Analysys Mason Open Network Index: survey of 50 tier 1 network operators

Open networks apply proven cloud concepts to the networking domain while enabling components to be sourced from a broad ecosystem of vendors. Open networks boast high levels of automation and programmability and are built around the concept of utilizing a common, horizontal cloud platform that supports cloud-native network functions from multiple vendors and from multiple network domains. Network operators can enhance the flexibility, agility, composability, innovation and operational efficiency of their networks by implementing open architectures and open operating models.

According to a survey conducted by Analysys Mason, ninety percent of global telecom service providers believe open networks are critical to their survival. However, only 20% have an open network strategy in place.  Analysys Mason surveyed 50 leading Tier-1 operators worldwide between December 2023 and January 2024.

The analysts then benchmarked operator progress from a vision/strategy perspective and a technical perspective to form the first iteration of Analysys Mason’s Open Network Index (ONI).  The survey and report were commissioned by Dell Technologies, but Analysys Mason says it does not endorse any of the vendor’s products or services.

The market research firm defines open networks as those based on non-proprietary technologies and standards, including open hardware and software developed by open communities, as well as software technologies that individual vendors are exposing, typically through open application programming interfaces (APIs), to anyone who wants to use them.

“Operators need to urgently develop an openness strategy and ensure that they approach openness in the right way,” the report authors said.

The analysts said that overall, survey respondents displayed a strong willingness to align themselves with open networking principles. But the technical implementation of open network architectures remains challenging.

The survey results partitioned the 50 network operators into four distinct categories:

  • Openness leaders have a deep commitment to open networks and are supported at the highest levels of the organization. This category includes a higher proportion of operators from developed Asia–Pacific (APAC) than in any of the following categories.
  • Openness followers are implementing aspects of open networks, but they take a more tactical approach because they lack the strong level of senior executive support that the openness leaders enjoy.
  • Openness emerging adopters are operators that are just starting their journey. The category includes operators from developing markets that have a vision but have not yet started to deploy the architectures. The category also includes cautious adopters with lower ambitions for open networks.
  • Openness late adopters do not have a clear concept of what an open network is, and they have not yet started to formulate a strategy for achieving openness or to win senior executive support. They have a low appetite for risk and perceive significant risks associated with moving away from incumbent vendors.

Many operators have strong engagements with well-established telecoms industry bodies such as the GSMA and the TM Forum. These bodies have traditionally aimed to improve standardisation and foster multi-vendor interoperability, but their activities in the areas of open cloud platforms and open operating models have been somewhat peripheral. Operators should deepen their involvement with initiatives such as the Cloud Native Computing Foundation (CNCF), Nephio and Sylva, which champion open infrastructure and open operations, and support the fundamentals of horizontal cloud platforms.

In addition, operators should engage with the O-RAN Alliance (which is NOT a standards body/SDO), which is leading multi-vendor Open RAN interface and interoperability standards, with these standards leveraging distributed, cloud-native-based architectures. Participation in these initiatives facilitates knowledge sharing, enables operators to shape future standardization efforts and empowers operators to exert greater influence over their vendors.

References:

https://www.analysysmason.com/operator-network-index-rma16-rma18

Analysys Mason’s gloomy CAPEX forecast: “there will not be a cyclical recovery”

IEEE/SCU SoE May 1st Virtual Panel Session: Open Source vs Proprietary Software Running on Disaggregated Hardware

Analysys Mason: 40 operational 5G SA networks worldwide; Sub-Sahara Africa dominates new launches

 

EdgeQ’s breakthrough demos and partnerships showcased at MWC 2024 & MWC 2023

EdgeQ Inc, an innovative 4G/5G System on a Chip (SoC) semiconductor startup,  had several defining showcases at MWC 2024 as well partnership announcements which included:

1.  A partnership with DenseAir and Radisys to deliver industry’s first cloud-native, neutral host solution for mobile networks.  It’s the world’s first O-RAN split 6 solution where multiple operators and multiple data streams are all supported off a common platform – single box, single silicon.

  • EdgeQ fundamentally enabled DenseAir to deliver a solution that converged 4G+5G on a single silicon, while providing elastic scaling up to 4 component carriers and 256 users, with software-defined O-RAN split 6.

2. EdgeQ and BlinQ showcased a single integrated 5G+WiFi platform (PCW-400i), running simultaneously 5G at 3.3-4.2GHz frequency band spectrum and Wi-Fi 2.4GHz and 6GHz spectrum. This fully integrated small cell solution by BlinQ operates in bands n48, n77 and n78 along with the three bands from the Wi-Fi 7 standard.  Using EdgeQ’s SoC, BlinQ enables novel deployment schemes like completely 5G cable-less backhaul, while enabling PoE++ (IEEE 802.3bt is the latest and most powerful Power over Ethernet standard. It provides up to 100 watts of power per port. at affordable unit economics).

  • “Not only does the PCW-400i provide incredible capacity, it also incorporates BLiNQ’s enterprise-level management suite and zero-touch provisioning, making it easy to install and operate in any size organization,” says Pete Vavra, VP of Sales at BLiNQ. “The product was designed with scalability and ease of deployment in mind without taking the focus away from performance,” Vara added.
  • “Our collaboration with BLiNQ is about massively converging two major wireless protocols into a single platform that give customers flexibility and freedom of choice. This is a phenomenal achievement delivering state-of-the art 5GNR and Wi-Fi 7 in a sleek, compact form factor that can elastically scale with connection density and capacity demands while maintaining breakthrough unit economics at unprecedented low power,” says Ziyao Xu, Director of Product Management at EdgeQ. “This will compel the market with novel use cases for enterprise, private networks, and home,” Xu added.

3.   EdgeQ’s silicon was featured by both ARM and Analog Devices. Two landmark capabilities were revealed:

  • Multi-Operator, Multi-Carrier 4cc Aggregation Running on a Single SoC Converging 4G+5G+AI.
  • Industry First 5G PHY + 5G L2/L3 + Embedded User Plane Function (UPF) running on EdgeQ’s SoC:
    • Local Processing of UPF reduces the WAN tax, allowing for a lighter, less burdened core network. Having an embedded UPF can save cost, reduce latency, and maintains the pilot data from needing to leave the premise.
    • At the same time, there is enough headroom in EdgeQ’s processor architecture to run other edge applications (DPDK, virtualization, containers, etc…etc…).

4.  Actiontec and EdgeQ announced the commercial release of ASC-308:  Revolutionizing Network Flexibility, Performance and Future-Proofing 4G & 5G Small Cell.

  • Enabled by EdgeQ SoC, Actiontec’s ASC-508 offers a programmable architecture, 4G & 5G multi-technology support, and ease of deployment to empower operators to build future-proof networks. The ASC-508 boasts a programmable and modular architecture, allowing operators to adapt easily the platform to their band support, specific use cases, and evolving network requirements.
  • Support for various O-RAN compliant Split options, including All-in-One Split 0, Split 2, and Split 6, ensures future-proof adaptability. This is all due to the programmable nature of EdgeQ’s “Base Station-on-a-Chip.”

–>Significantly, EdgeQ’s SoC product entered production last year and has generated meaningful revenue with customers worldwide.

Image Credit:  EdgeQ Inc.

……………………………………………………………………………………………………………………

At MWC 2023, EdgeQ collaborated with Vodafone, a leading telecommunications mobile operator in Open Radio Access Network (O-RAN), and Dell Technologies to debut a state-of-the-art O-RAN-based, massive MIMO solution at last year’s Mobile World Congress (MWC 2023) in Barcelona, Spain.  As a result, the company received the prestigious “CTO Choice Award for Outstanding Mobile Technology” and “Best Digital Technology Breakthrough.”

The collaboration and design between the three companies is a massive MIMO 5G network that leverages in line acceleration technologies to deliver high user capacity, high network bandwidth at relatively low power for the new O-RAN based deployments.

Hosted at the Vodafone stand, the live system comprised of a Dell PowerEdge XR11 server and an EdgeQ M-Series L1 accelerator will demonstrate impressive throughput of 5Gbps, with the accelerator drawing less than 50 watts. The collaboration and design between the three companies demonstrate the principles of a 5G O-RAN infrastructure solution on a standard server, an inline acceleration, a Radio Unit (RU) system, and third party L2/L3 software stack from collaborating companies.

“Vodafone is committed to driving 5G O-RAN deployments at scale. Our showcase with EdgeQ and Dell Technologies validates how open innovation can drive better performance and cost efficiencies. Technologies such as EdgeQ’s high capacity in-line L1 acceleration should enable Vodafone to scale our macro cell infrastructure to new levels of performance and efficiency without compromise,” said Paco Martin, Head of OpenRAN Product Team, Network Architecture, Vodafone.

EdgeQ’s multi-node 4G/5G Base Station-on-a-Chip solution [1.] converges connectivity, compute, and networking in a disruptively innovative software-defined platform. The highly scalable, flexibly adaptive EdgeQ platform solution uniquely features a production-grade L1 stack that is open and customizable. The scalable architecture maximizes throughput performance, compute processing, across a large range of concurrent users and multiple carriers, all within a compact power and cost envelope.

“EdgeQ was founded on the belief of reconstituting the network in simple and intuitive terms. Together with Vodafone and Dell Technologies, we have shown the first instantiation of a new market paradigm that scales openly and flexibly, without the cost burden and power penalties of traditional platform approaches,” said Vinay Ravuri, CEO and Founder at EdgeQ.

Note 1. In December 2023, EdgeQ announced a converged 4G, 5G, and AI base station SoC at 1/2 cost, 1/3 the power, and 1/10 the space of previous designs. EdgeQ’s 4G/5G base station SoC features:

  • 3 to 4 Multi-carrier operation on a 4T4R small cells for enterprise private networks.
  • Asymmetric carrier aggregation across multiple bandwidths – ex: 100+20, 20+10, …….
  • Asymmetric carrier aggregation between licensed bands and PAL/GAA spectrum assets.

EdgeQ is the only company providing an integrated 4G+5G solution, complete with a multi-mode L1 (Physical Layer), an interoperable L2/L3 software stack, all on a single chip. Telcos and private network customers can leverage a single converged solution, upgrade over-the-air at compelling unit economics of 1/2 the cost and 1/3 the power of previous base station designs.

……………………………………………………………………………………………………………………….

On March 22, 2022, EdgeQ’s Product Development Manager Adil Kidwai participated in an IEEE ComSocSCV virtual panel session, organized by this author, where he discussed the benefits of his company’s 4G/5G SoC solution for O-RAN and private 5G networks.  That virtual panel session was summarized in the November 2022 IEEE Global Communications Newsletter which was published in the November 2022 IEEE Communications magazine.  You can watch a video of that very informative session here.

About EdgeQ:

EdgeQ is a leading innovator in 5G systems-on-a-chip. The company is headquartered in Santa Clara, CA, with offices in San Diego, CA and Bangalore, India. Led by executives from Qualcomm, Intel, and Broadcom, EdgeQ is pioneering converged connectivity and AI that is fully software-customizable and programmable.

The company is backed by world-renowned investors. To learn more about EdgeQ, visit www.edgeq.io.   Media Contact: [email protected] 804-612-5393

References:

https://www.prnewswire.com/news-releases/dense-air-joins-forces-with-radisys-and-edgeq-to-shape-the-ecosystem-of-shared-wireless-at-mwc-302068038.html

https://blinqnetworks.com/blinq-networks-showcases-5gnr-and-wi-fi-convergence-in-its-enterprise-small-cell-pcw-400i-platform-at-mwc-barcelona/

https://blinqnetworks.com/blinq-networks-introduces-their-first-5g-small-cell-base-station-powered-by-edgeq/

Actiontec and EdgeQ Unveil Commercial Release of ASC-508: Revolutionizing Network Flexibility, Performance, and Future-Proofing 4G & 5G Small Cell

https://www.businesswire.com/news/home/20230227005318/en/EdgeQ-and-Vodafone-Debut-State-of-the-Art-Software-Defined-maMIMO-Open-RAN-Solution

https://www.edgeq.io/edgeq-wins-multiple

https://www.edgeq.io/edgeq-debuts-worlds-first

EdgeQ Samples World’s 1st Software-Defined 5G Base Station-on-a-Chip

Intel FlexRAN™ gets boost from AT&T; faces competition from Marvel, Qualcomm, and EdgeQ for Open RAN silicon

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9946966

SoC start-up EdgeQ comes out of stealth mode with 5G/AI silicon for 5G private networks/IIoT

https://ieeexplore.ieee.org/document/6736761

 

CES 2024 major themes: sustainability and “right to repair” user devices

A big change for the just concluded CES 2024 was a focus on sustainability (as to what goes into smart devices) and the ability to repair user owned devices. The tech industry is now finally becoming more aware of the importance of sustainability — either because it’s recognizing that it needs to account for all the ways producing new technologies contributes to climate change, or because the growing public awareness of industrial impact on climate change means they can’t ignore their own contribution.

At the end of the show, Google announced its new policy supporting the Right to Repair movement and the user’s right to fix their own devices. This includes making tools, parts and repair manuals available to device owners — including Pixel phone owners. Combined with Google’s commitment to supply the latest Pixel 8 series with seven years of software updates, it seems like more device manufacturers are acknowledging consumer desire to keep their devices around for longer, which means fewer old devices thrown away into landfills and contributing to climate woes.

Over 70% of companies surveyed by IDC moved beyond the early stages of talking about sustainability and now need to make measurable progress on their set targets to please shareholders. Companies are reliably reporting their environmental impact data and using sustainability measures to find cost savings. Their next task is to stand out from the competition with their sustainability approaches. For IT professionals who can see the scaled impact of replacing products, using sustainable materials and recycling equipment is attractive. But consumers are still waking up to the impact of their frequent device upgrades.

“[Device] buyers are still asking about carbon emissions (upstream and downstream) but they also want to know about the materials that are being used, the recyclability of the product that they buy, etc.,” said Bjoern Stengel, Global Sustainability Research lead at the IDC. Getting the most use out of devices and reuse of their materials is becoming a major differentiator for those buying tech, especially in commercial uses like information technology.

More companies are pledging to use recycled materials in their products, which could help reduce emissions and waste by finding second lives for parts of old devices that would otherwise be headed for landfills, including metals and rare earth materials whose extraction and integration contribute to climate change.

Companies have been slowly shifting where they used recycled materials:

  • Samsung Electronics emphasized how sustainability is driving business activities at CES 2024.  The Sustainability Zone at Samsung’s booth ushered in visitors to discover how the company is promoting resource circularity and collaboration in addition to providing various accessibility services. Samsung had previously committed toward more recycled material in their product packaging by 2025, the company’s CES 2024 keynote reinforced its efforts to use recycled ocean plastic in phone and TV components. Samsung also pledged to reach net zero carbon emissions company-wide by 2050 with the device experience division using 100% renewable energy by 2027.
  • Panasonic pledged to reduce its use of resin plastic in its products and develop a system that blends recycled plastic with antioxidants and other materials in order to form new plastics ready to be included in products.

  • Dell has been using recycled materials since 2007 and recycled 2.5 billion pounds of materials since. The company is starting with plastics because, as Product Sustainability Lead Katie Green explained, those are the heaviest and highest-volume materials in the company’s products. The second heaviest and most prevalent material category — metals — became the next to be recycled into new products, including rare earth magnets and aluminum. Last year, the company began using 50% recycled copper in some of its charging cables that will soon expand to the XPS laptop line, and in 2024, will use recycled cobalt in laptop batteries and recycled steel in desktop displays.   “[We are] understanding if we’re prioritizing the right, sustainable materials and the right components, and doing it in a way that dematerializes as much as possible,” Green said.

Dell first introduced its Concept Luna laptop in December 2021 (and updated it a year later in 2022) as a testbed for sustainable design which has trickled into its main products, from trying out modular parts to reducing material waste. For instance, Dell first tried removing the plastic Dell logo on the laptop lid in Luna in favor of a stenciled logo straight on the aluminum chassis, then used that process in its Inspiron line of computers — a small change that’s multiplied by the scale of Dell product manufacturing.

However, there are limits to how much some recycled materials can be used in a product, Dell discovered. For instance, the company found a maximum of 35 to 40% post consumer recycled plastic in its current method, Green said. Like Panasonic, Dell developed a method to blend the old plastic with something new — in Dell’s case, a bio-based plastic that’s renewable. One composition could be 30% post-consumer plastic, 20% bio-based plastic and 20% recovered aerospace plastic, a blend that’s found in Dell’s Latitude 5000 and Precision 3000 series of laptops.  By 2030, Dell wants half of the materials it uses in products to be recycled or renewable.

Dell introduced its third year of ideas that it’s exploring with Concept Luna via a blog post in December. New this year is using predictive analytics, AI and machine learning to better anticipate component problems. Even without diagnostics, these could anticipate if your device’s hard drive may fail or battery capacity may be depleted.

Dell also expanded the number of products able to be represented by its augmented reality app, first introduced in June 2022, to help guide consumers in their own personal repairs in far more immersive ways than a simple device manual can do.

But for all these neat technological advances in diagnosing, harvesting and guiding repairs, Dell had a simpler longevity bottleneck it’s tried to fix: Making it easier for users to get spare parts. The other big pillar of sustainability is simply making sure devices last longer by ensuring the process is less painful for users.

Dell is in the process of adding QR codes on the back of its products, starting with this year’s XPS line, that users can quickly scan to get to a “personalized support experience,” as Green calls it. In short, it pre-enters your device info to Dell’s support network to provide users with access to repair manuals, spare parts and driver updates.

Admittedly, Green says Dell is implementing the QR codes in anticipation of the European Commission’s Digital Product Passport initiative, which requires more transparency in consumer tech products’ sustainability footprint. But it will still make it easier for laptop and PC owners to access the tech support they need to potentially keep devices running for longer and out of landfills when possible.

References:

https://www.cnet.com/tech/mobile/big-techs-ces-2024-sustainability-goals-more-recycled-materials-longer-lifespans/

https://news.samsung.com/global/ces-2024-together-toward-tomorrow-samsung-showcases-eco-conscious-efforts-at-the-sustainability-zone

https://www.ces.tech/topics/topics/sustainability.aspx

Taiwan’s ITRI integrates virtual and real technologies on display at CES 2024

Vodafone Germany deploys Ericsson 5G radio to cut energy use up to 40%

 

 

Dell CTO: Enterprise use cases will dominate 5G public and private deployment models

The 5G telecom ecosystem will shift to become more enterprise driven from consumer-focused in 2021 and the fundamental architecture become software-defined, said John Roese, global chief technology officer, Dell Technologies.

“In 2021, we will have true standalone 5G materialize and it will include advanced features. (This author strongly disagrees as there are no standards for 5G SA and there will be no roaming or portability as a result.).

Enterprise use cases will dominate the technical landscape of 5G for both public and private deployment models. (We agree on that point).  The fundamental architecture of 5G (core network) will move away from the telco and shift to a cloud (native) and IT architecture, which will be open and software-defined for the first time,” said Roese recently while briefing the journalists on the technology trends this year. The Dell senior executive said 5G infrastructure ‘needs to be developed in a very different way with software defined architecture.’

5G SA and Non Stand Alone Core Network

Roese said in 2021 and 2022 the industry would see the shift to building edge computing platforms that can run multiple edge experiences and software-defined services on them to solve the edge proliferation problem. “Edge platforms will become major new areas of on-premise IT capacity delivered as both product and as-a-service,” he added.

Dell said 2021 will also be a prominent year for the quantum computing and semiconductor ecosystem.  “This is the year that will enable broader software development ecosystems to experiment with quantum computing. This is the first year that a computer scientist with no prior access to quantum computing can go into a simulator and start to learn the language of quantum,” said Roese.

According to the company, the industry will move from the era of homogeneous compute to an era of heterogeneous compute. This means that homogenous compute like x86 will be highly augmented with domain specific architectures (Accelerators), and semiconductor ecosystems are being reorganized for this domain.

References:

https://economictimes.indiatimes.com/telecom-news/5g-infrastructure-will-become-software-defined-ecosystem-to-be-enterprise-driven-dell/articleshow/80248600.cms

https://economictimes.indiatimes.com/telecom-news/5g-infrastructure-will-become-software-defined-ecosystem-to-be-enterprise-driven-dell/articleshow/80248600.cms

Posted in Uncategorized Tagged ,

Big Names Clash over 12 GHz for 5G despite it NOT being included in ITU M.1036 – Frequency Arrangements for IMT

Light Reading’s Mike Dano, says there is a contentious issue of  whether 5G networks should be permitted to use the 12 GHz band.  Apparently, the clash is between Charlie Ergan’s Dish Network and Dell (YES) vs AT&T and Elon Musk’s SpaceX (NO).

Interestingly, 12 GHz (more precisely 12.2-12.7 GHz Band ) is NOT one of the frequency bands in the revision to ITU Recommendation M.1036-6, which specifies ALL frequency bands for the TERRESTRIAL component of IMT (including IMT 2020).

–>Please refer to Editor’s Note below for more on the M.1036 revision which may contain a cop-out clause to permit use of any frequency for IMT 2020.SPECS. Mike Dano wrote:

According to at least one high-level source involved in the debates, the FCC might make some kind of ruling on the topic as soon as December. A senior FCC official confirmed that the agency is considering allowing 5G in 12GHz, but declined to comment on whether the item would be addressed during the FCC’s December meeting.  Based on the increasingly contentious filings on the topic, it certainly appears that the fight over 12GHz is escalating.

In the U.S., the FCC exhaustively licensed the 12.2-12.7 GHz band in 2004-2005 timeframe through competitive bidding. The US terrestrial fixed licenses are co-primary with Direct Broadcast Satellite (DBS) and Non-Geostationary Orbit Fixed Satellite Service (NGSO FSS). In April 2016, a petition was filed seeking license modifications under section 316 to permit terrestrial mobile use in the band. Although the petition went through public notice/comment phases, no decisive action has been taken yet. Meanwhile, in August, 2017, FCC issued an inquiry into new opportunities in the mid-band spectrum between 3.7 GHz and 24 GHz. The combination of favorable propagation characteristics (as compared to bands above 24 GHz) and the opportunity for additional channel bandwidth (as compared to bands below 3.7 GHz), raises the potential of these bands to be used for next generation wireless services.

“The time has finally come for the commission to issue a Notice of Proposed Rulemaking (NPRM),” wrote RS Access this week in a filing to the FCC. Dell’s private money management firm backs RS Access, which owns 12GHz licenses and has been pushing for rules allowing 5G operations in the band.  An NPRM by the FCC would signal a formal effort to decide on the matter, potentially sometime next year.

“Given the twin national imperatives of bringing spectrum to its highest and best use while unleashing spectrum for broadband connectivity, issuing a Notice of Proposed Rulemaking will allow debate to move from hollow rhetoric to the types of pragmatic solutions the country needs to accelerate 5G investment and innovation,” echoed Dish Network in its FCC filing.

AT&T and SpaceX are firmly against the idea of the FCC taking action. Instead, they argue that 5G operations in the 12 GHz band would affect their existing activities in 12GHz (AT&T’s DirecTV satellite TV service uses a portion of the band, as does SpaceX’s Starlink satellite Internet service).

“The parties urged the commission to deny the MVDDS Petition [a coalition including Dish and RS Access] for rulemaking outright or, at most, to issue a notice of inquiry rather than a Notice of Proposed Rulemaking given the current state of the record in this proceeding,” wrote AT&T and SpaceX – along with Amazon’s Kepler Communications, satellite companies Intelsat and SES, and bankrupt OneWeb – in their joint FCC filing. A note at the end stated: “See MVDDS 5G Coalition Petition for Rulemaking to Permit MVDDS Use of the 12.2-12.7 GHz Band for Two-Way Mobile Broadband Service, RM-11768 (filed Apr. 26, 2016) (“MVDDS Petition”).”

12 GHz proponents were hoping the FCC would discuss that issue at its November meeting.  That’s unlikely as the main agenda item for that meeting will be to free up the 5.9GHz band for unlicensed operations as well as vehicle-to-vehicle communications using the C-V2X standard.

Dano concludes as follows:

The heavyweights involved in the 12 GHz proceeding are pulling out all the stops in the hopes they can get the FCC to act on one last contentious piece of spectrum policy before Biden begins his first term or President Trump begins his second. After all, Trump’s current FCC chairman, Pai, has not said whether he will stay on at the agency for Trump’s second term.

…………………………………………………………………………………………………………………………………………………………………………………

Editor’s Note:  IMT 2020 Frequency Free for All?

At the conclusion of its Oct 2020 meeting, ITU-R WP5D could NOT agree on revision of draft recommendation M.1036-6 which specifies frequency arrangements to be used with the terrestrial component of IMT, including IMT 2020.SPECS. So that document has yet to be sent to ITU-R SG5 for approval.

The 5D Frequency Aspects WG Oct 2020  report stated:
“The current version of the draft revision with these further proposed edits is contained in document 5D/TEMP/243(Rev.1) and Editor’s Notes have been included in the document to clarify the current situation.”

“Looking at the current situation with some of the critical and urgent deliverables of WG Spectrum Aspects & WRC-23 Preparations, it is clear that whilst progress has been made in some less controversial areas, there are a significant number of areas where very diverging and sometimes polarized views remain. It is the view of the WG Chair that the current situation with such polarized views and no room for compromise solutions is disappointing and that we cannot continue with this approach at the next meeting if we want to be successful in completing these critical outputs by the required deadlines. We must all put more efforts into finding efficient ways to advance the discussions and in particular to focus on middle ground and compromise solutions rather than repeating initial positions.”

Furthermore, the UNAPPROVED draft revision to M.1036-6 has several cop-outs.  For example:
“That Recommendations ITU‑R M.1457, ITU‑R M.2012 and ITU‑R M.[IMT-2020.SPECS] contain external references to information on operating bands for IMT technologies which may go beyond the information in Recommendation ITU-R М.1036 and may cover broader frequency ranges as well as further uplink/downlink combinations” OR for ONLY IMT 2020.SPECS:

“That Recommendations ITU‑R M.[IMT-2020.SPECS] contains external references to information on operating bands for IMT technologies which may go beyond the information in Recommendation М.1036 and may cover broader frequency ranges as well as further uplink/downlink combinations.”

Note also, that the hotly debated 12 GHz frequency band the Dish and Dell are proposing for 5G is NOT contained in the draft revision to ITU-R M.1036-6.  But the cop-out disclaimer above, would permit 12 GHz and any other frequency to be used for IMT 2020, which would obviously negate the purpose and intent of that ITU recommendation.

……………………………………………………………………………………………………………………………………………………..

References:

https://www.lightreading.com/iot/5g-skirmishes-at-12ghz-may-escalate-into-all-out-spectrum-war/d/d-id/765009?

https://www.linkedin.com/pulse/5g-spectrum-series-what-happening-12-ghz-shahed-mazumder/?articleId=6698577775151915008

Dell to offer SD-WAN service based on VMware Velocloud platform

Dell Technologies announced it has started offering a co-branded SD-WAN service with its affiliate VMware, based on the latter’s VeloCloud platform. Previewed at Dell Technologies World in May, the new service is now globally available and supported.

This Dell EMC SD-WAN Solution combines VMware SD-WAN by VeloCloud with modern appliances in multiple configuration options. The service is backed by Dell EMC support, supply chains, and services.

“Dell EMC and VMware are rebuilding the network for the cloud era – with everything open, automated and software-defined,” said Tom Burns, senior vice president & general manager, Dell EMC Networking & Solutions. “New SD-WAN solutions powered by VMware and network fabric management delivered by SmartFabric Director raise the stakes when it comes to network virtualization and security in today’s highly-distributed software-defined enterprise. We’re just getting started on our combined innovation.”

Collaboration between Dell EMC and VMware to:

  • Re-define the network for the cloud era with tighter integration and combined development efforts
  • Modernize network operations and reduce WAN costs with new Dell EMC SD-WAN Solution – one-stop solution combining VMware SD-WAN by VeloCloud, Dell EMC managed infrastructure
  • Simplify data center fabric deployment, operations through enhanced visibility across virtual and physical networks with new Dell EMC SmartFabric Director

Customers have a choice of public, private or hybrid cloud network for enterprise-grade connection to cloud and enterprise applications; branch office enterprise appliances and optional data center appliances; software-defined control and automation; and virtual services delivery. Software subscription options can be upgraded to accommodate changing business requirements for features, duration and bandwidth.

The Dell EMC SD-WAN Solution has three key components:

  • SD-WAN Edge powered by VMware – networking specific, purpose-built appliances designed for high efficiency and reliability
  • SD-WAN Orchestrator – cloud-based management and orchestration software services from VMware, managed by Dell EMC
  • SD-WAN Gateways – a global network of more secure, application-focused access gateways from VMware to handle WAN traffic

At VMworld, Dell EMC and VMware also announced SmartFabric Director, for software-defined networking that enables the physical switch underlay infrastructure to keep pace with the changing demands of virtualized and software-defined networks. Dell EMC SmartFabric Director enables data center operators to build, operate and monitor an open network underlay fabric based on Dell EMC PowerSwitch Series switches.

The Dell EMC SmartFabric Director is a network orchestration solution jointly developed with VMware that enables organizations to synchronize the deployment of a physical switch fabric with the virtual network and gain comprehensive visibility at both the physical and virtual network layers. Organizations can then potentially configure the network fabric in significantly less time than traditional methods. When integrating the SmartFabric Director with VMware vCenter or NSX/NSX-T, organizations can achieve end-to-end visibility of the physical network and all supported virtual overlays. To help organizations continuously monitor fabric health, SmartFabric employs telemetry to collect switch operational data and display metrics graphically at both the network fabric and switch levels.  SmartFabric Director extends the two related companies’ shared vision of a software-defined data center by simplifying the definition, creation and deployment of data center fabrics with intent-based auto-provisioning and enhanced visibility and management between virtual and physical network environments.

Key features include:

  • VMware vSphere and VMware NSX-T Data Center Integration – Tight integration with VMware vCenter and NSX-T enables the physical underlay/fabric to be correctly provisioned for the smooth functioning of application workloads in a VMware software-defined data center
  • Leaf/Spine Fabric Automation – SmartFabric Director uses a declarative model that allows the user to express intent with a set of three well-defined fabric types. Fabric discovery is an ongoing process and ensures that the wiring is consistent with the user-defined intent and removes guesswork for rapid auto-provisioning
  • Fabric Visibility – SmartFabric Director supports highly scalable and flexible streaming telemetry to gather key operational data and statistics from the fabric switches. Comprehensive, highly-intuitive visualization of the time-series data and other information greatly simplifies day-to-day fabric operations
  • Fabric Lifecycle Management – Upgrading switch images is a critical operation in a data center. SmartFabric Director automates the download, install and verification process and ensures that switches are upgraded with the correct images

Dell said that this new service is important for organizations that are using the network virtualization version of SDN [1.] and need to help make sure their physical underlay networks are finely tuned for their overlay network environment. A lack of visibility between the two layers can lead to provisioning and configuration errors, hampering network performance. The new product will be available worldwide in September.

Note 1.  The classical version of SDN, with a centralized controller and packet forwarding engines replacing hop by hop IP routers never really gained critical market mass, despite claims by Guru Parulkar, PhD, that everything else was “SDN WASHING.”

Supporting Quotes:

“Our customers today expect us to deliver the best and most advanced network solutions to solve their business needs,” said QOS Networks CEO, Frank Cittadino. “As a trusted partner to Dell EMC, we’re excited to do that with an SD-WAN solution that marries cost effective hardware with a dedicated orchestrator and VMware gateway. We combine that with our 5-Tool monitoring and management platform.”

“ESG was impressed with how the Dell EMC SmartFabric Director can help organizations to gain comprehensive visibility into the physical and virtual layers of their core networks and ensure that they are synchronized,” said Bob Laliberte, senior analyst, ESG Research. “We see how the SmartFabric Director can significantly ease the time-consuming process of creating and deploying a network fabric, while simultaneously verifying it will operate as intended.”

“VMware and Dell EMC are driving public cloud simplicity and utility across the entire network,” said Tom Gillis, senior vice president and general manager, networking and security business unit, VMware. “With this new SD-WAN solution, Dell EMC customers will be able to leverage the industry’s only hyperscale architecture for SD-WAN deployed at thousands of customers and more than 150,000 locations globally. Our joint engineering on SmartFabric Director will offer customers a tightly-integrated solution for physical to virtual networking visibility, further simplifying network operations and troubleshooting.”

Additional Resources:

Reference:

https://corporate.delltechnologies.com/en-us/newsroom/announcements/detailpage.press-releases~usa~2019~08~20190827-dt-advances-software-defined-networking-with-dellemc-and-vmware.htm#/