SNS Telecom & IT: Open RAN Intelligent Controller, xApps & rApps to reach $600 Million by 2025

Global spending on Open RAN  compliant RIC (RAN Intelligent Controller) platforms, xApps and rApps will reach nearly $600 Million by the end of 2025, according to a new report by SNS Telecom & IT.  The market research and consulting firm estimates that global spending on RIC platforms, xApps and rApps will reach $120 Million in 2023 as initial implementations move from field trials to production-grade deployments. With commercial maturity, the submarket is further expected to quintuple to nearly $600 Million by the end of 2025.

Annual investments in the wider SON (Self-Organizing Network) [1.] market – which includes licensing of embedded D-SON features, third party C-SON functions and associated OSS platforms, in-house SON capabilities internally developed by mobile operators, and SON-related professional services across the RAN, mobile core and transport domains – are expected to grow at a CAGR of approximately 7% during the same period.

Note 1. SONs (Self-Organizing Networks) are radio access networks (RANs) that automatically plan, configure, manage, optimize, and heal themselves.  SONs can offer automated functions such as self-configuration, self-optimization, self-healing, and self-protection.technology minimizes the lifecycle cost of running a mobile network by eliminating manual configuration of network elements at the time of deployment right through to dynamic optimization and troubleshooting during operation. Besides improving network performance and customer experience, SON can significantly reduce the cost of mobile operator services, improving the OpEx-to-revenue ratio and deferring avoidable CapEx.  SONs strive to make complicated network administration a thing of the past by enabling the creation of a plug-and-play environment for both simple and complex network tasks.

…………………………………………………………………………………………………………………………………………………………………….

Early adopters of SON have already witnessed a multitude of benefits in the form of accelerated 5G NR and 4G LTE RAN (Radio Access Network) rollout times, simplified network upgrades, fewer dropped calls, improved call setup success rates, higher end user throughput, alleviation of congestion during special events, increased subscriber satisfaction and loyalty, operational efficiencies such as energy and cost savings, and freeing up radio engineers from repetitive manual tasks.
Although SON was originally developed as an operational approach to streamline and automate cellular RAN deployment and optimization, mobile operators and vendors are increasingly focusing on integrating new capabilities such as self-protection against digital security threats and self-learning through AI (Artificial Intelligence) techniques, as well as extending the scope of SON beyond the RAN to include both mobile core and transport network segments – which will be critical to address 5G requirements such as end-to-end network slicing.
In addition, with the cellular industry’s ongoing shift towards open interfaces, virtualization and software-driven networking, the SON ecosystem is progressively transitioning from the traditional D-SON (Distributed SON) and C-SON (Centralized SON) approach to open standards-based components supporting RAN programmability for advanced automation and intelligent control.
The surging popularity of innovative Open RAN and vRAN (Virtualized RAN) architectures has reignited the traditionally niche and proprietary product-driven SON market with a host of open standards-compliant RIC (RAN Intelligent Controller), xApp and rApp offerings, which are capable of supporting both near real-time D-SON and non real-time C-SON capabilities for RAN automation and optimization needs. A growing number of field trials of RIC, xApps and rApps are underway across North America, Europe and Asia.
 
North America
  • AT&T is among the first mobile operators to invest in the development of Open RAN-aligned RIC functionality and associated applications – particularly xApps for real-time RAN control and optimization. Since 2019, the operator has been collaborating with Nokia and other partners to co-develop an RIC software platform and identify xApp use cases, in alignment with the O-RAN Alliance architecture, to enable RAN programmability for easy integration of new services, as well as AI (Artificial Intelligence) and ML (Machine Learning)-driven algorithms for automated optimization. At present, the mobile operator is trialing interference management, traffic steering and energy savings-related xApps across a 200-cell site cluster in New Jersey.
  • As a precursor to rApp capabilities, rival operator Verizon has deployed Qualcomm’s RAN automation platform that uses AI/ML-driven algorithms to automate the optimization of new 5G NR cell sites and simplify the development of custom SON applications for its wireless network.
  • New entrant DISH Network Corporation is trialing VMware’s RIC as the platform on top of which RAN applications will run. Through the trial, DISH will specifically evaluate VMware’s RIC on its ability to create custom solutions from a vibrant ecosystem of xApps and rApps, use RAN programmability and intelligence for network automation, and enhance security to monitor and protect RAN traffic at the point it enters the network.

Europe

  • In Europe, Vodafone is actively investing in RIC applications within the framework of its wider Open RAN initiative. The mobile operator group – in collaboration with Cohere Technologies, VMware, Capgemini Engineering, Intel Corporation and TIP (Telecom Infra Project) – has successfully completed a multi-vendor PoC (Proof-of-Concept) trial, which demonstrated a two-fold increase in the capacity of a 5G NR cell site using a programmable, AI-based RIC platform supporting a mix of Open RAN components from multiple vendors. As part of the trial, Vodafone used Cohere’s Spectrum Multiplier xApp running on VMware’s distributed RIC to enable more efficient use of spectrum through a novel MU-MIMO (Multi-User MIMO) scheduler.
  • In addition, Vodafone is collaborating with Juniper Networks and Parallel Wireless to carry out a multi-vendor RIC trial for tenant-aware admission control use cases using Open RAN standards-compliant interfaces. The trial is initially running in Vodafone’s test labs in Türkiye with plans to move into the mobile operator group’s test infrastructure.
  • DT (Deutsche Telekom) is hosting the SD-RAN outdoor field trial in Berlin, Germany, that integrates the ONF’s (Open Networking Foundation) near real-time RIC and end-to-end 5G platform with Open RAN components from various vendors, including xApps for controlling RUs (Radio Units), DUs (Distributed Units) and CUs (Central Units). As part of a separate effort, DT has been collaborating with VMware and Intel Corporation to develop, test and validate an open-standards compliant intelligent vRAN solution, which also features an RIC element.
  • Telefónica’s German business unit has connected a Nokia-supplied RIC to a mobile communications cluster – initially spanning 11 RAN nodes supporting 5G NR, LTE and 2G coverage in Berlin’s Hellersdorf district – within its live commercial network. In the initial “learning” phase of operation, the RIC will continuously analyze network data to detect unusual behavior of radio cells. In the second phase, the near-real-time RIC will take AI-driven decisions to dynamically balance the load of the radio cells, selecting optimum parameters from the network data obtained and continuously adjust them in near real-time. Since 2021, Telefónica has also been collaborating with NEC Corporation in validating and implementing cutting-edge Open RAN technologies and various use cases at its lab in Madrid, Spain, including AI-driven RIC applications for RAN optimization.
  • BT Group is trialing Nokia’s Open RAN standards-compliant RIC platform across a number of sites in the city of Hull (East Riding of Yorkshire, England), United Kingdom, to optimize network performance for customers of the EE mobile network. French telecommunications giant Orange is also evaluating Open RAN standards-compliant RIC, xApps and rApps provided by various suppliers.
Asia
  • In Asia, Japan’s Rakuten Mobile is embedding Juniper Networks’ RIC solution into its operating platform to support RAN automation and optimization-related applications.
  • NTT DoCoMo is collaborating with NEC Corporation and NEC’s subsidiary Netcracker to jointly develop a RIC platform aimed at improving performance, enhancing customer experience, reducing power consumption and minimizing operational costs.
  • Rival Japanese mobile operator KDDI has been collaborating with Samsung to trial various E2E (End-to-End) network slicing-related use cases with an RIC platform in Tokyo, Japan.
  • China Mobile has also been working with multiple equipment vendors and third-party suppliers to develop and implement Open RAN standards-compliant RIC, xApps and rApps. Among other engagements, the mobile operator has collaborated with Nokia to carry out a field trial of an AI-powered RAN over its live commercial LTE and 5G NR network infrastructure. Specifically, the trial evaluated AI-based UE traffic prediction in Shanghai and an ML-enabled network anomaly detection solution across more than 10,000 4G/5G cells in Taiyuan.

The “SON (Self-Organizing Networks) in the 5G & Open RAN Era: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents a detailed assessment of the SON market, including the value chain, market drivers, barriers to uptake, enabling technologies, functional areas, use cases, key trends, future roadmap, standardization, case studies, ecosystem player profiles and strategies. The report also provides global and regional market size forecasts for both SON and conventional mobile network optimization from 2022 till 2030, including submarket projections for three network segments, six SON architecture categories, four access technologies and five regional submarkets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

The report will be of value to current and future potential investors into the SON and wider mobile network optimization market, as well as SON-x/rApp specialists, OSS and RIC platform providers, wireless network infrastructure suppliers, mobile operators and other ecosystem players who wish to broaden their knowledge of the ecosystem.

For further information concerning the SNS Telecom & IT publication “SON (Self-Organizing Networks) in the 5G & Open RAN Era: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts” please visit: https://www.snstelecom.com/son

For a sample of the report please contact:   [email protected]

About SNS Telecom & IT:
Part of the SNS Worldwide group, SNS Telecom & IT is a global market intelligence and consulting firm with a primary focus on the telecommunications and information technology industries. Developed by in-house subject matter experts, our market intelligence and research reports provide unique insights on both established and emerging technologies. Our areas of coverage include but are not limited to 5G, LTE, Open RAN, private cellular networks, IoT (Internet of Things), critical communications, big data, smart cities, smart homes, consumer electronics, wearable technologies, and vertical applications.

References:

https://www.snstelecom.com/ric-xrapps

https://www.celona.io/network-architecture/self-organizing-network

SNS Telecom & IT: Shared Spectrum to Boost 5G NR & LTE Small Cell RAN Market

SNS Telecom & IT: Spending on Unlicensed LTE & 5G NR RAN infrastructure at $1.3 Billion by 2023

SNS Telecom: U.S. Network Operators will reap $1B from fixed wireless by late 2019

Samsung in OpenRAN deal with NTT DOCOMO; unveils 28GHz Radio Unit (RU)

Samsung Electronics announced the company is supplying a variety of 5G radios to support NTT DOCOMO’s Open Radio Access Network (Open RAN) expansion. Samsung will now provide a range of Open RAN-compliant 5G radios covering all of the Time Division Duplex (TDD) spectrum bands held by the operator.

This builds upon the two companies’ 5G agreement previously-announced in March 2021, in which NTT DOCOMO selected Samsung as its 5G network solutions provider. Samsung now adds new radios — including 3.7GHz, 4.5GHz and 28GHz — to its existing 3.4GHz radio support for NTT DOCOMO.

This expanded portfolio from Samsung will enable NTT DOCOMO to leverage its broad range of spectrum across Japan to build a versatile 5G network for diversifying their services offered to consumers and businesses. The companies have also been testing the interoperability of these new radios with basebands from various vendors in NTT DOCOMO’s commercial network environment.

“We have been collaborating with Samsung since the beginning of 5G and through our Open RAN expansion, and we are excited to continue extending our scope of vision together,” said Masafumi Masuda, Vice President and General Manager of the Radio Access Network Development Department at NTT DOCOMO. “Solidifying our global leadership, we will continue to build momentum around our Open RAN innovation and to provide highly scalable and flexible networks to respond quickly to the evolving demands of our customers.”

“Japan is home to one of the world’s most densely populated areas with numerous skyscrapers and complex infrastructure. Samsung’s industry-leading 5G radios portfolio meets the demands of low-footprint, low-weight solutions, while also ensuring reliable service quality,” said Satoshi Iwao, Vice President and Head of Network Division at Samsung Electronics Japan. “As NTT DOCOMO continues to accelerate its Open RAN innovation, we look forward to working together to deliver a richer experience to consumers and generating new business opportunities.”

With this announcement, Samsung introduces its new 28GHz Radio Unit (RU) for the first time — as a new addition to its portfolio of leading mmWave solutions. This RU, which weighs less than 4.5kg (~10lbs), features a light and compact form factor with very low power consumption, enabling flexible deployments in various scenarios. Additionally, Samsung’s 3.4GHz, 3.7GHz and 4.5GHz radios are also Open RAN-compliant and designed to deliver high performance and reliability. 

Last month, Samsung won a contract with NTT East to provide cloud-native 5G core and RAN equipment to the provider’s private 5G network platform. That deal followed on an agreement earlier this year for Samsung to power the operator’s private 5G network services in the east areas of Japan, and followed trials of Samsung’s 5G standalone (SA) network core in test environments.

Samsung also secured a deal with Comcast to activate the cable giant’s deep spectrum holdings and become an infrastructure-owning 5G cellular operator targeting market heavyweights Verizon, AT&T, and T-Mobile US. Comcast will use Samsung’s 5G RAN equipment for its Xfinity Mobile service, including a newly developed 5G Strand Small Cell that is designed to be mounted on Comcast’s existing aerial cable lines. This all-in-one piece of equipment is central to the deployment as it will allow Comcast to mount cellular antennas where it’s already running cable connections for wireless backhaul.

A recent Dell’Oro Group report noted the vendor has been gaining RAN market share at the expense of its China-based rivals Huawei and ZTE outside of their home country. This could accelerate as the U.S. Federal Communications Commission adopted new rules prohibiting domestic telecommunication operators from acquiring and using networking and other equipment from China-based vendors, including Huawei.

“While commercial Open RAN revenues continue to surprise on the upside, the underlying message that we have communicated now for some time now has not changed and remains mixed,” said Stefan Pongratz, Vice President with the Dell’Oro Group. “Early adopters are embracing the movement towards more openness but at the same time, there is more uncertainty when it comes to the early majority operator and the implications for the broader RAN supplier landscape now with non-multi vendor deployments driving a significant portion of the year-to-date Open RAN market,” continued Pongratz.

Additional Open RAN highlights from the Dell’Oro’s 3Q 2022 RAN report:

  • Top 4 Open RAN revenue suppliers for the 1Q22-3Q22 period include Samsung, Fujitsu, NEC, and Mavenir.
  • Trials are on the rise globally, however, North America and the Asia Pacific regions are still dominating the commercial revenue mix over the 1Q22-3Q22 period, accounting for more than 95 percent of the market.
  • More than 80 percent of the year-to-date growth is driven by the North America region, supported by large scale non-Massive MIMO and Massive MIMO macro deployments.
  • The rise of Open RAN has so far had a limited impact on the broader RAN (proprietary and Open RAN) market concentration. The data contained in the report suggest that the collective RAN share of the top 5 RAN suppliers (Huawei, Ericsson, Nokia, ZTE, and Samsung) declined by less than one percentage point between 2021 and 1Q22-3Q22.
  • Short-term projections have been revised upward to reflect the higher baseline – Open RAN is now projected to account for 6 to 10 percent of the RAN market in 2023. Open RAN growth rates, however, are expected to decelerate next year, reflecting the likelihood that the sum of new brownfield deployments will be able to offset more challenging comparisons with the early adopters.

 Samsung says they have pioneered the successful delivery of 5G end-to-end solutions including chipsets, radios and core. Through ongoing research and development, Samsung drives the industry to advance 5G networks with its market-leading product portfolio from virtualized RAN and Core to private network solutions and AI-powered automation tools. The company is currently providing network solutions to mobile operators that deliver connectivity to hundreds of millions of users around the world.

………………………………………………………………………………………………………………………………………………………

NTT DOCOMO began commercial 5G services in early 2020, and included open RAN-compliant equipment provided by Fujitsu, NEC, and Nokia. The carrier more recently signed a partnership with South Korea’s SK Telecom (SKT) to develop new 5G and 6G cellular technologies and deployment plans taking advantage of open and virtualized RAN (vRAN) technology.

NTT DOCOMO is Japan’s leading mobile operator with over 85 million subscriptions, is one of the world’s foremost contributors to 3G, 4G and 5G mobile network technologies. Beyond core communications services, DOCOMO is challenging new frontiers in collaboration with a growing number of entities (“+d” partners), creating exciting and convenient value-added services that change the way people live and work. Under a medium-term plan toward 2020 and beyond, DOCOMO is pioneering a leading-edge 5G network to facilitate innovative services.

References:

https://news.samsung.com/global/samsung-electronics-expands-5g-radio-support-for-ntt-docomo

https://www.sdxcentral.com/articles/news/docomo-deepens-samsung-5g-ran-drive/2022/12/

https://www.docomo.ne.jp/english/

 

Summary of EU report: cybersecurity of Open RAN

The EU has published a report on the cybersecurity of Open RAN, a 4G/5G (maybe even 2G?) network architecture the European Commission says will provide an alternative way of deploying the radio access part of 5G networks over the coming years, based on open interfaces. The EU noted that while Open RAN architectures create new opportunities in the marketplace, they also raise important security challenges, especially in the short term.

“It will be important for all participants to dedicate sufficient time and attention to mitigate such challenges, so that the promises of Open RAN can be realized,” the report said.

The report found that Open RAN could bring potential security opportunities, provided certain conditions are met. Namely, through greater interoperability among RAN components from different suppliers, Open RAN could allow greater diversification of suppliers within networks in the same geographic area. This could contribute to achieving the EU 5G Toolbox recommendation that each operator should have an appropriate multi-vendor strategy to avoid or limit any major dependency on a single supplier.

Open RAN could also help increase visibility of the network thanks to the use of open interfaces and standards, reduce human errors through greater automation, and increase flexibility through the use of virtualisation and cloud-based systems.

However, the Open RAN concept still lacks maturity, which means cybersecurity remains a significant challenge. Especially in the short term, by increasing the complexity of networks, Open RAN could exacerbate certain types of security risks, providing a larger attack surface and more entry points for malicious actors, giving rise to an increased risk of misconfiguration of networks and potential impacts on other network functions due to resource sharing.

The report added that technical specifications, such as those developed by the O-RAN Alliance, are not yet sufficiently secure by design. This means that Open RAN could lead to new or increased critical dependencies, for example in the area of components and cloud.

The EU recommended the use of regulatory powers to monitor large-scale Open RAN deployment plans from mobile operators and if needed, restrict, prohibit or impose specific requirements or conditions for the supply, large-scale deployment and operation of the Open RAN network equipment.

Technical controls such as authentication and authorization could be reinforced and a risk profile assessed for Open RAN providers, external service providers related to Open RAN, cloud service/infrastructure providers and system integrators. The EU added that including Open RAN components into the future 5G cybersecurity certification scheme, currently under development, should happen at the earliest possible stage.

Following up on the coordinated work already done at EU level to strengthen the security of 5G networks with the EU Toolbox on 5G Cybersecurity, Member States have analysed the security implications of Open RAN.

Margrethe Vestager, Executive Vice-President for a Europe Fit for the Digital Age, said: “Our common priority and responsibility is to ensure the timely deployment of 5G networks in Europe, while ensuring they are secure. Open RAN architectures create new opportunities in the marketplace, but this report shows they also raise important security challenges, especially in the short term. It will be important for all participants to dedicate sufficient time and attention to mitigate such challenges, so that the promises of Open RAN can be realised.”

Thierry Breton, Commissioner for the Internal Market, added: “With 5G network rollout across the EU, and our economies’ growing reliance on digital infrastructures, it is more important than ever to ensure a high level of security of our communication networks. That is what we did with the 5G cybersecurity toolbox. And that is what – together with the Member States – we do now on Open RAN with this new report. It is not up to public authorities to choose a technology. But it is our responsibility to assess the risks associated to individual technologies. This report shows that there are a number of opportunities with Open RAN but also significant security challenges that remain unaddressed and cannot be underestimated. Under no circumstances should the potential deployment in Europe’s 5G networks of Open RAN lead to new vulnerabilities.”

Guillaume Poupard, Director General of France’s National Cyber Security Agency (ANSSI), said: “After the EU Toolbox on 5G Cybersecurity, this report is another milestone in the NIS Cooperation Group’s effort to coordinate and mitigate the security risks of our 5G networks. This in-depth security analysis of Open RAN contributes to ensuring that our common approach keeps pace with new trends and related security challenges. We will continue our work to jointly address those challenges.”

Finally, a technology-neutral regulation to foster competition should be maintained., with EU and national funding for 5G and 6G research and innovation, so that EU players can compete on a level playing field.

References:

https://ec.europa.eu/commission/presscorner/detail/en/IP_22_2881

https://digital-strategy.ec.europa.eu/en/library/cybersecurity-open-radio-access-networks

https://www.telecompaper.com/news/open-ran-creates-new-opportunities-but-also-security-risks-eu-report–1424010

U.S. Department of Defense (DoD) and NTIA Launch 5G Challenge: RAN subsystem interoperability

The DoD, in collaboration with the National Telecommunications and Information Administration’s (NTIA) Institute for Telecommunication Sciences (ITS) [1.] have launched the 5G Challenge Preliminary Event: RAN Subsystem Interoperability. This competition aims to accelerate the development and adoption of open interfaces, interoperable components, and multi-vendor solutions toward the development of an open 5G ecosystem.

Note 1. ITS, the Nation’s Spectrum and Communications Lab, supports the Department of Defense 5G Initiative through a combination of its subject matter experts in 5G and its research, development, test, and evaluation (RDT&E) laboratory infrastructure in Boulder, Colorado, including the Advanced Communications Test Site at the Table Mountain Radio Quiet Zone.

“The Department is committed to supporting innovation efforts that accelerate the domestic development of 5G and Future G technologies. 5G is too critical a technology sector to relinquish to countries whose products and technologies are not aligned with our standards of privacy and security. We will continue our support of all necessary efforts to unleash innovation while developing secure 5G supply chains,” said Amanda Toman, Acting Principal Director, 5G-Future G.

“Increasing the resilience and security of our supply chain is at the heart of NTIA’s work to incentivize open and interoperable 5G networks and increase the diversity of suppliers in the 5G ecosystem,” said Alan Davidson, Assistant Secretary of Commerce for Communications and Information and NTIA Administrator. “NTIA and ITS are excited to collaborate with the Department of Defense on the 5G Challenge because it reinforces our joint understanding that cost-effective, secure 5G networks are key to both national and economic security.”

Today, most wireless networks are operated by mobile network operators and composed of many vendor-specific proprietary solutions. Each discrete element typically contains custom, closed-source software and hardware. This industry dynamic increases costs, slows innovation, and reduces competition, often making security issues difficult to detect and resolve. The 5G Challenge aims to foster a large, vibrant, and diverse vendor community dedicated to advancing 5G interoperability towards true plug-and-play operation, and unleashing a new era of technological innovation based on this critical technology.

This 5G Challenge Preliminary Event: RAN Subsystem Interoperability will award up to $3,000,000 to participants who submit hardware and/or software solutions for any or all of the following 5G network subsystems, which must be compliant with the 3GPP Release 15 and O-RAN Alliance specifications: Distributed Unit (DU), Central Unit (CU), and Radio Unit (RU). Interoperability is open for applications through May 5, 2022. For applications and additional information on this 2022 contest, please visit www.challenge.gov.

About NTIA:

The National Telecommunications and Information Administration (NTIA), located within the Department of Commerce, is the Executive Branch agency that is principally responsible by law for advising the U.S. President on telecommunications and information policy issues. NTIA’s programs and policymaking focus largely on expanding broadband Internet access and adoption in America, expanding the use of spectrum by all users, and ensuring that the Internet remains an engine for continued innovation and economic growth.

About USD(R&E):

The Under Secretary of Defense for Research and Engineering (USD(R&E) is the Chief Technology Officer of the Department of Defense. The USD(R&E) champions research, science, technology, engineering, and innovation to maintain the United States military’s technological advantage. Learn more at www.cto.mil, follow us on Twitter @DoDCTO, or visit us on LinkedIn at https://www.linkedin.com/company/ousdre.

Dish Network to FCC on its “game changing” OpenRAN deployment

Through disaggregation of the Radio Access Network (RAN) into functional blocks/modules and defining open interfaces between those modules, OpenRAN technology promises to allow newer, smaller players to sell into the 4G/5G equipment market.  The intent is to offer more choices for cellular network operators who buy most of their gear from 4 or 5 big base station vendors.

Open RAN has been endorsed by 5G upstarts like Dish Network and Rakuten in Japan, but also by five big European carriers – Deutsche Telekom, Orange, Telecom Italia (TIM), Telefónica and Vodafone – which want to build an Open RAN ecosystem in Europe.  AT&T has also expressed interest in the technology.  However, there remains a lot of skepticism, especially for brownfield carriers.

…………………………………………………………………………………………………………………..

On March 14th, Dish Network executives participated in a video conference with a several FCC officials to discuss the company’s plans to launch a nationwide 5G network using Open RAN technology.  Present on behalf of DISH were Stephen Bye, Chief Commercial Officer; Marc Rouanne, Chief Network Officer; Jeffrey Blum, Executive Vice President, External and Legislative Affairs; Sidd Chenumolu, Vice President, Technology Development; Alison Minea, Vice President, Regulatory Affairs; William Beckwith, Director of Wireless Regulatory Affairs; Hadass Kogan, Director & Senior Counsel, Regulatory Affairs; and Michael Essington, Senior Manager, Public Policy.

According to a Dish filing, the FCC requested the meeting to learn more about how Dish plans to deploy OpenRAN, rather than traditional purpose built RAN equipment, to build their 5G cellular network.

Ahead of its June 14, 2022 buildout milestone, DISH is launching a first-of-its-kind, cloud native, virtualized O-RAN 5G network in several major metropolitan areas of the country. Because DISH is building a greenfield network, we have the flexibility to choose the best technology to enter the market. While legacy carriers built closed end-to-end networks, DISH chose O-RAN because, among other reasons, it offers lower capital and operating costs, and is more resilient, secure, and energy efficient. In cooperation with more than 30 technology partners, DISH will offer a real-world example of the benefits of O-RAN as our 5G network rolls out to customers this year.

If more American carriers see the benefits of O-RAN and are able to adopt it as their networks evolve, the United States will be a stronger competitor in the global market. O-RAN is a game changer, among reasons, because:

  • O-RAN networks increase vendor diversity
  • O-RAN enhances spectrum utilization and enables network slicing
  • O-RAN supports national security and cybersecurity objectives
  • O-RAN networks are more secure and more agileO-RAN networks are more secure and more agile

In February 2021, the FCC published an OpenRAN Notice of Inquiry, stating:

Some parties assert that open radio access networks (Open RAN) are a potential path to drive 5G innovation, with industry proponents arguing that it could provide opportunities for more secure networks, foster greater vendor diversity, allow for more flexible network architectures, lower capital and operating expenses, and lead to new services tailored to unique use cases and consumer needs; others contend that Open RAN is still in its most formative stages, and that while promising, significant work remains before the benefits of the concept can fully be realized.
This Notice of Inquiry seeks input on the status of Open RAN and virtualized network environments:  where the technology is today and what steps are required to deploy Open RAN networks broadly and at  scale. It also seeks comment on whether and, if so, how deployment of Open RAN-compliant networks could further the Commission’s policy goals and statutory obligations, advance legislative priorities, and benefit American consumers by making state-of-the-art wireless broadband available more quickly and to more people in more parts of the country.

The financial analysts at New Street Research, say that U.S. government legislation could pave the way for “$1.5 billion for the Public Wireless Supply Chain Innovation Fund to deploy Open RAN equipment to spur movement toward open architecture, software-based wireless technologies and funding innovative leap-ahead technologies in the US mobile broadband market.”

The analysts added, “That provision might be of particular value to Dish, which is building out its network based on that technology.”

References:

https://ecfsapi.fcc.gov/file/103161155918353/2022-03-16%20DISH%20Ex%20Parte%20ORAN%20GN%20Docket%20No.%2021-63.pdf

https://www.lightreading.com/open-ran/fcc-calls-on-dish-about-open-ran/d/d-id/776166?

https://www.nokia.com/about-us/newsroom/articles/open-ran-explained/

Analysis of Dish Network – AWS partnership to build 5G Open RAN cloud native network

https://www.sdxcentral.com/articles/news/dish-missed-every-5g-commitment-it-made-in-2021/2021/12/

Dell’Oro Group: Open RAN Momentum Is Solid; RAN equipment prices to increase

by Stefan Pongratz, VP at Dell’Oro Group

Introduction:

Open RAN ended 2021 on a solid footing. Preliminary estimates suggest that total Open RAN revenues—including O-RAN and OpenRAN radios and baseband—more than doubled for the full year 2021, ending at a much higher level than had been expected going into the year. Adoption has been mixed, however. In this blog, we review three Open RAN-related topics: (1) a recap of 2021, (2) Mobile World Congress (MWC) takeaways, and (3) expectations for 2022.

2021 Recap:

Looking back to the outlook we outlined a year ago, full-year Open RAN revenues accelerated at a faster pace than we originally expected. This gap in the output ramp is primarily the result of higher prices. LTE and 5G macro volumes were fairly consistent with expectations, but the revenue per Open RAN base stations was higher than we modeled going into 2021, especially with regard to brownfield networks. Asymmetric investment patterns between the radio and the baseband also contributed to the divergence, though this is expected to normalize as deployments increase. In addition, we underestimated the 5G price points with some of the configurations in both the Japanese and US markets.

Not surprisingly, the Asia-Pacific (APAC) region dominated the Open RAN market in 2021, supported by large-scale greenfield OpenRAN and brownfield O-RAN deployments in Japan.

From a technology perspective, LTE dominated the revenue mix initially but 5G NR is now powering the majority of investments, reflecting progress both in APAC and North America.

Source: NTT DoCoMo

Mobile World Congress (MWC) Barcelona 2022:

Open RAN revenues are coming in ahead of schedule, bolstering the narrative that operators want open interfaces. Meanwhile, the progress of the technology, especially with some of the non-traditional or non-top 5 RAN suppliers has perhaps not advanced at the same pace. This, taken together with the fact that the bulk of the share movements in the RAN market is confined to traditional suppliers, is resulting in some concerns about the technology gap between the traditional RAN and emerging suppliers. A preliminary assessment of Open RAN-related radio and baseband system, component, and partnership announcements at the MWC 2022 suggests this was a mixed bag, with some suppliers announcing major portfolio enhancements.

Among the announcements that most stood out is the one relating to Mavenir’s OpenBeam radio platform. After focusing initially on software and vRAN, Mavenir decided the best way to accelerate the O-RAN ecosystem is to expand its own scope to include a broad radio portfolio. The recently announced OpenBeam family includes multiple O-RAN 7.2 macro and micro radio products supporting mmWave, sub 6 GHz Massive MIMO, and sub 6 GHz Non-Massive MIMO.

Source: Mavenir

NEC announced a major expansion of its O-RAN portfolio, adding 18 new O-RUs, covering both Massive MIMO and non-Massive MIMO (4T4R, 8T8R, 32T32R, 64T64R). NEC also recently announced its intention to acquire Blue Danube.

Another major announcement was Rakuten Symphony’s entry into the Massive MIMO radio market. Rakuten Symphony is working with Qualcomm, with the objective of having a commercial Massive MIMO product ready by the end of 2023.

Recent Massive MIMO announcements should help to dispel the premise that the O-RAN architecture is not ideal for wide-band sub-6 GHz Massive MIMO deployments. We are still catching up on briefings, so it is possible that we missed some updates. But for now, we believe there are six non-top 5 RAN suppliers with commercial or upcoming O-RAN Sub-6 GHz Massive MIMO GA: Airspan, Fujitsu, Mavenir, NEC, Rakuten Symphony, and Saankhya Labs.

Putting things into the appropriate perspective, we estimate that there are more than 20 suppliers with commercial or pending O-RAN radio products, most prominently: Acceleran*, Airspan, Askey*, Baicells*, Benetel*, BLiNQ*, Blue Danube, Comba, CommScope*, Corning*, Ericsson, Fairwaves, Fujitsu, JMA*, KMW, Mavenir, MTI, NEC, Nokia, Parallel Wireless, Rakuten Symphony, Saankhya Labs, Samsung, STL, and Verana Networks* (with the asterisk at the end of a name indicating small cell only).

The asymmetric progress between basic and advanced radios can be partially attributed to the power, energy, and capex tradeoffs between typical GPP architectures and highly optimized baseband using dedicated silicon. As we discussed in a recent vRAN blog, both traditional and new macro baseband component suppliers—including Marvell, Intel, Qualcomm, and Xilinx—announced new solutions and partnerships at the MWC Barcelona 2022 event, promising to close the gap. Dell and Marvell’s new open RAN accelerator card offers performance parity with traditional RAN systems, while Qualcomm and HPE have announced a new accelerator card that will allegedly reduce operator TCO by 60%.

2022 Outlook:

Encouraged by the current state of the market, we have revised our Open RAN outlook upward for 2022, to reflect the higher baseline. After more than doubling in 2021, the relative growth rates are expected to slow somewhat, as more challenging comparisons with some of the larger deployments weigh on the market. Even with the upward short-term adjustments, we are not making any changes at this time to the long-term forecast. Open RAN is still projected to approach 15% of total RAN by 2026.

In summary, although operators want greater openness in the RAN, there is still much work ahead to realize the broader Open RAN vision, including not just open interfaces but also improved supplier diversity. Recent Open RAN activities—taken together with the MWC announcements—will help to ameliorate some of these concerns about the technology readiness, though clearly not all. Nonetheless, MWC was a step in the right direction. The continued transition from PowerPoint to trials and live networks over the next year should yield a fuller picture.

Addendum:

“Following twenty years of average macro base station price declines in the 5% to 10% range, we are now modeling RAN [radio access network] prices to increase, reflecting a wide range of factors,” Stefan Pongratz, an analyst at research and consulting firm Dell’Oro Group, wrote in response to questions from Light Reading. “In addition to the changing vendor landscape and regional aspects coming into play with China’s overall share expected to decline going forward, we have also assumed there will be some COGS [cost of goods sold] inflation due to supply-demand mismatches, though the ability for everyone to pass this on [to their customers] remains limited.”

About the Author:

Stefan Pongratz joined Dell’Oro Group in 2010 and is responsible for the firm’s Mobile RAN market and Telecom Capex research programs. While at the firm, Mr. Pongratz has expanded the RAN research and authored multiple Advanced Research Reports to ensure the program is evolving to address new RAN technologies and opportunities including small cells, 5G, Open RAN, Massive MIMO, mmWave, IoT, private wireless, and CBRS. He built the Telecom Capex coverage detailing revenues and investments of over 50 carriers worldwide.

References:

MTN and Rakuten MoU: Open RAN trials using RCP in South Africa, Nigeria and Liberia

Africa’s largest mobile network operator MTN Group and Rakuten Symphony signed a Memorandum of Understanding (MoU) to run live 4G and 5G OpenRAN Proof of Concept (PoC) trials in South Africa, Nigeria and Liberia using the Rakuten Communications Platform (RCP). The trials will start in 2022 and combine RCP OpenRAN equipment with advanced automation and autonomous network capabilities. The products are currently deployed by Rakuten Mobile in Japan and include cloud orchestration, zero-touch provisioning and automation of radio site commissioning and network integration.

The trials will enable the launch of new services more quickly, cost-effectively and seamlessly, MTN said. The mobile operator and Rakuten Symphony will be collaborating with systems integrators Accenture and Tech Mahindra to conduct the trials in the three countries.

“We are pleased to announce our partnership with Rakuten Symphony to deploy live 4G and 5G Open RAN trials across South Africa, Nigeria and Liberia. In line with our belief that everyone deserves the benefits of a modern connected life, we are committed to actively driving the rapid expansion of affordable 4G and 5G coverage across markets in Africa,” said Mazen Mroue, MTN Group Chief Technology & Information Systems Officer. “We have announced our support towards the deployment of Open RAN technology in 2021 to modernize our radio access network footprint. Through this partnership we hope to target innovation and cost efficiencies that will enable us to continue delivering an exceptional customer experience.”

The solutions, currently deployed by Rakuten Mobile in Japan, include cloud orchestration, Zero-Touch Provisioning (ZTP) and automation of radio site commissioning and network integration.

Image – left to right: Amith Maharaj, MTN Group Executive, Network Planning and Design; Tareq Amin, CEO Rakuten Symphony; Rabih Dabboussi, Chief Revenue Officer, Rakuten Symphony.

“We’re excited to take this next step in our partnership with MTN,” said Rabih Dabboussi, Chief Revenue Officer of Rakuten Symphony. “This PoC will demonstrate how one of the world’s top-tier brownfield mobile operators can utilize Rakuten Symphony’s network automation and orchestration solutions for cost-effective network transformation and timely deployment of next-generation network services to their customers across Africa.”

Rakuten Mobile made a full-scale launch of commercial services on the world’s first fully virtualized cloud-native mobile network in 2020 in Japan, and launched Rakuten Symphony in 2021 to bring its innovations to other operators. Rakuten Symphony brings together Rakuten’s telco products, services and systems under a single banner to offer 4G and 5G infrastructure and platforms to customers worldwide.

MTN has already been testing open RAN equipment in several markets and is an active member of the Telecom Infra Project. The network operator announced several other Open RAN suppliers last year which were: Altiostar, Mavenir, Parallel Wireless, Tech Mahindra and Voyage.

About the MTN Group:

Launched in 1994, the MTN Group is a leading emerging market operator with a clear vision to lead the delivery of a bold new digital world to our customers. We are inspired by our belief that everyone deserves the benefits of a modern connected life. The MTN Group is listed on the JSE Securities Exchange in South Africa under the share code ‘MTN’. Our strategy is Ambition 2025: Leading digital solutions for Africa’s progress.

About Rakuten Symphony:

Rakuten Symphony is reimagining telecom, changing supply chain norms and disrupting outmoded thinking that threatens the industry’s pursuit of rapid innovation and growth. Based on proven modern infrastructure practices, its open interface platforms make it possible to launch and operate advanced mobile services in a fraction of the time and cost of conventional approaches, with no compromise to network quality or security. Rakuten Symphony has headquarters in Japan and local presence in the United States, Singapore, India, Europe and the Middle East Africa region.

…………………………………………………………………………………………………………………………………………………………………………………………………………..

References:

https://symphony.rakuten.com/newsroom/mtn-group-and-rakuten-symphony-mou

https://www.telecompaper.com/news/mtn-picks-suppliers-for-openran-roll-out-in-africa–1386900

Rakuten Symphony Inc. to provide 4G and 5G infrastructure and platform solutions to the global market

 

Telefónica Germany and NEC partner to deliver 1st Open RAN with small cells in Germany

Telefónica Germany and NEC Corporation announced their successful collaboration in launching the first Open and virtual RAN architecture-based small cells in Germany. The service has initially launched in the city center of Munich to enhance the customer experience by providing increased capacity to the existing mobile network in this dense, urban area.  NEC serves as the prime system integrator in the four countries of Telefónica S.A. and NEC’s program to explore ways to apply Open RAN in various geographies (urban, sub-urban, rural) and use cases.  Telefónica Germany had previously said it planned to deploy pure 5G Open RAN mini-radio cells in Munich later this year.

In this German deployment, the flexibility of Open RAN is leveraged through the use of small cells to improve capacity in dense, urban areas. One of the key advantages of Open RAN over a traditional architecture is that it allows wider choice of vendor options. NEC integrated a multi-vendor architecture that includes Airspan Networks* unique Airspeed plug-and-play solution and Rakuten Symphony’s Open vRAN software for O2 / Telefónica Germany’s small cells to complement the existing multi-vendor based macro cells in its network.

The adoption of Open RAN small cells combined with macro cells will pave the way for 5G network densification. This will be especially beneficial in Germany, where multiple industries and enterprises are seeking ways to utilize cellular service functionalities in a particular area or in shared physical spaces.

Source:  Telecom Infra Project

……………………………………………………………………………………………………………………………………………………

O2 / Telefónica Germany and NEC will continue their collaboration leveraging innovative Open RAN technologies, as well as automation, to validate and deploy advanced networks that efficiently deliver superior customer experiences in the 5G era, with collaboration from key partners.

“We are proud to have launched Germany’s first small cells built on innovative Open RAN technologies that help to complete the delivery of granular, high-quality connectivity in dense urban areas,” said Matthias Sauder, Director Mobile Access & Transport at O2 / Telefónica Germany. “NEC became our partner in this innovative project, with its underlying technological background and experiences of Open RAN technologies.”

“The potential of Open RAN technologies in the 5G era is infinite,” said Shigeru Okuya, Senior Vice President, NEC Corporation. “NEC is honored to be the strategic partner to O2 / Telefónica Germany, jointly leading the industry with practical and effective use cases that prove the value of Open RAN.”

………………………………………………………………………………………………………..

Germany seems to be a focal point for OpenRAN deployments.   For example, greenfield operator 1 & 1 is deploying a fully-virtualized, Open RAN mobile network built by Rakuten Symphony. That partnership began in the fourth quarter of 2021.

At Mobile World Congress this week, Vodafone announced that it plans to use OpenRAN in 30 percent of its masts in Europe – which includes Germany, of course – by 2030. Last November it emerged that it is working with Nokia and network software provider Mavenir to transform Plauen in Germany into a so-called ‘OpenRAN city’ that will be a live testbed for new OpenRAN-based products.

Deutsche Telekom is also a big fan of OpenRAN. Last June it claimed Europe’s first live OpenRAN deployment in Neubrandenburg, which has been dubbed ‘O-RAN Town’. It has partnered with a broad range of suppliers, including NEC, Fujitsu, Dell, Intel, Mavenir and SuperMicro.

Last December, semiconductor/SoC start-up Picocom made headlines in the Open RAN community by releasing the “industrt’s first” 5G NR small cell SoC for Open RAN.  This new product, dubbed the PC802, is described as PHY SoC for 5G NR and LTE small cell decentralized and integrated RAN architectures, including support for leading Open RAN specifications.  The PC802 allows for interfacing to radio units using either the O-RAN Open Fronthaul eCPRI interface or a JESD204B high-speed serial interface.  Optimized explicitly for decentralized small cells, the PC082 employs a FAPI protocol to allow communication and physical layer services to the MAC.

…………………………………………………………………………………………………………………………………………………………..

OpenRAN has been a recurring topic at this week’s Mobile World Congress in Barcelona, with MavenirQualcomm, and Rakuten Symphony, etc. all making product pitches.  However, it remains to be seen if Open RAN will actually be able to deliver on its promise of mix and match network modules and  lower the cost of network deployment with the performance, security and reliability that network operators must provide to their customers.

…………………………………………………………………………………………………………………………………………………………..

References:

https://www.nec.com/en/press/202203/global_20220302_04.html

Telefónica Germany rolls out OpenRAN small cells

Mavenir at MWC 2022: Nokia and Ericsson are not serious OpenRAN vendors

Picocom PC802 SoC: 1st 5G NR/LTE small cell SoC designed for Open RAN

 

https://www.allaboutcircuits.com/news/industry-first-5g-new-radio-small-cell-system-on-chip-spurs-open-radio-access-networks-forward/

Mavenir at MWC 2022: Nokia and Ericsson are not serious OpenRAN vendors

Andrew Wooden of telecoms.com talked with Mavenir’s SVP of business development John Baker and CMO Stefano Cantarelli to gauge how industry is feeling towards OpenRAN.  Here are a few quotes:

“Clearly the (OpenRAN) train has left the station, there’s a lot of buzz about OpenRAN – it’s back to the haves and have nots,” Baker told us. “I see a lot of interest from network operators and a lot of interest from the component suppliers. But on the other side of it, about [Nokia’s recent statement about OpenRAN] – they’re full of it. Because they’re a startup in OpenRAN themselves but are not doing anything. They’re trying to pass  on a message that the OpenRAN community is confused, that there are no real OpenRAN players out there, and they’re trying to position themselves as the real OpenRAN player. Digging underneath that, we’re having to call out the Nokia’s and Ericsson’s for confusing the story and trying to keep the confusion running around the marketplace, about the status of OpenRAN.”

Ericsson has been clear right up front that [they’re] not going to participate in OpenRAN. They name their products as Cloud RAN but you can’t mix and match, so they don’t they don’t meet the OpenRAN requirements. I stand very firm that unless you’ve got two suppliers interworked, then you haven’t got OpenRAN.”  Of course, this author agrees 100%!

Regarding Nokia, Baker said: “We’ve been asking for the last two years, every month almost, we’re ready to interwork, when are you ready? And they never get there. So our view is Nokia doesn’t have anything, they’re just trying to protect an old silicon strategy. And that’s their problem. They’ve had two failed attempts, in my opinion, of their silicon strategy – first time they got it completely wrong. Second time they got it too late for the industry because software is now replacing where they are with silicon. I think at the end of the day those two logos are going to disappear in the distance.”

Cantarelli added: “I think Ericsson and Nokia are not stupid. They know OpenRAN is the future, it’s just at the beginning they didn’t think about it, and now they’re a bit late. So they’re protecting their legacy. And they’re waiting for when they’re going to be ready, so it’s purely a delaying technique.”

Some observers  think OpenRAN is immediate, and of singular importance, but others don’t think it will be as disruptive as that, at least not right now.  This author is in the latter camp.  We’ve explained why many times why:  without implementation standards there is no interoperability!

References:

Mavenir slams Nokia and Ericsson for confusing the OpenRAN story

OpenRAN in 30% of Vodafone European network by 2030; Europe way behind China and South Korea in 5G deployments

Ericsson expresses concerns about O-RAN Alliance and Open RAN performance vs. costs

Vodafone and Mavenir create indoor OpenRAN solution for business customers

https://www.nokia.com/networks/radio-access-networks/open-ran/

Bank of America: OpenRAN primer with global 5G implications

Mavenir and Altiostar Collaborate to Deliver OpenRAN Radios for U.S. Market; Parallel Wireless CEO Opinion

Rakuten Communications Platform (RCP) defacto standard for 5G core and OpenRAN?

Strand Consult: Open RAN hype vs reality leaves many questions unanswered

 

OpenRAN in 30% of Vodafone European network by 2030; Europe way behind China and South Korea in 5G deployments

Vodafone will use OpenRAN technology in 30% of its masts across Europe by 2030, said Johan Wibergh, Vodafone Group Chief Technology Officer, in a speech at Mobile World Congress (MWC) 2022 in Barcelona.

Around 30,000 Vodafone cell sites across Europe will eventually use OpenRAN, he said, with rural areas the first to benefit from the new 4G and 5G masts that use the more flexible radio technology.

When the roll-out reaches cities, the equipment from any existing 5G masts being replaced will then be reused elsewhere to reduce unnecessary wastage, he said.

Vodafone has been one of the key drivers behind the development and use of OpenRAN, building one of the first-ever live OpenRAN masts in Wales. This was followed by the construction of OpenRAN masts in Cornwall, as well as the UK’s first 5G OpenRAN site.

At MWC 2022, Vodafone announced new smartphone sustainability initiatives, as well as the trial of new Internet of Things technology to enable cars to pay automatically for their own refueling.

……………………………………………………………………………………………………………………………………………………………………………………………..

Earlier this week, Vodafone Group CEO Nick Read addressed MWC 2022 attendees in a keynote speech, highlighting the challenges and opportunities facing the mobile industry.  Among them are the following:

Europe needs to be digital to remain globally competitive and maintain its leadership role in key sectors such as automotive, aerospace, defence, and agriculture. The regions that have 5G first, will be the regions that innovate fastest.

Yet, at current rates, it will take until at least the end of the decade, for Europe to match the transformational “full 5G experience” that China will already have achieved this yearIf we look at 5G population coverage around the world – South Korea is over 90%, China 60%, USA 45%, and Europe under 10% – and with Africa hardly even at the starting line. Europe will only catch up if we reverse the ill-health and hyper-fragmentation of our sector. We must have local scale to close the investment gap.  Otherwise, we will be the passive by-stander of the new tech order.

Local scale is needed to close the investment gap and ensure we can deploy 5G at pace. Regional scale is needed to close the digitalisation gap. The combination of local and regional scale ensures our economies and societies can enjoy the full benefits of digital innovation and industrialisation.

We have all seen the impact of global digital platforms. Platforms that change the way we conduct our daily lives. Vodafone continues to invest in regional platforms – let me just give you a few examples. In Europe we created our IoT platform which connects more than 140m devices, across 180 countries. The SIM based IoT market has tripled in the last five years, – and in the next 5 years, will hit 5bn connections. 62% of Europe’s leading automotive brands rely on Vodafone IOT. And with that scale, we are able to evolve from the “Internet of Things” to the “Economy of Things.”

References:

https://newscentre.vodafone.co.uk/news/openran-in-30-percent-of-vodafone-european-network-by-2030/

https://www.vodafone.com/news/digital-society/mwc22-new-tech-order

https://newscentre.vodafone.co.uk/press-release/switches-on-first-5g-openran-site/

https://www.vodafone.com/news/corporate-and-financial/vodafone-europe-first-commercial-open-ran-network