Verizon
2019 IoT World: Verizon’s Narrowband IoT (NB-IoT) Network now covers 92% of U.S.
Verizon announced yesterday that its NB-IoT network is now available coast-to-coast covering more than 92% of the U.S. population. NB-IoT focuses on applications needing data rates below 100K bits/sec which makes it ideal for solutions that aren’t designed to be always mobile such as alarm panels, environmental sensors, industrial appliances, factory equipment and parking meters.
NB-IoT is specifically designed for IoT applications that could benefit from access to lower cost chipsets, superior coverage and significantly prolonged battery life. The NB-IoT Network provides the ability to manage both IP and non-IP data traffic. This ability to handle non-IP data traffic allows for the creation of much simpler and more cost-effective IoT devices which are ideal for solutions that aren’t designed to be always mobile such as alarm panels, environmental sensors, industrial appliances, factory equipment and parking meters.
Other viable use cases for NB-IoT include:
- Smart cities – improve citizen experience and municipal operations through parking sensors, waste management and smart lighting.
- Smart buildings – enhance building safety and incident response times through connected smoke detectors including regular auto-test, battery check and real-time alerts to the relevant parties in case of fire.
- Industrial – improved machinery maintenance cycles and factory safety through machinery control such as equipment status, factory control, and process and safety monitoring.
- Environment monitoring – increase focus on environmental responsibility through status reporting of manhole covers, fire hydrants and chemical emission levels.
- Agricultural – improve efficiency in the agricultural industry with livestock tracker, connected greenhouse, stationary tracking and monitoring of air quality, humidity, moisture, temperature, and weather conditions of air and soil.
- Asset Tracking – improve efficiency and decrease costs by using pallet tracking and geo-fencing.
- Utilities – improve efficiency and decrease waste by using gas and water metering, including smart meter consumption tracking and pipeline monitoring.
Verizon has partnered with chipset and module manufacturers for its NB-IoT network. The carrier said three module makers – Telit, SIM-COM and Quectel, are in the final stages of testing modules, and will be available for use in IoT development on the new network.
NB-IoT adds another connection option for businesses:
Verizon maintains a strong leadership position in IoT technology and solutions with a history of providing customers with many options to meet their needs including nationwide deployment of 4G LTE, LTE Cat 1, and LTE Cat M1 networks. While CAT-M1 targets a wide range of applications for business customers such as wearables, fleet and asset management, NB-IoT focuses on applications needing data rates below 100 kbps. NB-IoT technology occupies a dedicated frequency of 180 kHz bandwidth designated for IoT applications which does not share spectrum resources with commercial smartphone traffic.
“We have engineered our NB-IoT network in the Guard Band of our spectrum. By using the more complex Guard Band solution for our Narrow Band IoT Network, we are demonstrating very efficient use of spectrum assets while giving customers the breadth of options they need to best meet their needs. This strategic use of spectrum is one of the many variables that has resulted in Verizon’s continued performance superiority and strong capital management over the years,” said Bill Stone, Vice President of Technology Development and Planning at Verizon.
During his IoT World Tuesday keynote speech, Shamik Basu, Director of IoT Products at Verizon, said that massive IoT sensor networks could be deployed today using Verizon’s NB-IoT or LTE-M networks. “They make critical infrastructure intelligent….NB-IoT and LTE-M will co-exist in some networks (i.e. the IoT device module supports both as does the wireless base station). You don’t need gateways to deploy massive sensor networks today.”
Verizon is ready to support developers and manage commercial traffic:
Verizon continues to expand its already robust ecosystem of partners to help develop, bring to market, connect and manage IoT solutions. Verizon has partnered with leading chipset and module manufacturers so that IoT makers can immediately start working towards building their devices for the Verizon NB-IoT network. Three module manufacturers in final stages of testing – Telit, SIM-COM and Quectel – have modules on Verizon’s Network which are ready to be used in development efforts. Additionally, customers will be able to manage their connections securely using the integrated ThingSpace platform that supports connectivity management, location and device security.
Verizon has announced an initial NB-IoT Standard Price Plan, offering 50 KB of data with a $1.00 monthly access fee per device. The data allowance can be shared with other NB-IoT devices on the same price plan and on the same account.
…………………………………………………………………………………………………………………………………………
Verizon at IoT World 2019, Santa Clara, CA: Booth 510
Verizon’s NB IoT demo, permits conference attendees to experience Verizon’s NB IoT network in action.
At Verizon’s 5G for enterprise demo, conference attendees will explore the possibilities that will result from the ultra-low latency and massively scalable characteristics of the Verizon’s 5G technology.
Mixed reality developer Arvizio will be on hand demonstrating their MR Studio mixed reality platform for XR experiences on Microsoft HoloLens. Arvizio has converged Verizon’s ThingSpace IoT platform and augmented/mixed reality technologies to transform how businesses connect and use the data flow from IoT devices.
At the ThingSpace Ready demo, conference attendees will learn about ThingSpace Ready, Verizon’s IoT Accelerator program, which enables easier IoT onboarding with Verizon. We curated partnerships with design houses, system integrators, module/modem providers, and SIM manufacturers, so OEMs (device makers) get easy access to the hardware and solutions needed to create the next generation of IoT devices, all with upfront and transparent pricing.
At the ThingSpace Manage demo, conference attendees will learn how Verizon’s ThingSpace Manage platform will enable customers to provision, monitor, diagnose and control their IoT devices using connectivity APIs, as well as value-added microservices. The exhibit will demonstrate key capabilities on the ThingSpace Manage Portal such as device activation, network diagnostics, and coarse location. A demonstration of SIM-secure will also showcase how Verizon can help protect devices if the SIM are removed.
At the Critical Asset Sensor demo, conference attendees will experience how Verizon made it simple for customers using public clouds to get the data they need to drive their businesses. Critical Asset Sensor is an Edge to Enterprise solution with 7 sensors, GPS, LTE-M connectivity, and the ThingSpace platform with APIs to consume data into Amazon Web Services or any other cloud platform that drives your business.
Deploying IoT Massive Sensor Networks:
In his IoT World keynote, Mr. Basu suggested that companies deploying IoT massive sensor networks match the technology to their needs. Those needs might include: long battery life (10+ years), long range (network) coverage, ubiquitous, low improvement cost, security, reliability/availability, and longevity. Putting a NB-IoT interface in a sensor module facilitates data collection in real time which can then be tabulated and analyzed at the edge or in the cloud.
Shamik recommended Verizon’s ThingSpace to manage a rich suite of services for IoT. Companies can then monetize their IoT solutions and use public clouds, like Amazon Web Services (AWS). By pre-integrating software on development kits pre-approved by Verizon and Amazon, developers have all the key building blocks to create an IoT solution out of the box. AWS’s reliability and scalability make it an ideal foundation for your solution.
The ThingSpace Cloud Connectors program allows you to build a powerful IoT solution by combining your AWS solution, the Verizon network and ThingSpace device lifecycle management tools.
Conclusions:
In summary, NB-IoT combined with Verizon’s ThingSpace IoT accelerator/ management platform, new pricing and rich ecosystem of partners who have modules ready for development, enterprise customers have the ability to bring unique NB-IoT solutions to market quickly.
References:
https://www.verizon.com/about/news/verizon-extends-iot-leadership
https://thingspace.verizon.com/partners/aws/
Verizon’s Earnings Beat; CEO:”We are leading the world in development of new technologies”
Verizon (VZ) posted earnings per share of $1.22, up from $1.17 per adjusted share in the comparable year-ago quarter. Revenues were $32.1 billion, versus $31.8 billion in the first quarter of 2018. Analysts in a Bloomberg consensus forecast expected the company to post earnings per share of $1.17 on revenues of $32.15 billion. Hence, the company beat earnings forecasts.
The company added 61,000 retail net postpaid additions, a key metric of how many users lock in a contract, which included 174,000 postpaid smartphone net additions. Verizon’s service revenues rose 4.4% during the first 3 months of 2019, helped in part by customers added higher-priced plans and new connections, the company said. Separately, Verizon added a net of 52,000 Fios Internet connections, but lost a net 53,000 Fios Video connections.
Verizon, which has begun its mobile 5G rollout in Chicago and Minneapolis (the only supported device is the Motorola Z3 with the 5G Moto Mod), said that its 5G mobile network buildout was part of its $4.3 billion in capital expenditures.
“2019 is shaping up to be an exciting year for Verizon,” said chairman and CEO Hans Vestberg in a statement. “We are leading the world in the development of new technologies with the launch of our 5G Ultra Wideband network. Our ambition remains unchanged to provide the most advanced next-generation networks in the world.”
AJW Comment:
What’s really interesting, is that as far as we know, Verizon doesn’t even participate in ITU-R WP 5D meetings. That is where IMT 2020 (5G radio aspects) is being standardized, with 3GPP contributing the input documents supported by most ITU-R delegates. An AT&T rep chairs that committee and another AT&T rep chairs the sub working group on IMT frequency aspects. Yet both companies falsely claim they’ve deployed “standards based” mobile 5G despite the FACT that the IMT 2020 Radio Interface Technology (RIT) won’t be selected by the evaluation groups till the fall of 2020.
Sprint, T-Mobile USA, and Dish are the other U.S. network operators that regularly attend ITU-R WP 5D meetings. Qualcomm, Apple, Intel and a few other U.S. member companies also attend those meetings.
So we wonder if Ericsson ONLY gets their IMT 2020 information from their network equipment vendors rather than obtain it directly by attending ITU meetings?
……………………………………………………………………………………………………………………………………………………………………………………
Update on April 25. 2019:
U.S. cities with Verizon 5G Ultra Wideband
- Chicago
- Minneapolis
U.S. cities that will get Verizon 5G Ultra Wideband in 2019
- Atlanta
- Boston
- Charlotte
- Cincinnati
- Cleveland
- Columbus
- Dallas
- Des Moines
- Denver
- Detroit
- Houston
- Indianapolis
- Kansas City
- Little Rock
- Memphis
- Phoenix
- Providence
- San Diego
- Salt Lake City
- Washington D.C.
Verizon wants its mobile 5G to offer impeccable speeds with low latency. To meet those demands, Verizon will initially deploy its 5G Ultra Wideband network on millimeter wave spectrum (mmWave). While mmWave will undoubtedly offer the fastest 5G experience, it has its flaws.
One of the notable challenges with the implementation of new “small cell” towers is the fact that they require local government approval — essentially meaning that carriers need approval in every city they want to install these new towers. To attempt to speed that up, Verizon is encouraging customers to lobby their elected officials. The new “Let’s 5G” website is aimed at both informing people about 5G and what it could offer, and informing users on how they can speed up the process of 5G deployment.
Verizon will initially roll out its 5G service on 28 GHz spectrum. One of the challenges with using the high-band spectrum is that it does not easily cover a large area, and penetration is a serious challenge. Over the next several years, Verizon will build out its 5G network around the country using small cells, and will eventually deploy service on a mid- and low-band spectrum.
In a real-world demonstration of the network at CES 2019, CEO Hans Vestburg showed speeds of 900 Mbps, as well as a crystal-clear video conference with the first fixed-wireless customer in Texas.
For the next several years Verizon’s 5G service will piggyback off its massive 5G network. Expect to see 5G service in larger cities and busy places like airports and stadiums, but you will be unlikely to see the service in the suburbs and rural areas for years to come.
SOURCE: https://www.digitaltrends.com/mobile/verizon-5g-rollout/
Verizon, Samsung & Qualcomm achieve 1.7 Gbps in mobile 5G test; 5G smartphone for VZ and AT&T
Verizon, Samsung and Qualcomm report achieving a speed of 1.7 Gbps [1] through a mobile 5G connection while using the 28 GHz band. The test took place at Qualcomm’s San Diego, CA facilities, using Samsung’s 4G LTE and 5G NR gear, Verizon’s 28 GHz spectrum and a Qualcomm Snapdragon X50 5G modem.
Note 1. For IMT 2020, the minimum requirements for peak data rate are: – Downlink peak data rate is 20 Gbit/s. – Uplink peak data rate is 10 Gbit/s. Recommendation ITU-R M.2083 defines eight key “Capabilities for IMT-2020”, which form a basis for the 13 technical performance requirements. Recommendation ITU-R M.2083 also recognizes that the key capabilities will have different relevance and applicability for the different usage scenarios addressed by IMT-2020 (enhance mobile broadband, massive machine to machine communications, and ultra reliable, low latency communications).
………………………………………………………………………………………………………………………………………………………………………………………….
“Successful inter-operation of multiple network technologies takes us another step closer to the commercialization of 5G mobility services,” Woojune Kim, the Senior Vice President and Head of North American Business at Samsung Electronics’ Networks Business said in a press release. “We are proud to join with Verizon and Qualcomm Technologies to spotlight the next steps driving network evolution. The use of substantial mmWave spectrum and EN-DC demonstrates how a seamless 5G/LTE approach succeeds in delivering high-speed, high-capacity mobility on next-generation networks.”
The year ahead likely will bring much news about the device market, which promises to be challenging. Indeed, the news seems to be picking up before the year arrives.
Verizon and Samsung said that they will bring a 5G smartphone [2] to market during the first half of 2019. They said that plans are to unveil a proof-of-concept 5G smartphone during the Qualcomm Snapdragon Technology Summit in Maui. The device seems similar to the one used in the data testing. It includes the Snapdragon Mobile Platform featuring the Snapdragon X50 5G NR modem and antenna modules with integrated RF transceiver, RF front-end and antenna elements.
Note 2. Samsung showed a prototype design of its first 5G phone at the Qualcomm Summit, one that it promised will launch with Verizon and AT&T in the first half of 2019. Those “5G” networks will be based on 3GPP Release 15 “5G NR” non stand alone (dependent on a LTE core network). The phone “is the result of years of collaboration to deploy an end-to-end solution for commercial 5G services using Samsung network equipment and personal devices,” the companies said in a press release.
……………………………………………………………………………………………………………………………………………………………………………….
AT&T also said that it will offer a Samsung 5G smartphone during the first half of the year. Cities AT&T is targeting for mobile 5G in 2019 are Atlanta; Charlotte, N.C.; Dallas; Houston; Indianapolis; Jacksonville; Louisville; Oklahoma City; New Orleans; Raleigh; San Antonio and Waco, Texas; Las Vegas; Los Angeles; Nashville; Orlando and San Diego, San Francisco and San Jose, CA.
……………………………………………………………………………………………………………………………………………………………………………………..
Verizon Tests Interoperable 5G and LTE Technology, Achieves Mobile 5G Speed of 1.7 Gbps
Verizon, Samsung & Qualcomm achieve 1.7 Gbps in mobile 5G test; 5G smartphone for VZ and AT&T
Verizon, Samsung and Qualcomm report achieving a speed of 1.7 Gbps [1] through a mobile 5G connection while using the 28 GHz band. The test took place at Qualcomm’s San Diego, CA facilities, using Samsung’s 4G LTE and 5G NR gear, Verizon’s 28 GHz spectrum and a Qualcomm Snapdragon X50 5G modem.
Note 1. For IMT 2020, the minimum requirements for peak data rate are: – Downlink peak data rate is 20 Gbit/s. – Uplink peak data rate is 10 Gbit/s. Recommendation ITU-R M.2083 defines eight key “Capabilities for IMT-2020”, which form a basis for the 13 technical performance requirements. Recommendation ITU-R M.2083 also recognizes that the key capabilities will have different relevance and applicability for the different usage scenarios addressed by IMT-2020 (enhance mobile broadband, massive machine to machine communications, and ultra reliable, low latency communications).
………………………………………………………………………………………………………………………………………………………………………………………….
“Successful inter-operation of multiple network technologies takes us another step closer to the commercialization of 5G mobility services,” Woojune Kim, the Senior Vice President and Head of North American Business at Samsung Electronics’ Networks Business said in a press release. “We are proud to join with Verizon and Qualcomm Technologies to spotlight the next steps driving network evolution. The use of substantial mmWave spectrum and EN-DC demonstrates how a seamless 5G/LTE approach succeeds in delivering high-speed, high-capacity mobility on next-generation networks.”
The year ahead likely will bring much news about the device market, which promises to be challenging. Indeed, the news seems to be picking up before the year arrives.
Verizon and Samsung said that they will bring a 5G smartphone [2] to market during the first half of 2019. They said that plans are to unveil a proof-of-concept 5G smartphone during the Qualcomm Snapdragon Technology Summit in Maui. The device seems similar to the one used in the data testing. It includes the Snapdragon Mobile Platform featuring the Snapdragon X50 5G NR modem and antenna modules with integrated RF transceiver, RF front-end and antenna elements.
Note 2. Samsung showed a prototype design of its first 5G phone at the Qualcomm Summit, one that it promised will launch with Verizon and AT&T in the first half of 2019. Those “5G” networks will be based on 3GPP Release 15 “5G NR” non stand alone (dependent on a LTE core network). The phone “is the result of years of collaboration to deploy an end-to-end solution for commercial 5G services using Samsung network equipment and personal devices,” the companies said in a press release.
……………………………………………………………………………………………………………………………………………………………………………….
AT&T also said that it will offer a Samsung 5G smartphone during the first half of the year. Cities AT&T is targeting for mobile 5G in 2019 are Atlanta; Charlotte, N.C.; Dallas; Houston; Indianapolis; Jacksonville; Louisville; Oklahoma City; New Orleans; Raleigh; San Antonio and Waco, Texas; Las Vegas; Los Angeles; Nashville; Orlando and San Diego, San Francisco and San Jose, CA.
……………………………………………………………………………………………………………………………………………………………………………………..
Verizon Tests Interoperable 5G and LTE Technology, Achieves Mobile 5G Speed of 1.7 Gbps
CAPEX at AT&T, Verizon to rise in 2018; AT&T investing in High Speed Networks
Capital expenditures (CAPEX) at AT&T and Verizon will rise slightly more than had been expected for 2018, according to Oppenheimer analysts. In a research note, analysts cited “5G” investments in upping their capex estimates for Verizon by 2%, and they raised their AT&T outlook by 3% because of FirstNet.
“For FY2018E we increase our total capex estimates [for Verizon] by 2% to $18.2B, due to wireless and our position that 5G deployments will accelerate,” the Oppenheimer analysts wrote in a report today. “We increase our FY2018E capex estimates [for AT&T] by ~3% to $25.0B due to FirstNet.”
According to Fierce Wireless, both Verizon and AT&T spent more on their networks in the first quarter of this year than some Wall Street analysts had expected.
“The biggest delta, or upside surprise vs. our estimates thus far has come from higher capex numbers at both Verizon and AT&T,” wrote the Wall Street analysts at Deutsche Bank Markets Research in a May report to investors, following the carriers’ first-quarter earnings reports. They pointed out that Verizon spent fully $4.6 billion on its network during the first quarter, which they said was 29% more than they had been expecting and almost 50% more than what Verizon spent on its network during the same quarter last year.
Overall, the nation’s top carriers are expected to significantly raise their capex spending this year in advance of 5G launches. Barclays in February said it expects capex among the “big four” (Verizon, AT&T, T-Mobile and Sprint) to rise by 10% this year, which it said would be the largest increase in the past five years.
Last week, AT&T executives told attendees at a Wells Fargo investor conference:
Many of the company’s capital-intensive projects are well under way or are near completion, which will support AT&T’s de-levering goals. The company now markets its 100% fiber network to 9 million locations, well on its way to the 12.5 million commitment it made as part of the DIRECTV acquisition. In fact, AT&T expects to reach 14 million customer locations by mid-2019. Also within the next year, the company expects to be in the 40% to 50% range of its FirstNet buildout commitment. And AT&T’s 4G LTE build in Mexico is nearly complete. AT&T also expects continuing benefits from its software defined network (SDN) investments.
High-speed networks. These networks must be able to deliver premium content to whatever screen the customer demands at the lowest cost per megabyte possible. This can include delivering content to homes, mobile devices and cars, and AT&T is investing in wireless build, fiber and new technologies like 5G to deliver a great viewing experience as demand continues to grow for 4K video and virtual and augmented reality.
AT&T Communications provides mobile, broadband, video and other communications services to U.S.-based consumers and nearly 3.5 million companies – from the smallest business to nearly all the Fortune 1000 – with highly secure, smart solutions. Revenues from these services totaled more than $150 billion in 2017.
AT&T expects:
- Continued solid growth in its Mexico wireless operations in the second quarter of 2018 with as many as 700,000 net adds and improving churn. However, the strengthening U.S. dollar and volatility in foreign exchange rates are expected to pressure International segment results.
- Wireless service revenue growth for full-year 2018, on a comparable basis. The company expects wireless service revenues will be essentially flat in the second quarter of 2018.
- The transition of the video market to continue to negatively impact revenues and margins in the Entertainment Group. For the quarter, the company expects total video and broadband subscribers to increase, with DIRECTV NOW subscribers more than offsetting continued declines in traditional TV subscribers. Stephenson said that the mix will continue to shift to over-the-top video. Earlier today, the company announced new unlimited wireless plans — AT&T Unlimited &More Premium starting at $80 for the first line and AT&T Unlimited &More for $70 for one line or $40 per line for four lines— that include access to AT&T’s WatchTV service, the company’s newest video offering featuring 30+ live channels and more than 15,000 TV shows and movies on demand.2 Stephenson said the new product comes with attractive margins.
Verizon/Nokia Test 3GPP NR Spec using Multi-Carrier Aggregation
Verizon and Nokia reported testing “5G” New Radio (3GPP release 15) technology in the outdoors using multi-carrier aggregation to boost the transmitted signals. Verizon deployed its 28 GHz millimeter-wave spectrum in the trial, saying it cut latency to 1.5 milliseconds while transferring data at 1.8 gigabits per second.
“By continuing to push the technological envelope and make advancements like these, we’re driving the ongoing development of 5G technology and bringing it to life for our customers,” said Sanyogita Shamsunder, vice president, 5G Ecosystems & Innovation for Verizon. “Verizon continues to lead the way toward the realization of true 5G technology.”
Marc Rouanne, president of Nokia Mobile Networks, focused on the outdoor element of the testing in a press release. “Nokia is committed to supporting Verizon’s advanced effort to bring 5G to commercial reality,” he said. “Our successful trial pushes the testing distance and because it has been conducted outside, tests the interference variables in an outdoor environment. This is a major milestone for preparing Verizon for widespread 5G implementation.”
Transmitting interactive VR and 4k video streams outdoors required a consistent, stable, reliable 3GPP NR 15 network connection. Adding in carrier aggregation over four carriers increases the bandwidth and speeds of the transmissions to the levels promised by true 5G technology. When customers begin to use 5G NR technology, they will look to leverage that type of reliable connectivity to stream high-definition video without buffering, experience improved AR/VR capabilities, and use other mobile 5G solutions in ways we haven’t yet imagined.
Previous Nokia/Verizon 5G tests were done in the lab and were only brief data packet transmissions. The testing announced today is far closer to the way in which subscribers actually will use the 5G. Verizon says it will launch stationary 5G in Los Angeles, Sacramento and two other U.S. markets during the second half of the year. A mobile version will follow.
Nokia and Verizon are cooperating deeply on 5G. In February, the companies – along with Qualcomm – successfully tested a 3GPP-compliant NR 5G call. The call was made over licensed spectrum on a 5G NR prototype device from Qualcomm. The spectrum was provided by Verizon and the networking technology by Nokia. The test was conducted at a Nokia facility in Murry Hill, N.J.
The competition to announce 3GPP compliant NR deployment is intense. Nokia also is working with T-Mobile. Last week, the wireless carrier said that the companies completed a bi-directional over-the-air 5G data session on a 3GPP-compliant NR system at T-Mobile’s Bellevue, WA lab.
Note: All should know that 3GPP is not a standards body and that their NR specification has not been submitted to ITU-R WP 5D for IMT 2020. The first 3GPP submission for IMT 2020 RIT won’t be till late July 2019.
References:
Verizon to deploy NG-PON2 in Tampa, FL using Calix network equipment
Verizon will initiate its NG-PON2 deployments in Tampa, FL, with Calix network equipment. The telco is expected to use the technology for higher-speed enterprise broadband, small-cell and fixed wireless backhaul. “We’re looking at this platform to cover residential, business and wireless carriers,” said Verizon’s Vincent O’Byrne.
Verizon and other carriers are expected to use NG-PON2 to support higher-speed business services, as well as backhaul for small cell networks. In Verizon’s case, the technology also will be used to provide backhaul for fixed wireless, according to O’Byrne.
“As we go forward, we’re looking at this platform to cover residential, business and wireless carriers,” said O’Byrne. NG-PON2 will be the access portion of Verizon’s vision for the “intelligent edge” network, which also will comprise unified transport and core network changes, he said. “NG-PON2 is the part that hits customers,” he added.
Although the Tampa, FL NG-PON2 deployment will use equipment from Calix, Verizon continues to test a second supplier in the lab, O’Byrne said.
Verizon NG-PON2
The NG-PON2 equipment that service providers initially will deploy will support four wavelengths, but providers can turn up just a single wavelength to start or can add an additional four wavelengths in the future, O’Byrne said.
Each wavelength can support 10 Gbps in each direction, supporting speeds of up to 8.5 Gbps for customer traffic. NG-PON2 standards specify a bonding option that would enable a service provider to combine multiple wavelengths together to support a single higher-speed connection, he explained.
Verizon has been testing NG-PON2 in the laboratory for several years. The Tampa customer trials, which will run for about three months, will make sure the carrier has the IT systems in place to support the offering, O’Byrne noted. A key function that will be examined is the ability to move services between wavelengths — a capability that will provide added protection from the consumer perspective and will enable Verizon to load balance. O’Byrne noted that during light traffic periods, Verizon might reduce the amount of power used by shifting customers to a single wavelength and turning off some line cards.
“You would have to be within Verizon to see the amount of positivity that is there that is similar to when we started to launch FiOS,” said O’Byrne, in an interview with Light Reading.
“We have a lot of big initiatives. These are exciting times. We do see ourselves on a positive cusp or tide of deploying new technologies and making a lot of changes to the network.” Vincent O’Byrne in an earlier video interview with Broadband World News. Vincent O’Byrne in an earlier video interview with Broadband World News. Those changes fit into what Verizon calls its Intelligent Network Edge strategy, designed to simplify and reduce costs across its network by eliminating the need for three separate network infrastructures and also speed its ability to deliver higher-speed services and bring fiber backhaul to the growing set of antennas that 5G deployment will require. Verizon had named two vendors for NG-PON 2 — ADTRAN Inc. and Calix.
It’s now moving forward initially with Calix because that vendor “was, from a timeline perspective, ahead and ready to go out and we have a need to get this deployment out there,” O’Byrne said.
Calix CEO and President Carl Russo shares O’Byrne’s excitement about what this move might mean for the bigger market. He credits Verizon with being willing and able to move quickly in adopting not just a new PON technology but a new overall approach to access networks. “When someone like Verizon, who is known for technical leadership and engineering orientation starts to deploy, it’s kind of like firing off the starting gun to the market saying, ‘Okay guys, this technology is go,’ ” he says in an interview.
“That doesn’t mean everybody rushes to it, it means you now have that legitimacy, that this is a production choice [operators] can make, as opposed to, ‘I’m not quite sure it’s ready.’ Now the market begins.”
Russo was impressed with the speed at which Verizon is working and the Agile processes it is using. “It has been an interesting partner approach because they have functioned as an Agile partner, it has been quite enjoyable,” he says. “It’s been hard, too, but they have engaged in a way that a lot of large customers find difficult to engage. There is a lot more exciting stuff coming, this market is real and it is going to get realer.” Verizon isn’t saying where it will initially deploy NG-PON 2 in Tampa because that will be a marketing decision, O’Byrne says, and will be driven by customer demand. Because NG-PON 2 can use the same physical fiber infrastructure that is already in use by GPON, Verizon will choose to deploy where customers need more than 1 Gbit/s service, he says. Because it’s newer, NG-PON 2 technology costs more than GPON, but those costs are offset by savings in many areas, as part of the transition to an intelligent edge and software-defined access.
For example, the AXOS E9-2 Intelligent Edge System combines subscriber management, aggregation and optical line terminal (OLT) functions into a single box, which offers both power and space savings and significant operational efficiencies, including greater automation, O’Byrne says. The net result is speeds up to 40 Gbit/s throughput and tunable optics for essentially the same cost. “The ability to move all three service sets into one box saves us an inordinate amount of money from processing, and just the ability to increase the speed at which we can provision systems reduces our OSS complexities that we would have,” O’Byrne says.
“That is why this overall intelligent edge network, we kind of see it as a big emphasis within the company.”
The Verizon executive says the company is continuing to work in the labs with Adtran. He calls it “standard practice” to work with two vendors, and move forward first with one and then the other. Thanks to the interoperability trial work that Verizon has already done, producing the Verizon OMCI specification — which is being incorporated into the ITU-T G.988 standard — Calix and Adtran gear will have common interfaces, he says. (See Verizon Proves NG-PON2 Interoperability). For Calix, however, this does represent market validation of its five-year journey to become a software platform company, Russo said.
“This helps people understand just how much that transformation has been completed,” he says. “AXOS being deployed at this level should make it clear what is going on with us, as a platform software company.” When Verizon was doing OSS work on FiOS we were working with the group in Tampa to make it operational. They were doing all the development there. That is consistent with your post Carol. The real question is this part of the rollout of 5G or is it a residential play. My guess is the former. Verizon was quiet open about the services to be offered when FiOS rolled out.
According to a Verizon spokesman, the company still has facilities in Tampa, and that is where they are doing the production testing of the systems and the various technology elements involved in the Intelligent Edge Network, including NGPON2. As Vincent O’Byrne says in the story, the company hasn’t publicly announced what services it will be offering as that is a marketing choice. The spokesman says that “over time we expect to support residential, business and wireless use cases. Once the testing is completed, I expect we’d have more to announce in terms of details.”
While the backhaul connection to the central office for GPON is 2.5 Gbps, that number rises to as much as 80 Gbps for NG-PON2, explained Calix CEO Carl Russo in a separate interview. But “that’s actually not the big thing” about NG-PON2, according to Russo. The big thing, he said, is “all the wavelengths and what they can do for you.”
The way Calix thinks about NG-PON2, he said, is that “it delivers the physical layer we’ve been in pursuit of for 10 years.”
The “efficiency of a shared PON,” he said, includes “the ability of a wavelength to run in a non-shared fashion – you can basically have a point-to-point connection.”
NG-PON2, he said, could be thought of as “the physical layer for unified access.”
Calix had to make some modifications to its existing NG-PON2 equipment to meet Verizon’s needs for its converged access network, Russo noted. A key requirement was the ability to switch wavelengths on the fly in less than 25 milliseconds.
“That is a very challenging target to hit,” Russo said.
According to Russo, Verizon also will use Calix’s AXOS software-based management system to support “always on” operation. Modifications can be made to the network without taking the network out of service, Russo said.
Russo expects to see carriers deploying both GPON and NG-PON2 for years to come. The technology that may get squeezed is XGS-PON – an alternative approach to boosting FTTP speeds and capacity that adds only a single wavelength to existing PON infrastructure and which some people viewed as an intermediate technology until NG-PON2 was available, he said.
Verizon Selects Samsung for First “5G” Fixed Wireless Broadband Deployment in 2018
Verizon has chosen Samsung Electronics as a major supplier in the U.S. telco’s push to offer high speed fixed access internet and other services over its wireless network. Financial terms of this “5G” business relationship weren’t disclosed. Samsung’s “5G” Fixed Wireless Access network products (including 5G home routers and 5G Radio Access units) will be used for commercial deployments.
Verizon says its “5G” fixed access network will launch in the second half of this year in Sacramento, CA, which is more than two full years before ITU-R WP5D completes its IMT 2020 standards. Verizon plans to add the same “5G” fixed broadband access service in four other U.S. markets later in 2018. It will use cellular antennas to beam high-speed internet into consumers’ homes. Samsung will make network equipment for Verizon—including the small boxes that will sit inside each home, receiving the signal and translating it into WiFi— the companies said Wednesday, January 3, 2018. Verizon said last month it would also use “5G” network equipment made by Ericsson for commercial launches in other U.S. markets.
Verizon estimates the market opportunity for initial 5G residential broadband services to be approximately 30 million households nationwide. In addition, it says that the 5G commercial launch will not have a material impact on its consolidated Capex in 2018 and that it expects its full-year 2018 capital spending program to be consistent with the past several years.
Last year, Verizon began “5G” fixed access trials, focused on home broadband service, in 11 U.S. markets from New Jersey to California. Samsung will provide network gear for Verizon’s launch in Sacramento, where customers will be offered the option of purchasing the faster wireless access capability. Verizon and Samsung collaborated on 5G trials in parts of California, Georgia, New Jersey, Massachusetts, Michigan, Texas, and Washington, D.C. Verizon and Samsung said that those trials revealed that a single 5G radio could reach the 19th floor of a multi-dwelling unit, and that broadband service was achieved using line of sight, partial Line of Sight (LOS) and even non-LOS connections. They also claimed that “environmental factors” such as rain and snow, did not interrupt “5G” based broadband service.
“The industry has been discussing 5G connectivity for years, and through our joint collaboration with partners like Samsung, we are beginning to make it a reality for our customers,” Ed Chan, chief technology architect and network planning at Verizon, said in a statement. “Sacramento is an ideal place to begin deploying 5G broadband services, providing a progressive environment for creating future use cases.”
“Together with Verizon, we have explored the vast potential of 5G through market trials across the U.S.,” added Mark Louison, SVP and GM, networks division, at Samsung Electronics America. “At the same time, Samsung applied lessons learned from these real-world trials to ensure that our complete end-to-end 5G portfolio is ready for commercial service. We are delighted to work with Verizon on this journey to create unprecedented user experiences powered by 5G.”
[Note that there’s been no mention of when “5G” mobile service might be available from Verizon.]
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………….
“5G” carries the potential to disrupt the broadband fixed access market for triple play services. That market is currently dominated by cable/MSO providers like Comcast Corp. and Charter Communications Inc, but AT&T is also there with its U-verse and AT&T Fiber offerings.
Companies globally are investing billions of dollars in 5G despite continued debate over its ultimate uses beyond faster download speeds. The three main applications areas for IMT 2020 are:
1] Enhanced Mobile Broadband
2] Ultra-Reliable, Low Latency Communications
3] Massive Machine Communications, i.e. Internet of Things (IoT)
Note that fixed broadband Internet access is not one of them!
Here’s an ITU diagram of IMT 2020 5G Use Cases from from a September 2016 ITU presentation:
Arthur D. Little has written a report called “5G deployment models are crystallizing” in which it makes the case that telcos need to find use cases now, if not to reap the benefits of being early to market then as a defensive measure. Where in the past only other telcos had the wherewithal to roll out a new generation of wireless technology, ADL points out that that’s no longer true. Non-telecom players are moving into the 5G space, including Google, Facebook, Apple, Hitachi, Scania, NEC, Ericsson, and Comau. Government agencies and telecom operators expect broad “5G” availability in many markets by 2020, but again, that won’t be based on ITU-R ratified IMT 2020 standards.
………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
“5G is a reality,” said Kim Young-ky, president of Samsung’s networks business, in an interview with the Wall Street Journal.
South Korean technology giant Samsung, a fairly small player in the network equipment world, believes its knowledge making products and components could give it an edge with telecom customers seeking to sell connectivity to a wider range of devices. Samsung’s network business generated some 2 trillion ($1.9 billion) to 2.5 trillion won in 2017, according to research firm Counterpoint Technology Market Research. It targets annual revenue of 10 trillion won by 2022, a Samsung spokesman said.
The average U.S. consumer uses about five gigabytes of mobile data a month, Mr. Kim said. But after 5G becomes more ubiquitous in the next few years, he believes consumers will eventually use closer to 100 gigabytes monthly on new services such as virtual or augmented reality programs—or even from driverless cars that will require greater data speeds to rapidly process traffic conditions.
About two years ago, Samsung combined about 1,000 workers from different divisions including handsets, network and its central research-and-development group, to create a “Next Generation Communications Business” team dedicated to 5G.
“With 5G, it’s going to be expanding beyond your phone,” Kim Woo-june, a senior vice president in Samsung’s network business, said in an interview. The industry’s first mobile phones with 5G capabilities aren’t likely to debut until 2019, he added.
………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
AT&T last month said it would launch a “5G” trial site in Texas, after tests in other markets. Sprint Corp. and T-Mobile US Inc. have said they are working on nationwide “5G” networks, targeting late 2019 or 2020.
References:
https://news.samsung.com/us/verizon-5g-commercial-launch/
http://www.broadcastingcable.com/news/platforms/samsung-gets-piece-verizon-s-5g-action/170867
https://www.wirelessweek.com/news/2018/01/verizon-partners-samsung-5g-fixed-wireless-launch
Related Articles on “5G” Deployments:
Verizon Exec: ‘Meaningful’ 5G Deployments to Start in 2018:
http://www.multichannel.com/news/finance/verizon-exec-meaningful-5g-deployments-start-2018/411354
…………………………………………………….
Verizon 5G to launch in Sacramento in 2018 | ZDNet
http://www.zdnet.com/article/verizon-5g-to-launch-in-sacramento-in-2018/
…………………………………………………….
Verizon Tips Launch of 5G-Based Residential Broadband Service
…………………………………………………….
Verizon commits to residential fixed broadband as first 5G use case, but analysts call the plan “murky”
http://www.telecomtv.com/articles/5g/verizon-commits-to-residential-fixed-broadband-as-first-5g-use-case-but-analysts-call-the-plan-murky-16206/
…………………………………………………….
AT&T Targets 5G Rollouts in 2018 After 3GPP Standards Acceleration
https://www.wirelessweek.com/news/2017/03/t-targets-5g-rollouts-2018-after-3gpp-standards-acceleration
……………………………………………….
AT&T Expects 5G in Late 2018 or Early ’19
http://www.lightreading.com/mobile/5g/atandt-expects-5g-in-late-2018-or-early-19/d/d-id/733953
…………………………………………………….
South Korea to launch first commercial 5G network in 2019
https://www.rcrwireless.com/20170525/5g/south-korea-launch-first-commercial-5g-network-2019
Verizon will offer residential “5G” fixed broadband service in 2018
Fully two years before the IMT 2020 “5G” standards are completed, Verizon announced at a “sell side analyst meeting” that it will launch a “5G” fixed wireless broadband service for residential customer Internet access in three to five U.S. markets in the second half of next year (2018). The company plans to use what they claim is “an early version of 5G” for the fixed wireless services. It’s supposedly the same technology that AT&T is testing in several cities.
Author’s Note:
As I’ve been saying for quite some time, these so called “5G” commercial service offerings are way to premature, because the ITU-R WP5D won’t even complete evaluation of the IMT 2020 Radio Access Network (RAN) technologies by end of 2020!
This piece in Barron’s seems to sum the mood up. Light Reading found out the “5G” equipmentt being used is supplied by Ericsson and Samsung.
………………………………………………………………………………………………………..
Verizon’s first commercial launch is planned to be in Sacramento, CA in the second half of 2018. Details of that launch, and the announcement of additional markets, will be provided at a later date, the company said. Verizon plans to commercially deploy this broadband fixed wireless access service to a total of three to five markets in 2018.
Verizon already trialed 5G residential applications in 11 markets in 2017. The commercial launch is based on customer experience and on Verizon’s confidence in new technology powered by mmWave spectrum, the #1 US mobile operator said.
The company sees a potential market of 30 million households in the US for “5G” residential broadband services. The initial launch in 2018 is not expected to require significant capex. Speaking at an investor conference, Verizon said its capex in 2018 would be “consistent with the past several years.” The top U.S. mobile operator previously said that its 2017 capex will be between $16.8 billion and $17.5 billion.
“This is a landmark announcement for customers and investors who have been waiting for the 5G future to become a reality,” said Hans Vestberg, Verizon CTO. “We appreciate our strong ecosystem partners for their passion and technological support in helping us drive forward with 5G industry standards, for both fixed and mobile applications. The targeted initial launches we are announcing today will provide a strong framework for accelerating 5G’s future deployment on the global standards.”
This “5G” fixed wireless broadband access (FWBA) will use the 28 GHz spectrum band. Verizon forecasts the total addressable U.S. market for that technology is approximately 30 million homes. FWBA seems like a great idea as no fiber or wires have to be installed, but it has many challenges. Those include: poor propagation characteristics of millimeter wave spectrum.
A few slides from Verizon’s presentation:
At the investor conference, Verizon said that 25% to 30% of the “residential broadband market” in the US is “addressable by 5G.” Verizon says that could be up to 30 million households. According to the US Census Bureau, in 2016 there were 125.82 million across the US.
In the trials so far, Verizon said that it has served a 19 floor apartment building with the 28GHz millimeter wave (mmWave) 5G connection. The operator has been testing “home units” and “optional outdoor antennas” in the tests. Verizon has also been testing outdoor window-mount antennas that use an optical connection to an indoor WiFi router to distribute the signal.
Verizon is continuing to test its own fixed 5G specification in multiple markets. It will test the 3rd Generation Partnership Project (3GPP) release 15 New Radio (NR) specification in the US in 2018.
–>Note yet again that 3GPP’s NR has not even been presented to ITU-R WP5D nor have any other Radio Interface Technologies (RITs). However, 3GPP has indicated it’s intent to submit NR for consideration late in 2018 when WP 5D will start to evaluate RITs.
References:
http://www.verizon.com/about/investors/analyst-meeting-including-5g-launch-news-release
http://www.verizon.com/about/news/verizon-launch-5g-residential-broadband-services-5-markets-2018
…………………………………………………………
Addendum:
Matt Ellis, EVP & CFO, will speak at the UBS 45th Annual Global Media and Communications Conference on December 5th at approximately 8:00 AM ET.
Verizon’s O’Byrne: NG-PON2 offers multiservice support, 40 Gbps speeds
Two years ago, we reported that “Verizon has completed a field trial of NG-PON2 fiber-to-the-premises technology that could provide the infrastructure for download speeds up to 10 Gbps for residential and business customers.”
This past January, Verizon completed its first interoperability trial of NG-PON2 technology at its Verizon Labs location in Waltham, MA. During the trial, Verizon demonstrated that equipment from different vendors on each end of a single fiber—one on the service provider’s endpoint and that the customer premises—can deliver service without any end-user impact.
In an October 16th press release in advance of the Broadband Forum’s Access Summit, Verizon said NG-PON2 represent a paradigm shift in the access space and a more certain path towards long-term success.
“Technologies such as NG-PON2 present exciting new opportunities for vendors, such as delivering residential and business services on multiple wavelengths over the same fiber,” said Vincent O’Byrne, Director of Technology at Verizon.
“Not only does NG-PON2 parse business and residential customer traffic to isolate and resolve potential problems in the network, it can also scale to achieve speeds of 40 Gbps and above,” O’Byrne added.
“Technologies such as NG-PON2 present exciting new opportunities for vendors, such as delivering residential and business services on multiple wavelengths over the same fiber,” said O’Byrne. “Not only does NG-PON2 parse business and residential customer traffic to isolate and resolve potential problems in the network, it can also scale to achieve speeds of 40 Gbps and above.”
At the Broadband Forum’s Access Summit, The Verizon executive will address how the fiber access space is constantly evolving, with emerging PON technology providing solutions to some of the issues around cost and reliability during the Broadband World Forum, at the Messe Berlin on Tuesday, Oct. 24th.
Verizon has been an active participant in driving awareness about how NG-PON2 can work in a real-world carrier environment. The company completed NG-PON2 interoperability with five vendors for its OpenOMCI (ONT Management and Control Interface) spec, bringing it one step closer toward achieving interoperable NG PON systems.
The mega telco plans to offer it’s own OpenOMCI specification [1], which define the optical line terminal (OLT)-to-optical network terminal (ONT) interface, to the larger telecom industry.
Note 1. OpenOMCI specification was developed and is owned by Verizon, rathr than a formal standards/spec writing body like the ITU-T or Optical Internetworking Forum (OIF). Is this the new way of producing specs (like “5G” used in trials)?
……………………………………………………………………………………
Bernd Hesse, Chair of the Broadband Access Summit and Senior Director Technology Development at Calix, said:
“We will be exploring NG-PON2 in depth and the use cases that underpin the decisions to deploy them. I look forward to the debate, hearing from the experts in the industry and welcoming the community to these new Forum events.”