more digitally resilient.”
While the overall public cloud services market grew 24.1% in 2020, consistent with the past four years, the IaaS and PaaS segments have consistently grown at much faster rates. This highlights the increasing reliance of enterprises on a cloud foundation built on cloud infrastructure, software defined data, compute and governance solutions as a Service, and cloud-native platforms for application deployment for enterprise IT internal applications. IDC expects spending on foundational cloud services (especially IaaS and PaaS) to continue growing at a higher rate than the overall cloud market as resilience, flexibility, and agility guide IT platform decisions.
“Cloud service providers are rapidly expanding their portfolio of infrastructure and platform services to address confidential computing, performance intensive computing, and hybrid deployment scenarios,” said Dave McCarthy, vice president, Cloud and Edge Infrastructure Services. “Extending these foundational cloud services to customer premises and communications networks enables a broader set of use cases than previously possible.”
“The high pace of growth in PaaS, IaaS, and SISaaS, which combined account for about half of the public cloud services market, reflects the demand for solutions that accelerate and automate the development and delivery of modern applications” said Lara Greden, research director, Platform as a Service. “As organizations adopt DevOps approaches and align according to value streams, we are seeing PaaS, IaaS, and SISaaS solutions become increasingly adopted and, at the same time, grow in the range of services and thus value they provide. Innovations in edge and IoT use cases are also contributing to the faster rates of growth in these markets.”
“SaaS applications are the largest and most mature segment of public cloud with 2020 revenues of $148 billion. Organizations across industries hastened the replacement of legacy business applications with a new breed of SaaS applications that is data-driven, intuitive, composable, and ideally suited for more distributed cloud architectures. Organizations looking for industry-specific applications can choose from a growing assortment of vertical applications. The SaaS apps market is dominated by a longtail of providers that account for 65% of the total market,” said Frank Della Rosa, research director, SaaS and Cloud Software.
Worldwide Public Cloud Services Revenue and Year-over-Year Growth, Calendar Year 2020 (revenues in US$ billions)
Segment | 2020 Revenue | Market Share | 2019 Revenue | Market Share | Year-over-Year Growth |
IaaS | $67.2 | 21.5% | $50.2 | 19.9% | 33.9% |
SaaS – System Infrastructure Software | $49.2 | 15.7% | $40.2 | 16.0% | 22.4% |
PaaS | $47.6 | 15.2% | $36.1 | 14.4% | 31.8% |
SaaS – Applications | $148.4 | 47.5% | $125.2 | 49.7% | 18.6% |
Total | $312.4 | 100% | $251.7 | 100% | 24.1% |
Source: IDC Worldwide Semiannual Public Cloud Services Tracker, 2H20 |
Looking at the segment results, a combined view of IaaS, SISaaS, and PaaS spending is relevant because it represents the foundational set of services that end customers and SaaS companies consume when running, modernizing, building, and governing applications on shared public clouds. In the combined IaaS, SISaaS and PaaS market, the top 5 companies (Amazon Web Services, Microsoft, Google, Alibaba, and IBM) captured over 51% of global revenues. But there continues to be a healthy long tail, representing nearly half the market total. These are companies with targeted use case-specific PaaS services or cross-cloud compute, data, or network governance services. The long tail is even more pronounced in SaaS, where customers growing focus on specific outcomes ensures that over two thirds of the spending is captured outside the top five.
5 European telcos publish Open RAN Technical Priorities Document
Five major European network operators have issued a white paper outlining their technical requirements for the open, disaggregated radio access network products they want to deploy in significant deployments starting next year.
The telco quintet – Deutsche Telekom, Orange, Telefónica, TIM (Telecom Italia) and Vodafone – signed the Memorandum of Understanding (MoU) on The Implementation of Open RAN Based Networks In Europe earlier this year and have now set out their technical stall so that the vendor community has some guidance with which to work.
The ‘Technical Priorities Document’ provides a set of “technical requirements that the signatories of the Open RAN MoU consider priorities for Open RAN architecture. It serves as a guidance to the RAN supplier industry on where to focus to accelerate market deployments in Europe, focusing on commercial product availability in the short term, as well as solution development in the medium term. In terms of timeframe, the operators wish to ensure the readiness of Open RAN solutions for large scale network roll-out from 2022 onwards. Macro deployment is identified as the primary target for the operators.”
The telco quintet say they are not seeking to develop new specifications or standards in this process, but simply identify their preferences in terms of technology and architecture that are based primarily on the specifications being developed by the O-RAN Alliance.
There are many requirements, particularly around the IT requirements underpinning the Open Cloud architecture that needs to support containerized cloud native functions (CNFs). You can read the full document here.
Opinion:
How many Open RAN technical requirements and spec writing consortiums/alliances are necessary? We already have O-RAN Alliance, TIP Open RAN Project, Open RAN Policy Committee, and slew of company alliances. That is NOT the way specifications are created as there are surely overlaps, duplications and gaps in one or more of these entities requirements documents. This will surely result in mass confusion and slow the market for Open RAN equipment.
The way to proceed, IMHO, is to have the operators work through the O-RAN Alliance to state which of their requirements are mandatory and which are optional. This is what PTT’s did from 1976-1996 within CCITT to standardize X.21, X.25, ISDN, Frame Relay, and ATM. They did likewise from 1998-2000 to standardize ADSL and VDSL within ITU-T.
……………………………………………………………………………………………………………………………………………….
The Open RAN Requirements document highlights multiple interfaces that need specific attention by technology developers. For example, adherence to an Open F1 interface for the centralized unit/distributed unit (CU/DU) split, as well as Open X2/Xn interfaces for connectivity between base stations – but stresses the importance of open fronthaul, described as “the prime interface to be supported in a fully interoperable manner, without compromising network performance, especially for Massive-MIMO.” The O-RAN Alliance 7.2x interface the preference of the five operators, though they note there is the need to “further investigate UL [uplink] enhancements for the 7.2x split in order to improve performance and robustness particularly in mobility scenarios.”
The paper also stresses that focus should be on 4G/5G in the 3.4-3.8 GHz bands as well as legacy FDD (frequency division duplex) bands. The operators believe that mmWave bands are more specific to certain markets and so not as important initially for this set of operators. As for interoperability with legacy mobile networks, the paper notes that “the operators are interested in inter-operability between 2G/3G baseband units and RUs, based on proprietary interfaces, since no open interface has been specified successfully. This applies mainly to hybrid Radio Units supporting 2G/3G/4G/5G, but also for legacy 2G/3G only RUs already deployed.”
In addition, the operators need to be sure that the Open RAN technology they deploy will enable RAN sharing: “While MORAN [multi-operator RAN] with shared O-RU only and MOCN [multi-operator core network] support is unanimously requested, both shared infra and dedicated infra per operator is relevant, depending on whether the infra is deployed on the same site or deployed autonomously by each operator in their target location (e.g. in their own cloud). Efficient RAN sharing management is required to allow sufficient independence between operators to manage their own CNFs on a shared infra, while avoiding any potential conflicts.”
References:
NTT DoCoMo: Higher Earnings; Big plans for 5G but lots of competition
NTT DoCoMo, now a fully owned unit of parent NTT Group, reported 6.3% higher full-year earnings of 629 billion yen (US$5.74 million). Revenue was 1.6% higher at 4.73 trillion yen ($43.14 billion) while operating costs were flat.
Quarterly mobile revenue, which had fallen in the first half of the year, grew slightly in the last two quarters, although over the full year it was flat at 2.7 trillion yen ($24.6 billion). The new Ahamo discount plans, launched in March, attracted more than 1 million new customers to the end of March, most of them aged under 30, DoCoMo CEO Motoyuki Ii told analysts on Thursday.
In its presentation to investors, the company described their 5G goals:
- Build 5G coverage that exceeds competitions’ in both speed and breadth while elevating our service offerings. Concentrate managerial resources on 5G to deliver on efficiency improvement at the same time.
- Concentrate network investments on 5G and improve efficiency of 4G spend, to achieve reduction in total expenditures.
- Accelerate replacement of base stations from 3G to 5G to suppress total network costs
DoCoMo had 3.09 million 5G customers as of March 31st, with a target of 10 million in the current fiscal year. In fiscal year 2020, there were 7,100 base stations deployed (in 574 major cities in Japan). In fiscal year 2021, the company expects to deploy 20,000 base stations and commence 5G core/SA service. The 5G SA network will be deployed only “where there is actual demand” for enterprise services such as network slicing.
Also, 55% of Japan’s population will be covered by “Lightning Speed 5G” (that uses sub-6GHz bands and millimeter wave spectrum).
DoCoMo’s most promising 5G solution was a joint venture with machinery company Komatsu to provide smart construction services, Ii said. The LANDLOG open platform connects land, equipment and materials for innovative and smart construction. These would be sold globally through NTT Group sales channels as well as locally.
Image Credit: Getty Images
……………………………………………………………………………………………………………………………….
Challenge toward a “New DoCoMo” include the following initiatives:
- Drive innovation and bring major changes to society.
- Pursue “customer-first” and deliver new value that exceeds customers’ expectations.
- Enhance customer experience (CX) and realize business structure reform by promoting and executing digitalization of business operations and data utilization.
- Promote business and ESG management in an integrated manner, thereby contributing to the creation of a sustainable society.
FY 2021 Principal Actions include:
Telecom Business:
- Expand customer base by offering rate plans and services catered to diverse customer needs.
- Achieving both Early expansion of 5G coverage and improvement of network cost efficiency.
- Accelerate digital shift of sales channel and digital transformation (DX) of call centers and DoCoMo Shops (converged online/offline CX).
Enterprise Business:
- Expand areas/industries where 5G solutions are applied and achieve nationwide deployment.
- Support DX of small- and medium-sized companies through early proliferation of “Business d Account.”
Smart Life Business:
- Expand finance/payment business and establish data-driven B2B2X ecosystem.
- Create new lifestyles centered on video offerings and expand new business domains.
With respect to earnings guidance, DoCoMo forecast a 1.4% increase in operating profit for the 2021-22 financial year, with Smart Life services expected to improve earnings by 9.3%. Telecom group operating profit is projected to fall 1.6%.
……………………………………………………………………………………………………………………………………
Sidebar: Japan Mobile Network Competition for DoCoMo
Mobile sites in Japan (courtesy of Light Reading)
Mobile sites | 5G sites | 5G sites target | |
KDDI | 110,000 | 10,000 | 50,000 by March 2022 |
NTT DoCoMo | 80,000 | 7,100 | 20,000 by March 2022 |
Rakuten | 44,000 (summer target) | 1,000 | N/A |
SoftBank | 230,000 | N/A | 50,000 by March 2022 |
Source: Companies |
KDDI says it had 10,000 5G base stations deployed at the end of March and is targeting 50,000 by March next year. KDDI estimates the latter number will provide population coverage of 90% of Japan’s population. Last year alone, it spent about JPY174 billion ($1.6 billion) on 4G and 5G rollout, as well as JPY200 billion ($1.8 billion) on “common equipment.”
SoftBank, the third operator, has precisely the same target of 50,000 base stations and 90% population coverage by March 2022.
………………………………………………………………………………………………………………………………………………
References:
https://www.nttdocomo.co.jp/english/corporate/ir/library/presentation/index.html
https://www.lightreading.com/5g/rakuten-and-curious-case-of-missing-5g-plan/d/d-id/769477?
Facebook to test 5G small cell network with SON features; Combine 5G access with Terragraph wireless backhaul?
The FCC today approved Facebook’s application to test a 5G small cell network across a wide range of mid-band spectrum bands (see below) at its Menlo Park, California headquarters.
Facebook told the FCC in its application:
The experiment involves short-term testing of a 5G over-the-air setup for an outdoor demonstration that is not likely to last more than six months, making an STA (Special Temporary Authority) more appropriate than a conventional experimental license.
The purpose of operation is to demonstrate the self-organizing network (“SON”) features in a 5G over-the-air setup operating in a small cell configuration. Lab testing does not allow feature realization. The outdoor test setup aims at validating the improvements done to 5G cellular networks.
The improvements involve:
(1) Load balancing between the cells in an attempt to optimize the resource utilization, reduce call drops, and create a better user experience by means of improved quality of service; and
(2) Run time selection and updates of the 5G cell physical layer cell identifiers (“PCIs”) to avoid conflict between neighboring cells, thereby avoiding UE drops and reducing network signaling traffic.
The frequency bands to be used are: 2.496-2.690 GHz, 3.3-3.6 GHz, 3.7-3.8 GHz, and 4.8-4.9GHz. A directional antenna will be used to beam the 5G signals.
Facebook did not name the network equipment suppliers for this test nor did they state why they needed to perform these tests. The only hint given was to test “self-organizing network (“SON”) features in a 5G over-the-air setup operating in a small cell configuration.”
One could speculate that Facebook might want to deploy a private 5G network across its sprawling Menlo Park campus. Or they might want to provide 5G access to municipalities using mid-band spectrum.
The company does have some recent experience designing and deploying millimeter wave wireless distribution networks (based on Terragraph) which could be combined with a 5G access network.
- Facebook’s Terragraph wireless backhaul technology is being used by Cambium Networks in their 60 GHz cnWave solution. Terragraph is a high-bandwidth, low-cost wireless solution to connect cities. Rapidly deployed on street poles or rooftops to create a mmWave wireless distribution network, Terragraph is capable of delivering fiber-like connectivity at a lower cost than fiber, making it ideally suited for applications such as fixed wireless access and Wi-Fi backhaul.
- In June 2018, Magyar Telekom, subsidiary of Deutsche Telekom, deployed their first Terragraph network in Mikebuda, Hungary. Terragraph improved local network speeds from 5M bps to 650M bps.
- Common Networks, a California based Internet Service Provider, deployed a Terragraph network to serve customers in Alameda, CA. Local businesses and customers of Common Networks saw an immediate improvement in internet speeds. Common Networks presented their approach at a 2018 IEEE ComSoc SCV technical meeting in Santa Clara, CA.
References:
https://apps.fcc.gov/oetcf/els/reports/STA_Print.cfm?mode=current&application_seq=106515
https://apps.fcc.gov/oetcf/els/reports/GetApplicationInfo.cfm?id_file_num=0482-EX-ST-2021
https://connectivity.fb.com/terragraph/
Facebook’s Terragraph gains momentum with operator, vendor buy-in