SpaceX
KDDI unveils AU Starlink direct-to-cell satellite service
KDDI-owned AU [1.] launched Japan’s first direct satellite service, connecting 40% of remote island and mountain populations in Japan that terrestrial networks cannot now reach. The new service, called AU Starlink Direct, is also available to subscribers of Okinawa Cellular, a KDDI-owned company serving the group of islands located in southern Japan. KDDI and Okinawa Cellular will start providing AU Starlink Direct, a direct to cell service between satellites and AU smartphones, on April 10, 2025. This is the first Direct to Cell satellite service in Japan.
Note 1. AU is a brand marketed by KDDI in the main islands of Japan and by Okinawa Cellular in Okinawa for their mobile cellular services. acquired au in 2001, initially through a merger of DDI, KDD, and IDO, and subsequently absorbing au’s parent company. KDDI continues to operate the AU brand for its mobile services.
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………….
The service is compatible with 50 smartphone models and is available free of charge to au users from today for the time being without the need to apply. Subscribers of AU and Okinawa Cellular whose iPhone and Android devices support satellite mode can try the service.
Source: Sean Prior/Alamy Stock Photo
Although AU has nearly 100% population coverage, mobile operators’ 4G and 5G networks effectively serve only about 60% of the population because mobile signal cannot reach remote islands and mountainous areas. The new AU Starlink Direct service allows the operator to bridge this digital divide by enabling customers in these dead zones to connect directly to a Starlink satellite using compatible smartphones.
The service can be used to communicate with family members and friends, in emergencies, etc., even in mountainous areas, island areas, and campgrounds and at sea where it is difficult to provide a telecommunications environment. KDDI is expanding the AU coverage area to all of Japan to bring the experience of “Connecting the Unconnected. wherever you see the sky.”
Gwynne Shotwell, President & COO of SpaceX, said: “I’m very excited to bring direct-to-cell phone connectivity to Japan through KDDI, the first in Asia and one of the first in the world. Both Starlink and direct-to-cell are game-changing technologies, making connecting the unconnected simple and bringing potentially life-saving capability to the people of Japan for disaster and other emergency responses.”
KDDI conducted a successful field test of AU Starlink Direct in Kumejima, Okinawa Prefecture, nearly six months ago.
References:
https://newsroom.kddi.com/english/news/detail/kddi_nr-533_3818.html
https://newsroom.kddi.com/english/news/detail/kddi_nr-299_3557.html
KDDI Partners With SpaceX to Bring Satellite-to-Cellular Service to Japan
SpaceX and KDDI to test Satellite Internet in Japan
KDDI Deploys DriveNets Network Cloud: The 1st Disaggregated, Cloud-Native IP Infrastructure Deployed in Japan
AWS Integrated Private Wireless with Deutsche Telekom, KDDI, Orange, T-Mobile US, and Telefónica partners
Samsung and KDDI complete SLA network slicing field trial on 5G SA network in Japan
KDDI claims world’s first 5G Standalone (SA) Open RAN site using Samsung vRAN and Fujitsu radio units
Samsung vRAN to power KDDI 5G network in Japan
U.S. BEAD overhaul to benefit Starlink/SpaceX at the expense of fiber broadband providers
The U.S. The Commerce Department is examining changes to the NTIA’s $42.5 billion broadband funding bill (Broadband Equity Access and Deployment- BEAD), which endeavors to expand internet access in underserved/unserved areas. [BEAD was part of the 2021 Infrastructure Investment and Jobs Act (IIJA) during the Biden administration] The proposed new rules will make it much easier for Elon Musk owned Starlink satellite-internet service, to tap in to rural broadband funding, according to the Wall Street Journal. [Starlink is owned by SpaceX which is majority owned by Elon Musk).
Commerce Department Secretary Howard Lutnick said that BEAD will be revamped “to take a tech-neutral approach that is rigorously driven by outcomes, so states can provide internet access for the lowest cost.” The department is also “exploring ways to cut government red tape that slows down infrastructure construction. We will work with states and territories to quickly get rid of the delays and the waste. Thereafter, we will move quickly to implementation in order to get households connected. All Americans will receive the benefit of the bargain that Congress intended for BEAD. We’re going to deliver high-speed internet access, and we will do it efficiently and effectively at the lowest cost to taxpayers.”
By making the broadband the grant program “technology-neutral,” it will free up states to award more funds to satellite-internet providers such as Starlink, rather than mainly to companies that lay fiber-optic cables which connect the millions of U.S. households that lack high-speed internet service.
The potential new rules could greatly increase the share of funding available to Starlink. Under the BEAD program’s original rules, Starlink was expected to get up to $4.1 billion, said people familiar with the matter. With Commerce’s overhaul, Starlink, a unit of Musk’s SpaceX, could receive $10 billion to $20 billion.
“The Trump administration is committed to slashing government bureaucracy and harnessing cutting-edge technology to deliver real results for the American people, especially rural Americans who were left behind” under the Biden administration, White House spokesman Kush Desai said.
“Leave it alone; let the states do what they’ve done,” Missouri State Rep. Louis Riggs, a Republican, said in a recent interview. “The feds could not do what the states have done. In 10 or 15 years, all they basically did, they walked in and screwed everything up. God love them, they just keep throwing money at the problem, which is okay when you give it to the states and let us do our jobs, but trying to claw that funding back and stand up a new grant round is the worst idea I’ve heard in a very long time, and that’s saying a lot coming out of D.C.”
The overhaul could be announced as soon as this week, possibly without some details in place, the people said. Following any changes, states might have to rewrite their plans for how to spend their funding from the program, which could delay the implementation.
Lutnick told Commerce staff he plans to do away with other BEAD program rules, including some related to climate impact and sustainability, as well as provisions that encouraged states to fund companies with a racially diverse workforce or union participation, the people said. The program requires internet-service providers that receive funding to offer affordable plans for lower-income customers. Lutnick saids he is considering reducing those obligations.
Commerce Secretary Howard Lutnick at the White House last month. Photo: Francis Chung/Pool/Cnp/ZUMA Press
Many broadband providers worried the Musk-led Department of Government Efficiency (DOGE) would eliminate or reduce the program’s funding. Is that not a conflict of interest considering that Musk owns Starlink/SpaceX?
Given the overhaul, fiber broadband providers may not benefit from it as much as they expected because non-fiber technologies are poised to receive more funding than before.
Fiber Broadband Association CEO Gary Bolton said in a statement that all “Americans deserve fiber for their critical broadband infrastructure. Fiber provides significantly better performance on every metric, such as broadband speeds, capacity, lowest latency and jitter, highest resiliency, sustainability and provides the maximum benefit for economic development and is required for AI, Quantum Networking, smart grid modernization, public safety, 5G and the future of mobile wireless communications. We urge our policymakers to do what’s right for people and to not penalize Americans for where they live or their current income levels.”
Telecommunications and broadband consultant John Greene wrote that states that have started the sub-grantee selection process, such as Louisiana, “might be forced to rethink their process in light of potential new rules.” Other “states, like Texas, might be better served to pause their process until after Commerce has completed their review and made any necessary changes,” he said.
References:
Nokia will manufacture broadband network electronics in U.S. for BEAD program
New FCC Chairman Carr Seen Clarifying Space Rules and Streamlining Approvals Process
Highlights of FiberConnect 2024: PON-related products dominate
Telstra selects SpaceX’s Starlink to bring Satellite-to-Mobile text messaging to its customers in Australia
Australia’s Telstra currently works with Space X’s Starlink to provide low-Earth orbit (LEO) satellite home and small business Internet services. Today, the company announced it will be adding direct-to-device (D2D) text messaging services for customers in Australia. We wrote about that in this IEEE Techblog post. Telstra’s new D2D service is currently in the testing phase and not yet available commercially. Telstra forecasts it will be available from most outdoor areas on mainland Australia and Tasmania where there is a direct line of sight to the sky.
Telstra already has the largest and most reliable mobile network in Australia covering 99.7% of the Australian population over an area of 3 million square kilometres, which is more than 1 million square kilometres greater than our nearest competitor. But Australia’s landmass is vast and there will always be large areas where mobile and fixed networks do not reach, and this is where satellite technology will play a complementary role to our existing networks. As satellite technology continues to evolve to support voice, data and IoT Telsa plans to explore opportunities for the commercial launch of those new services.
Telstra previously teamed up with satellite provider Eutelsat OneWeb to deliver OneWeb low-Earth orbit (LEO) mobile backhaul to customers in Australia. The telco said the D2D text messaging service with Starlink will provide improved coverage to customers in regional and remote areas. Telstra’s mobile network covers 99.7% of the Australian population over an area of 3 million square kilometers. The company said it has invested $11.8 billion into its mobile network in Australia over the past seven years. As satellite technology advances, Telstra plans to look into voice, data and IoT services.
T-Mobile, AT&T and Verizon are all working on satellite-based text messaging services. Many D2D providers such as Starlink have promised text messaging services initially with plans to add more bandwidth-heavy applications, including voice and video, at a later date. “The first Starlink satellite direct to cell phone constellation is now complete,” SpaceX’s Elon Musk wrote on social media in December 2024. That’s good news for T-Mobile, which plans to launch a D2D service with Starlink in the near future. Verizon and AT&T and working with satellite provider AST SpaceMobile to develop their own D2D services.
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
What is Satellite-to-Mobile technology?
Satellite-to-Mobile is one of the most exciting areas in the whole telco space and creates a future where outdoor connectivity for basic services, starting with text messages and, eventually, voice and low-rates of data, may be possible from some of Australia’s most remote locations. You may also hear it referred to as Direct to Handset or DTH technology.
What makes this technology so interesting is that for many people, they won’t need to buy a specific compatible phone to send an SMS over Satellite-to-Mobile, as it will take advantage of technology already inside modern smartphones.
Satellite-to-Mobile will complement our existing land-based mobile network offering basic connectivity where people have never had it before.* This technology will continue to mature and will initially support sending and receiving text messages, and in the longer term, voice and low speed data to smartphones across Australia when outdoors with a clear line of site to the sky. Just as mobile networks didn’t replace fibre networks, it’s important to realise the considerable difference between the carrying capacity of satellite versus mobile technology.
Who will benefit most from Satellite-to-Mobile technology?
Satellite-to-Mobile is most relevant to people in regional and remote areas of the country that are outside their carrier’s mobile coverage footprint.
Currently, Satellite-to-Mobile technology allows users to send a message only.
This is currently really a “just-in-case” connectivity layer that allows a person to make contact for help or let someone know they are ok when they are outside their own carrier’s mobile coverage footprint.
……………………………………………………………………………………………………………………………………………………………
References:
https://www.telstra.com.au/internet/starlink
https://www.telstra.com.au/exchange/telstra-to-bring-spacex-s-starlink-satellite-to-mobile-technolog
https://www.lightreading.com/satellite/telstra-taps-starlink-for-d2d-satellite-messaging-service
https://www.lightreading.com/satellite/amazon-d2d-offerings-are-in-development-
Telstra partners with Starlink for home phone service and LEO satellite broadband services
AT&T deal with AST SpaceMobile to provide wireless service from space
AST SpaceMobile: “5G” Connectivity from Space to Everyday Smartphones
AST SpaceMobile achieves 4G LTE download speeds >10 Mbps during test in Hawaii
AST SpaceMobile completes 1st ever LEO satellite voice call using AT&T spectrum and unmodified Samsung and Apple smartphones
AST SpaceMobile Deploys Largest-Ever LEO Satellite Communications Array
FCC: More competition for Starlink; freeing up spectrum for satellite broadband service
More Competition for Starlink Needed:
FCC chairwoman Jessica Rosenworcel said Wednesday that she wants to see more competition for SpaceX‘s internet satellite constellation Starlink. Starlink (owned by SpaceX, which provides launch services) controls nearly two thirds of all active satellites and has launched about 7,000 satellites since 2018. Rosenworcel said at a conference Wednesday that Starlink has “almost two-thirds of the satellites that are in space right now and has a very high portion of (satellite)) internet traffic… Our economy doesn’t benefit from monopolies. So we’ve got to invite many more space actors in, many more companies that can develop constellations and innovations in space.”
Starlink competitors include:
OneWeb is a solid alternative to Starlink’s satellite internet service by offering similar capabilities and coverage. The company plans to launch a constellation of approximately 650 satellites to provide seamless broadband connectivity to users worldwide, including remote and underserved areas. By operating in low-earth orbits (LEO), OneWeb’s satellites can offer low latency and high-speed internet access, suitable for a wide range of commercial, residential, and governmental applications. OneWeb’s satellites will be deployed in polar orbit, allowing them to cover even the Earth’s most remote regions. This global coverage makes OneWeb an attractive option for users who require internet connectivity in areas where traditional terrestrial infrastructure is limited or unavailable.
Viasat has a fleet of satellites in geostationary orbit, allowing it to provide internet services to customers in remote and rural areas. This coverage is essential for customers living in areas with limited terrestrial internet options. In addition to its satellite coverage, Viasat also offers competitive internet speeds. The company’s satellite technology allows fast and reliable internet connections, making it a viable alternative to traditional wired internet providers. This is especially beneficial for customers who require high-speed internet for activities such as streaming, online gaming, or remote work.
Telesat offers a wide range of satellite services tailored to different industries and applications. Telesat’s satellite fleet includes geostationary satellites, low-earth orbit (LEO) satellites, and high-throughput satellites (HTS), allowing it to deliver high-speed internet connectivity, broadcast services, and backhaul solutions to customers in remote and underserved areas. Telesat has extensive coverage and capacity in terms of satellite internet services. They have a strong presence in North America, South America, Europe, the Middle East, and Africa, making their services accessible to millions of users.
Telstra’s extensive network infrastructure and coverage make it a strong competitor to Starlink. The company operates a vast network of undersea cables, satellites, and terrestrial infrastructure, which enables it to provide reliable and high-speed connectivity across Australia and beyond. Telstra also has a solid customer base and brand recognition in the telecommunications industry, which gives it a competitive advantage. One of the critical business challenges that Telstra poses to Starlink is its established presence and dominance in the Australian market. Telstra has a significant market share and customer base in Australia, which gives it a strong foothold in the telecommunications industry. This makes it more difficult for Starlink to penetrate the market and attract customers away from Telstra. In addition, Telstra’s network coverage and infrastructure in remote and rural areas of Australia are competitive advantages.
Project Kuiper is backed by Amazon’s vast resources and infrastructure. Amazon’s deep pockets and logistics and cloud services expertise give Project Kuiper a decisive advantage in deploying and scaling its satellite network. By providing affordable and accessible broadband services, Project Kuiper intends to empower individuals, businesses, and communities with the opportunities and resources that come with internet access. With a constellation of low-earth orbit (LEO) satellites, Project Kuiper plans to deliver high-speed internet connectivity to areas with limited traditional terrestrial infrastructure.
Hughes Network System has a strong foothold in the market, particularly in rural areas with limited terrestrial broadband options. The company’s HughesNet service utilizes geostationary satellites to provide internet connectivity, offering up to 100 Mbps for downloads.
Inmarsat offers a range of satellite-based communication solutions that cater to its customers’ diverse needs. One key area where Inmarsat differentiates itself is its focus on mission-critical applications. The company’s satellite network is designed to provide uninterrupted and reliable connectivity, even in the most remote and challenging environments. Inmarsat’s portfolio includes services such as voice and data communications, machine-to-machine connectivity, and Internet of Things (IoT) solutions. The company’s satellite network covers most of the Earth’s surface, ensuring its customers can stay connected wherever they are.
Freeing Up Spectrum to Support Satellite Broadband Service:
At the FCC’s September 26th Open Commission Meeting, the Commission will consider a Report and Order that will provide 1300 megahertz of spectrum in the 17 GHz band for non-geostationary satellite orbit (NGSO) space stations in the fixed-satellite service (FSS) while also protecting incumbent operations. The Order provides a more cohesive global framework for FSS operators and maximizes the efficient use of the 17 GHz band spectrum. (IB Docket No. 22-273).
………………………………………………………………………………………………………………………………….
References:
https://www.fcc.gov/september-2024-open-commission-meeting
https://businessmodelanalyst.com/starlink-competitors/
SpaceX launches first set of Starlink satellites with direct-to-cell capabilities
Starlink Direct to Cell service (via Entel) is coming to Chile and Peru be end of 2024
SpaceX has majority of all satellites in orbit; Starlink achieves cash-flow breakeven
Starlink’s Direct to Cell service for existing LTE phones “wherever you can see the sky”
Amazon launches first Project Kuiper satellites in direct competition with SpaceX/Starlink
Momentum builds for wireless telco- satellite operator engagements
Over the past two years, the wireless telco-satellite market has seen significant industry-wide growth, driven by the integration of Non-Terrestrial Networks (NTN) in 5G New Radio as part of 3GPP Release 17. GSMA Intelligence reports that 91 network operators, representing about 5 billion global connections (60% of the total mobile market), have partnered with satellite operators. Although the regulatory landscape and policy will influence the commercial launch of these services in various regions, the primary objective is to achieve ubiquitous connectivity through a blend of terrestrial and non-terrestrial networks.
Recent developments include:
- AT&T and AST SpaceMobile have signed a definitive agreement extending until 2030 to create the first fully space-based broadband network for mobile phones. This summer, AST SpaceMobile plans to deliver its first commercial satellites to Cape Canaveral for launch into low Earth orbit. These initial five satellites will help enable commercial service that was previously demonstrated with several key milestones. These industry first moments during 2023 include the first voice call, text and video call via space between everyday smartphones. The two companies have been on this path together since 2018. AT&T will continue to be a critical collaborator in this innovative connectivity solution. Chris Sambar, Head of Network for AT&T, will soon be appointed to AST SpaceMobile’s board of directors. AT&T will continue to work directly with AST SpaceMobile on developing, testing, and troubleshooting this technology to help make continental U.S. satellite coverage possible.
- SpaceX owned Starlink has officially launched its commercial satellite-based internet service in Indonesia and received approvals to offer the service in Malaysia and the Philippines. Starlink is already available in Southeast Asia in Malaysia and the Philippines. Indonesia, the world’s largest archipelago with more than 17,000 islands, faces an urban-rural connectivity divide where millions of people living in rural areas have limited or no access to internet services. Starlink secured VSAT and ISP business permits earlier in May, first targeting underdeveloped regions in remote locations.Jakarta Globe reported the service costs IDR750,000 ($46.95) per month, twice the average spent in the country on internet service. Customers need a VSAT (very small aperture terminal) device or signal receiver station to use the solution.Internet penetration in Indonesia neared 80% at the end of 2023, data from Indonesian Internet Service Providers Association showed. With about 277 million people, Indonesia has the fourth largest population in the world. The nation is made up of 17,000 islands, which creates challenges in deploying mobile and fixed-line internet nationwide.Starlink also in received approvals to offer the service in Malaysia and the Philippines. The company aims to enable SMS messaging directly from a network of low Earth orbit satellites this year followed by voice and data starting in 2025. In early January, parent SpaceX launched the first of six satellites to deliver mobile coverage.
- Space X filed a petition with the FCC stating that it “looks forward to launching commercial direct-to-cellular service in the United States this fall.” That will presumably be only for text messages, because the company has stated that ONLY text will available in 2024 via Starlink. Voice and data won’t be operational until 2025. Importantly, SpaceX did not identify the telco who would provide Direct-to Cell satellite service this fall.
In August 2022, T-Mobile and SpaceX announced their plans to expand cellular service in the US using low-orbit satellites. The service aims to provide direct-to-cell services in hard-to-reach and underserved areas such as national parks, uninhabited areas such as deserts and mountain ranges, and even territorial waters. Traditional land-based cell towers cannot cover most of these regions.
- SpaceX said that “supplemental coverage from space (“SCS”) will enable ubiquitous mobile coverage for consumers and first responders and will set a strong example for other countries to follow.” Furthermore, SpaceX said the “FCC should reconsider a single number in the SCS Order—namely, the one-size-fits-all aggregate out-of-band power flux-density (“PFD”) limit of -120 dBW/m2 /MHz that it adopted in the new Section 25.202(k) for all supplemental coverage operations regardless of frequency band.
……………………………………………………………………………………………………………………………………………………………………………………………………………………………
References:
https://about.att.com/story/2024/ast-spacemobile-commercial-agreement.html
AT&T, AST SpaceMobile draw closer to sat-to-phone launch
Starlink sat-service launches in Indonesia
Space X “direct-to-cell” service to start in the U.S. this fall, but with what wireless carrier?
Space X “direct-to-cell” service to start in the U.S. this fall, but with what wireless carrier?
In a May 30th filing with the FCC, SpaceX wrote that it “looks forward to launching commercial direct-to-cellular service [1.] in the United States this fall.” That will presumably be only for text messages, because the company has stated that ONLY text will available in 2024. Voice and data won’t be operational until 2025.
Importantly, SpaceX did not identify the telco who would provide Direct-to Cell satellite service this fall.. Mike Dano of LightReading has suggested it might be T-Mobile US (more below), but there is nothing on the company’s news website to confirm that.
Note 1. “Direct to Cell works with existing LTE phones wherever you can see the sky. No changes to hardware, firmware or special apps are required, providing seamless access to text, voice and data,” according to the Starlink’s website. “Starlink satellites with Direct to Cell capabilities enable ubiquitous access to texting, calling, and browsing wherever you may be on land, lakes, or coastal waters. Direct to Cell will also connect IoT devices with common LTE standards.”
………………………………………………………………………………………………………………………….
SpaceX disclosed its commercial direct-to-cell launch plans in a filing with the FCC that urged the Commission to make changes to its initial supplemental coverage from space (SCS) ruling. SpaceX argued the FCC should create SCS rules that are specific to each band of spectrum used in such offerings
In its most recent FCC filing, SpaceX said that “supplemental coverage from space (“SCS”) will enable ubiquitous mobile coverage for consumers and first responders and will set a strong example for other countries to follow.”
Furthermore, SpaceX said the “FCC should reconsider a single number in the SCS Order—namely, the one-size-fits-all aggregate out-of-band power flux-density (“PFD”) limit of -120 dBW/m2 /MHz that it adopted in the new Section 25.202(k) for all supplemental coverage operations regardless of frequency band.
If the Commission decides to retain an aggregate limit, adopting band-specific limits that efficiently and transparently achieve the accepted ITU interference protection threshold for terrestrial networks of -6 dB interference-to-noise ratio (“I/N”) would better achieve the Commission’s goals of ensuring better service, broader coverage, and more choices for consumers.
By making this simple adjustment to the SCS Order, the Commission can potentially bring an order of magnitude better service to consumers who use supplemental coverage from space in higher frequencies, without causing any risk of harmful interference to terrestrial services in adjacent bands,” SpaceX added.
SOURCE: OFFICIAL SPACE X PHOTOS ON FLICKR, CC2.0
………………………………………………………………………………………………………..
SpaceX established a phone-to-satellite agreement with T-Mobile in 2022. That agreement called for the satellite launch vendor to add T-Mobile’s spectrum into its Starlink satellites. T-Mobile officials have suggested SpaceX’s satellite service might be included in its more expensive service plans for no extra charge, or through an extra fee on its other plans.
……………………………………………………………………………………………………………………….
Sidebar: SpaceX LEO Satellites in Orbit
SpaceX currently operates a constellation of more than 6,000 Starlink satellites. That web of satellites helps to keep Starlink’s services consistent for users on the ground. Each Starlink LEO satellite travels extremely fast such that it goes around the world every 90 minutes.
SpaceX has stated that it plans to have around 800 satellites capable of direct-to-cell connections in orbit within a few months.
According to one source, SpaceX has so far launched more than three dozen satellites that support those “direct-to-cell“ connections.
………………………………………………………………………………………………………………
References:
https://www.fcc.gov/ecfs/document/105311484428351/1
https://www.starlink.com/business/direct-to-cell
https://www.lightreading.com/satellite/spacex-says-t-mobile-s-direct-to-cell-service-launching-commercially-this-fall
Satellite 2024 conference: Are Satellite and Cellular Worlds Converging or Colliding?
KDDI Partners With SpaceX to Bring Satellite-to-Cellular Service to Japan
Telstra partners with Starlink for home phonetechblog.comsoc.org/…/spacex-launches-first-set-of-starlink-satellites-with-direct-to-cell-capabilities service and LEO satellite broadband services
SpaceX launches first set of Starlink satellites with direct-to-cell capabilities
Starlink’s Direct to Cell service for existing LTE phones “wherever you can see the sky”
Musk’s SpaceX and T-Mobile plan to connect mobile phones to LEO satellites in 2023
Starlink Direct to Cell service (via Entel) is coming to Chile and Peru be end of 2024
AT&T deal with AST SpaceMobile to provide wireless service from space
AT&T and satellite network provider AST SpaceMobile are teaming up to provide wireless service from space — a challenge to Elon Musk’s SpaceX, which struck a similar deal two years ago with T-Mobile US. AT&T and AST SpaceMobile formalized the partnership following an earlier testing period. They said on Wednesday that their agreement to build a space-based broadband network will run through 2030.
AT&T head of network Chris Sambar will join the AST SpaceMobile board, deepening a relationship that dates back to at least 2018. Sambar said in an interview that his team is confident in AST SpaceMobile’s technology, as demonstrated by the performance of the BlueWalker 3 test satellite. The relationship is moving from “loose partner to a strategic partner,” he said.
Wireless providers are in a race to offer connections for the world’s estimated 5 billion mobile phones when those devices are in remote areas beyond the reach of cell towers. For consumers, these services hold the promise of connectivity along rural roads and in places likes national parks. The service is typically marketed as a supplement to standard wireless coverage.
The new satellite network will work with ordinary mobile phones, offering a level of convenience that’s lacking in current call-via-satellite services, which require the assistance of bulky specialized equipment.
“Space-based direct-to-mobile technology is designed to provide customers connectivity by complementing and integrating with our existing mobile network,” said Jeff McElfresh, Chief Operating Officer, AT&T. “This agreement is the next step in our industry leadership to use emerging satellite technologies to provide services to consumers and in locations where connectivity was not previously feasible.”
“Working together with AT&T has paved the way to unlock the potential of space-based cellular broadband directly to everyday smartphones. We are thrilled to solidify our collaboration through this landmark agreement,” said Abel Avellan, AST SpaceMobile Founder, Chairman, and CEO. “We aim to bring seamless, reliable service to consumers and businesses across the continental U.S., transforming the way people connect and access information.”
AST SpaceMobile this summer will send five satellites to Cape Canaveral, Florida, for launch into low Earth orbit. AT&T’s Sambar didn’t say when service to customers might begin. “This will be a full data service, unlike anything you can get today from a low-Earth orbit constellation,” Sambar said.
T-Mobile is working with the low-Earth orbiting Starlink service from Musk’s Space Exploration Technologies Corp. The mobile carrier earlier said that its calling-via-satellite service could begin this year.
SpaceX has roughly 6,000 satellites aloft in low-Earth orbit — far more than any other company. The trajectory, with satellites circling near the Earth’s surface, allows communications signals to travel quickly between spacecraft and a terrestrial user.
SpaceX in January launched its first set of satellites capable of offering mobile phone service. The service “will allow for mobile phone connectivity anywhere on Earth,” Musk said in a post on X, the social network formerly known as Twitter, though he added that technical limitations mean “it is not meaningfully competitive with existing terrestrial cellular networks.”
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………
About AST SpaceMobile
AST SpaceMobile, Inc. is building the first and only global cellular broadband network in space to operate directly with standard, unmodified mobile devices based on our extensive IP and patent portfolio, and designed for both commercial and government applications. Our engineers and space scientists are on a mission to eliminate the connectivity gaps faced by today’s five billion mobile subscribers and finally bring broadband to the billions who remain unconnected. For more information, follow AST SpaceMobile on YouTube, X (formerly Twitter), LinkedIn and Facebook. Watch this video for an overview of the SpaceMobile mission.
References:
https://about.att.com/story/2024/ast-spacemobile-commercial-agreement.html
AST SpaceMobile: “5G” Connectivity from Space to Everyday Smartphones
AST SpaceMobile achieves 4G LTE download speeds >10 Mbps during test in Hawaii
AST SpaceMobile completes 1st ever LEO satellite voice call using AT&T spectrum and unmodified Samsung and Apple smartphones
AST SpaceMobile Deploys Largest-Ever LEO Satellite Communications Array
SpaceX launches first set of Starlink satellites with direct-to-cell capabilities
T-Mobile US today said that SpaceX launched a Falcon 9 rocket on Tuesday with the first set of Starlink satellites that can beam phone signals from space directly to smartphones. The U.S wireless carrier will use Elon Musk-owned SpaceX’s Starlink satellites to provide mobile users with network access in parts of the United States, the companies had announced in August 2022. The direct-to-cell service at first will begin with text messaging followed by voice and data capabilities in the coming years, T-Mobile said. Satellite service will not be immediately available to T-Mobile customers; the company said that field testing would begin “soon.”
SpaceX plans to “rapidly” scale up the project, according to Sara Spangelo, senior director of satellite engineering at SpaceX. “The launch of these first direct-to-cell satellites is an exciting milestone for SpaceX to demonstrate our technology,” she said.
Mike Katz, president of marketing, strategy and products at T-Mobile, said the service was designed to help ensure users remained connected “even in the most remote locations”. He said he hoped dead zones would become “a thing of the past”.
Other wireless providers across the world, including Japan’s KDDI, Australia’s Optus, New Zealand’s One NZ, Canada’s Rogers will collaborate with SpaceX to launch direct-to-cell technology.
References:
https://www.theguardian.com/science/2024/jan/03/spacex-elon-musk-phone-starlink-satellites
Starlink Direct to Cell service (via Entel) is coming to Chile and Peru be end of 2024
Starlink’s Direct to Cell service for existing LTE phones “wherever you can see the sky”
Starlink Direct to Cell service (via Entel) is coming to Chile and Peru be end of 2024
Chilean network operator Entel and SpaceX, the company that owns satellite internet provider Starlink, made a commercial agreement to provide satellite-to-mobile services. The agreement will improve broadband coverage for Entel’s LTE customers. It will allow millions of cell phones in Chile and Peru to access satellite coverage starting at the end of 2024.
The first Starlink satellites with Direct to Cell capacity will be launched, providing basic satellite connectivity by the end of 2024. Starlink is a pioneer in providing fixed broadband services through low-orbit satellite networks, which helped it to gain an advantage in the development of direct-to-cell technology.
Starlink satellites with Direct to Cell capabilities enable access to texting, calling, and browsing anywhere on land, lakes, or coastal waters. Direct to Cell will also connect IoT devices which have LTE cellular access.
“One of the great advantages of this proposal is that it will work using the same 4G VoLTE phones that exist in the market today. It does not require any special equipment or special software,” Entel network manager Luis Uribe told BNamericas. “This is an important advantage over traditional satellite solutions. It is a technology that is still evolving, it is being developed. We are going to explore [use cases] as [the technology] advances,” he added.
Although Entel’s mobile networks cover 98% of the populations of Chile and Peru, the Starlink deal will allow it to provide services in maritime territory or in areas that suffered natural disasters.
“It is a technology that has enormous potential as a result of its ability to cover areas that traditional networks cannot achieve,” Uribe said.
A so-called line of sight between device and satellite is required for direct-to-cell to work, meaning the technology might not work indoors or in dense forests. If available, terrestrial coverage will be prioritized.
While other companies are developing similar solutions, they are not as advanced as Starlink. “We see other solutions that also look interesting. To the extent that these do not involve special software or devices, they could be an option,” said Uribe.
Entel is also focused on 5G deployment, achieving a first-stage goal of connecting 270 localities from Arica in the north to Puerto Williams in the south in August.
The company is investing US$350mn in the entire deployment program. In October, Entel enabled NB-IoT at over 6,500 sites to boost connectivity for Internet of Things devices.
“From the point of view of the company’s internal processes, we are incorporating artificial intelligence and generative artificial intelligence tools,” said Uribe. The technologies are being used for automation processes and network optimization, among others.
References:
https://www.bnamericas.com/en/features/spotlight-the-entel-starlink-mobile-coverage-agreement
Starlink’s Direct to Cell service for existing LTE phones “wherever you can see the sky”
SpaceX has majority of all satellites in orbit; Starlink achieves cash-flow breakeven
SpaceX has majority of all satellites in orbit; Starlink achieves cash-flow breakeven
SpaceX accounts for roughly one-half of all orbital space launches around the world, and it’s growing its launch frequency. It also has a majority of all the satellites in orbit around the planet. This Thursday, majority owner & CEO Elon Musk tweeted, “Excited to announce that SpaceX Starlink has achieved breakeven cash flow! Starlink (a SpaceX subsidiary) is also now a majority of all active satellites and will have launched a majority of all satellites cumulatively from Earth by next year.”
There are some 5,000 Starlink satellites in orbit. Starlink satellites are small, lower-cost satellites built by SpaceX that deliver high-speed, space-based internet service to customers on Earth. Starlink can cost about $120 a month and there is some hardware to buy as well.
Starlink ended 2022 with roughly 1 million subscribers. The subscriber count now isn’t known, but it could be approaching 2 million users based on prior growth rates. SpaceX didn’t return a request for comment.
In 2021, Musk said SpaceX would spin off and take Starlink public once its cash flow was reasonably predictable.
A SpaceX rocket carriers Starlink satellites into orbit. PHOTO CREDIT: SPACEX
Starlink has been in the spotlight since last year as it helps provide Ukraine with satellite communications key to its war efforts against Russia.
Last month, Musk said Starlink will support communication links in Gaza with “internationally recognized aid organizations” after a telephone and internet blackout isolated people in the Gaza Strip from the world and from each other.
Musk has sought to establish the Starlink business unit as a crucial source of revenue to fund SpaceX’s more capital-intensive projects such as its next-generation Starship, a giant reusable rocket the company intends to fly to the moon for NASA within the next decade.
Starlink posted a more than six-fold surge in revenue last year to $1.4 billion, but fell short of targets set by Musk, the Wall Street Journal reported in September, citing documents.
SpaceX is valued at about $150 billion and is one of the most valuable private companies in the world.
References:
https://www.barrons.com/articles/elon-musk-spacex-starlink-86fe99ec?