Extended-range 5G NR data call over mmWave completed; Ericsson & Qualcomm test 5G SA Carrier Aggregation

Qualcomm Technologies, Casa Systems and Ericsson announced that the companies successfully completed what they call the world’s first extended-range 5G NR data call over mmWave. The extended range data call was completed in Regional Victoria, Australia on 20 June, achieving a farthest-ever connection of 3.8 kilometers (km).

This so called “breakthrough” from Qualcomm Technologies, Casa Systems and Ericsson provides global network operators and ISPs with the reach and performance to offer fixed broadband wireless as a “last mile” access technology.  Of course, line of sight communications (i.e. no trees, walls or other blockages permitted). With the increased range demonstrated for mmWave, that technology may be suitable for fixed wireless access (FWA) as well as for 5G mobile service in suburban or even rural areas that won’t require as many small cells or high density cell towers.

Network operators will have the potential to use their existing mobile network assets to deliver fixed wireless services and expand their service with ease to new areas, from urban to rural, while delivering 5G’s multi-gigabit speeds and ultra-low latency to a wider customer base within their coverage footprint. In addition, this milestone will proliferate the roll-out of FWA customer-premises equipment (CPE) devices to areas that are often too difficult to reach with traditional broadband, including rural and suburban areas, empowering more customers across the globe to access superior connectivity at fiber optic-like speeds.

The extended-range data call was achieved by applying extended-range software to commercial Ericsson hardware – including Air5121 and Baseband 6630 – and a 5G CPE device powered by the Qualcomm Snapdragon X55 5G Modem-RF System with the Qualcomm QTM527 mmWave antenna module.

5G mmWave: facts and fictions you should definitely know

“With the introduction of the Qualcomm QTM527 mmWave antenna module as part of the Snapdragon X55 5G Modem-RF System, we are empowering operators and OEMs to offer high-performance, extended-range multi-gigabit 5G broadband to their customers – which is both flexible and cost-effective, as they can leverage existing 5G network infrastructure,” said Gautam Sheoran, senior director, product management, Qualcomm Technologies, Inc. “With this major milestone being the first step in utilizing mmWave for an extended-range 5G data transfer, our collaboration with Casa Systems and Ericsson is paving the way to implement fixed broadband services for broad coverage in urban, suburban and rural environments.”

“As operators look to close the digital divide and expand broadband services throughout rural, suburban and urban communities, the technology in this data connection underscores the critical role mmWave will play in the global proliferation of 5G networks,” said Steve Collins, senior vice president, access devices, Casa Systems. “This collaboration with Qualcomm Technologies and Ericsson is an industry milestone that makes it possible for operators to offer multi-gigabit broadband services wirelessly as a new broadband alternative solution using mmWave spectrum, and we look forward to delivering innovative CPE devices that further empowers the global broadband delivery ecosystem.”

Ericsson has a long history of working with extended range across generations of mobile technologies, pioneering with 3G, then 4G and now with 5G. By collaborating with leading industry partners like Qualcomm Technologies and Casa Systems, we are able to ensure that everyone can access the transformative benefits of 5G connectivity. This achievement will open up opportunities for communications service providers around the world and how they can use mmWave spectrum for long-range use cases,” said Per Narvinger, head of product area networks, Ericsson.

…………………………………………………………………………………………………………………………………………………………………………………..

5G SA Carrier Aggregation from Qualcomm & Ericsson:

Today’s announcement comes just three days after Qualcomm and Ericsson announced that they completed interoperability tests for 5G standalone (SA) carrier aggregation. Carrier aggregation allows operators to use multiple sub-6 GHz spectrum channels simultaneously to transfer data between base stations and a 5G mobile device.

The test was completed at Ericsson’s labs in Beijing, China. The connection reached 2.5 Gb/s peak speeds by aggregating 100 MHz and 60 MHz within the 2.5 GHz (n41) TDD band in a 70% downlink configuration and using 4×4 multiple-input multiple-output (MIMO) technology.  In Sweden, the two companies established a successful 5G SA carrier aggregation data call by combining 20 MHz in the 600 MHz (n71) FDD band with 100 MHz of spectrum in the 2.5 GHz (n41) TDD band.

Implementation of 5G carrier aggregation delivers enhanced network capacity along with improved 5G speeds and reliability in challenging wireless conditions, allowing consumers to experience smoother video streaming and enjoy faster downloads. This key 5G capability is expected to be widely deployed by operators around the world in 2021, according to Ericsson.

…………………………………………………………………………………………………………………………………………………………………………………..

About Qualcomm
Qualcomm is the world’s leading wireless technology innovator and the driving force behind the development, launch, and expansion of 5G.  When we connected the phone to the internet, the mobile revolution was born. Today, our foundational technologies enable the mobile ecosystem and are found in every 3G, 4G and 5G smartphone. We bring the benefits of mobile to new industries, including automotive, the internet of things, and computing, and are leading the way to a world where everything and everyone can communicate and interact seamlessly.

Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

About Casa Systems, Inc.
Casa Systems, Inc. is delivering physical, virtual and cloud-native 5G infrastructure and customer premise networking for high-speed data and multi-service communications networks. Our core and edge convergence technology enables public and private networks for both communications service providers and enterprises. Casa Systems’ products deliver higher performance, improved network flexibility and scalability, increased operational efficiency and lower total cost of ownership (TCO). Commercially deployed in more than 70 countries, Casa serves over 475 Tier 1 and regional service providers worldwide. For more information, visit http://www.casa-systems.com.

About Ericsson
Ericsson enables communications service providers to capture the full value of connectivity. The company’s portfolio spans Networks, Digital Services, Managed Services, and Emerging Business and is designed to help our customers go digital, increase efficiency and find new revenue streams. Ericsson’s investments in innovation have delivered the benefits of telephony and mobile broadband to billions of people around the world. The Ericsson stock is listed on Nasdaq Stockholm and on Nasdaq New York. www.ericsson.com

References:

https://www.globenewswire.com/news-release/2020/08/31/2086269/0/en/Qualcomm-Casa-Systems-and-Ericsson-Achieve-World-s-First-Extended-Range-5G-NR-Data-Call-Over-mmWave.html

https://www.telecompaper.com/news/qualcomm-casa-systems-ericsson-achieve-extended-range-5g-data-call-over-mmwave–1352053

https://www.ericsson.com/en/news/2020/8/5g-carrier-aggregation

https://www.qualcomm.com/invention/5g/5g-nr/mmwave

Ericsson deploys 25,000 base stations in Russia; 100 5G deployment agreements top Huawei & Nokia

Sebastian Tolstoy, Head of Ericsson in Russia, said:

“Our development enables Tele2’s subscribers the opportunity to use mobile internet services in high quality. As all our network equipment in Russia supports an upgrade to 5G technologies through remote software installation, operators in Russia are able to launch new services as soon as they get the appropriate licenses.

Ericsson’s 5G Innovation Hub in Moscow gives Russian service providers the opportunity to test innovations on live 5G and IoT networks. The Ericsson Academy, our training center co-located at the Innovation Hub, trains more than 1,000 specialists from Russian service providers and students each year.”

The pace of deployment from Ericsson is truly impressive, especially in the context of the ongoing pandemic. If the current pace is maintained, the five-year deal will be completed in two years.

Aleksey Telkov, CTO of Tele2 Russia, comments:

“In the Moscow region, from the very start, we installed 5G-ready base stations. We deployed a pilot 5G network in the center of Russia’s capital, and together with Ericsson, we are carrying out a large-scale network modernization across the country.

This allows us to say that Tele2 is technologically ready for 5G.”

The 5G Zone uses the 28 GHz band in non-Standalone (NSA) mode and the frequency band for anchor LTE band is Band 7 (2600MHz). 5G pocket routers supporting 28 GHz were used as end-user devices for mobile broadband services with ultra-high speeds.

Ericsson and Tele2’s 5G Zone was used to demonstrate the opportunities 5G presents, including immersive VR entertainment, smart buildings, and other consumer and industrial use cases.

………………………………………………………………………………………………………………………………………………………………………………………………………………..

Ericsson announced it had 100 telco 5G agreements following the announcement of a 5G deal with Telekom Slovenije yesterday.  That’s a lot of progress made in a relatively short time. Just under a year ago, Ericsson had publicly announced 24 5G contracts with equipment live in 15 networks. As of today, 58 contracts have been publicly announced and Ericsson’s gear is being used in 56 live 5G networks.

Börje Ekholm, President and CEO, Ericsson, said:

“Our customers’ needs have been central to the development and evolution of Ericsson’s 5G technology across our portfolio from the very beginning. We are proud that this commitment has resulted in 100 unique communications service providers globally selecting our technology to drive their 5G success ambitions.

We continue to put our customers center stage to help them deliver the benefits of 5G to their subscribers, industry, society and countries as a critical national infrastructure.”

Ericsson has been able to capitalize on the uncertainty surrounding Huawei’s future in many Western countries due to security concerns.  Even prior to the UK’s decision to ban Huawei’s equipment, many operators in Britain were moving away from the Chinese vendor.  India is now moving in that same direction.

In April, Howard Watson, BT’s chief technology and information officer, said:

“Having evaluated different 5G core vendors, we have selected Ericsson as the best option on the basis of both lab performance and future roadmap. We are looking forward to working together as we build out our converged 4G and 5G core network across the UK.”

For comparison, Nokia says it has 85 commercial 5G deals and equipment live in 33 5G networks.  In February 2020, Huawei aid it had secured more than 90 commercial 5G contracts worldwide, an increase of nearly 30 from last year despite the relentless pressure from U.S. authorities and being banned in the UK.

………………………………………………………………………………………………………………………………………………………………………………………………..

References:

Ericsson deploys 25,000 base stations in Russia to support Tele2’s 5G rollout

https://asia.nikkei.com/Business/China-tech/Huawei-claims-over-90-contracts-for-5G-leading-Ericsson

 

Ericsson: U.K. Telecom Rules May Hinder Country’s 5G Opportunity

Bloomberg reports that the U.K. risks missing the benefits of fifth-generation (5G) wireless networks, because of policies that could lead to an expensive and inefficient roll-out, according to Swedish telecommunications equipment giant Ericsson AB.

“Decisive action is needed — uncertainty is not good for business and it could delay the roll-out of the U.K.’s 5G network, putting the country’s long-term competitiveness at risk. The U.K. was late in adopting 4G and largely missed the economic opportunity that came with it. There is a real possibility of history repeating itself.” said Arun Bansal, head of the wireless equipment supplier’s European and Latin American operations.

Bansal identified several concerns with U.K. policy. He said there’s a risk the airwaves (frequency spectrum) owned by different carriers could be fragmented and inefficient. International cooperation is required so the same frequency bands are used within the country.

NOTE:  It is the job of ITU-R WP5D to update ITU-R M.1036 Frequency arrangements for implementation of the terrestrial component of International Mobile Telecommunications (IMT) in the bands identified for IMT in the Radio Regulations.   WP 5D gets spectrum recommendations inputs from WRC 19 meeting outputs from last Fall.  A new version of M.1036 must be completed before IMT 2020 (5G) RIT/SRIT specs are approved.

The telecom regulator in each country is then responsible for assigning frequencies to each IMT service, e.g. 4G and 5G within their country.  The U.K. telecom regulator is OFCOM.  In the U.S. it’s the FCC.

………………………………………………………………………………………………………………………………………..

Bansal also noted the country’s required planning approvals are slowing engineers’ work and making it more expensive, Bloomberg reported  He urged the government could do a better job at supporting 5G as a potential replacement for landline broadband, the report said.

Britain’s government rejected the criticisms and said reforms have made network deployment cheaper and easier.

In a statement, the U.K. Department for Digital, Culture, Media & Sport told Bloomberg that the country’s campaign to roll out gigabit-capable broadband nationwide “is technology neutral, and we would be happy to meet with the supplier to discuss the role of 5G.”

Ericsson has been positioning itself to supply British carriers with billions of pounds’ worth of 5G equipment. With U.K. officials now looking to curtail the role of its Chinese rival Huawei Technologies Co. amid growing tensions with Beijing, that potential opportunity has grown — as long as Ericsson can show it’s able to match Huawei’s technological edge.

Bansal didn’t mention Huawei by name. However, he denied claims that Ericsson was technologically behind any other player, and said it’s ready for whatever approach Britain chooses.  “We ship enough 5G-ready radios to cover the greater London area every single day,” he said.

……………………………………………………………………………………………………………………………………………………….

Bansal’s allegations comes one week after O2, the London-based telecommunications services provider owned by Telefónica, selected Ericsson to deploy its 5G across the UK and upgrade the existing 2G/3G/4G sites as part of a major network modernization program.

In April, BT said it would use Ericsson equipment for the core of its 5G network.  Ericsson would provide a “cloud native, containerized” core for 4G, non-standalone 5G, and eventually 5G standalone services, which will become a converged IP network.

NOTE that there are no standards or specifications for such a core network.  The only 5G core spec we know of is 3GPP Release 16 specification TS.23501 5G Systems Architecture-V16.4.0 (27 March, 2020) which does not specify how to build a cloud native containerized core network.

“The containerization of core network functions will enable BT to benefit from greater industry innovation in many areas, including automation, orchestration, network resilience, security, and faster upgrade techniques,” Ericsson said at that time.  “This means increasing overall network availability for customers and services while being cost-effective.”

……………………………………………………………………………………………………………………………..

Last month, PYMTS reported COVID-19 has prompted Ericsson to update its forecast for worldwide 5G subscriptions to 2.8 billion by 2025 from 2.6 billion, the company said in a webinar.

“We’re witnessing transformative changes just in the last two months,” Patrik Cerwall, Ericsson’s head of strategic marketing, said in the “Unboxed Office” event that was broadcast live on Periscope.

Amy McCune, Ericsson North America’s vice president and chief operations officer, told PYMNTS in May that shifts in lifestyle, work and healthcare are accelerating the demand for the next generation of wireless communications technologies.

……………………………………………………………………………………………………………………………………

References:

https://www.bloomberg.com/news/articles/2020-06-19/ericsson-says-u-k-telecom-rules-risk-undermining-5g-opportunity?srnd=technology-vp&sref=zNmRQ0gk

https://www.ericsson.com/en/press-releases/2020/4/bt-and-ericsson-join-up-to-deliver-cloud-native-dual-mode-5g-core

 

Ericsson Says UK Telecom Rules Are Slowing 5G Installs And Driving Up Costs

Frequency arrangements for implementation of the terrestrial component of International Mobile Telecommunications in the bands identified for IMT in the Radio Regulations

Sweden Telecom Operators Announce 5G Network Launches and Details

 Three major telecom companies in Sweden –Tele 2, Telia, and Tre Sweden– have announced their upcoming 5G network launches and areas covered. Sections of Stockholm, the nation’s capital, already have 5G service, with many more being added to the list as the year goes on, as well as other cities and towns in Sweden.

On May 24th, Tele 2 switched its network to 5G, with availability opening up to customers as of June 24 in Stockholm, Gothenburg, and Malmö.  The Tele2 network will offer service at more than 1 Gbps through 80 MHz bandwidth on the C-band.

Customers with a Tele2 Unlimited subscription and a compatible handset from Samsung’s Galaxy S20 series will get free access to Tele2’s 5G network from 24 June. Other offers and cooperations with other phone manufacturers will be presented later, and Tele2 will gradually phase in 5G throughout Sweden.

Telia inaugurated its first major 5G commercial network in Stockholm today (May 25th) even though it had already been up and running for a few weeks. It has 15 base stations that are already in place, and 60 more will be built in June hand in hand with Ericsson, who will be powering the network for Telia.  Initial services on the 700Mhz band will cover most of central Stockholm by mid-June, including the Norrmalm, Östermalm and Vasastan districts (more below).

Tre Sweden is jumping on the 5G board by bringing its network in the centers of Malmö, Lund, Helsingborg, Vasteras, Uppsala, and western parts of Stockholm in June. Tre said that it would activate 5G in Stockholm city centre after the summer.  The earlier start in western Stockholm will include Kungsholmen, Bromma and parts of Solna.  This will be an expansion of its already-launched 5G network back in December 2019, when it announced testing.

…………………………………………………………………………………………………………………………………………

Telia takes center stage to promote 5G:

Telia aims to enhance and supplement its low-band 5G commercial services with additional nationwide 5G coverage, including mid- and high-bands, following the auction of the related spectrum by the Swedish government later this year. For this launch Telia is using its existing 700MHz spectrum, boosted by LTE and New Radio (NR) carrier aggregation.

Ericsson Telia 25May2020

 Fredrik Jejdling Executive Vice President and Head of Networks, Ericsson; Allison Kirkby, CEO, Telia Company; Anders Ygeman, Sweden’s Minister of Energy and Digital Development, at the Telia Company 5G launch in Stockholm.

……………………………………………………………………………………………………………………………………………………

Having already partnered successfully on 5G in Sweden – including enabling the country’s first live 5G network at the KTH Royal Institute of Technology and partnering with Volvo to operate Sweden’s first industrial 5G network – Telia selected Ericsson as its 5G partner for the launch network. Ericsson President and CEO, Börje Ekholm, said 5G will transform Swedish life, society and business for the better.

Earlier this month Telia’s sister company Telia Norway also launched its first commercial 5G services, with Ericsson as its sole 5G RAN supplier.

Allison Kirkby, CEO of Telia, said in a press release: “Our networks have never been more important to lives and livelihoods, than now. Telia’s 5G launch lays the foundations for the next phase of digital transformation, with innovation, sustainability, and security as three critical pillars, and we are proud to be doing this launch in partnership with Ericsson.”

Kirkby continued “As we roll-out 5G across Sweden, we will open up new user experiences and accelerated innovation in areas such as entertainment, healthcare, manufacturing, and transport, that will collectively strengthen and protect everyone living and working in Sweden, and Swedish competitiveness in the world.”

Telia’s 5G network is due to power most of Stockholm’s city center by June 21, and its private customers that are within range and have a 5G-ready smartphone and Jobbmobil contract will be able to enable the new 5G network. Moreover, its network is run 100% on renewable energy certified by the Swedish Society for Nature Conservation.

5G launches are scheduled for later in the year in other major cities in Sweden including Gothenburg and Malmö.

References:

https://interestingengineering.com/sweden-sets-up-first-5g-network-with-its-major-telecom-companies

https://www.ericsson.com/en/press-releases/2020/5/telia-company-launches-ericsson-powered-commercial-5g-in-sweden

https://markets.businessinsider.com/news/stocks/telia-company-launches-ericsson-powered-commercial-5g-in-sweden-1029230070

https://www.tele2.com/about/who-we-are/tele2-5g

https://www.telecompaper.com/news/tele2-telia-and-3-sweden-announce-5g-networks-launches–1339788

https://www.teliacompany.com/en/news/news-articles/2018/swedens-first-5g-network-goes-live/

SK Telecom Selects Ericsson 5G Packet Core (3GPP Release 16- 5GC)

SK Telecom has selected Ericsson to deliver a Cloud Packet Core for its 5G network. Ericsson says its Cloud Packet Core (part of the company’s Cloud Core portfolio) helps service providers to smoothly migrate to 5G Core (5GC) stand-alone architecture.

Author’s Note:

Please see below for more information on 3GPP 5GC which is part of Release 16 and as yet has not been submitted to either ITU-R or ITU-T for IMT 2020 mobile packet core.  There seems to be no independent work on a 5G mobile packet core within ITU, which is evidently waiting anxiously for 3GPP Release 16 to be completed and forwarded to various ITU-R WPs and ITU-T Study Groups.

………………………………………………………………………………………………………………………………………………………………………………………..

Ericsson’s Cloud Packet Core is at the business end of mobile broadband and IoT networks. It creates value, visibility and control of traffic and applications by determining the optimal quality of a service, then enforcing it through appropriate policy.

Jung Chang-kwan, Vice President and Head of Infra Engineering Group, SK Telecom, says: “By utilizing Ericsson’s Cloud Packet Core network solution, which realizes simplified network operations, we will unleash the full potential of new 5G-enabled use cases with greater efficiency.”

Jan Karlsson, Senior Vice President and Head of Digital Services, Ericsson, says: “This deal, and the opportunity to work with SK Telecom’s Network Functions Virtualization Infrastructure (NFVI), has put us in the ideal position to further strengthen their 5G network. Delivering our Cloud Packet Core solution will positively impact SK Telecom’s network operations and will reinforce Ericsson’s position as a leader in 5G core.”

SK Telecom switched on its commercial 5G network in December 2018 after selecting Ericsson as one of its primary 5G vendors. Previously, Ericsson provided radio access network (RAN) products, including mid-band Massive MIMO.

………………………………………………………………………………………………………………………………………………………….

3GPP 5GC (the only specification for a 5G mobile packet core):

The 5GC (5G packet Core), specified in 3GPP TS 23.501: System architecture for the 5G System (5GS); Stage 2, will be part of 3GPP Release 16, which won’t be completed till June 2020 at the earliest.

3GPP’s 5G System architecture is defined to support data connectivity and services enabling deployments to use techniques such as e.g. Network Function Virtualization and Software Defined Networking. The 5G System architecture shall leverage service-based interactions between Control Plane (CP) Network Functions where identified. Some key principles and concept are to:

–     Separate the User Plane (UP) functions from the Control Plane (CP) functions, allowing independent scalability, evolution and flexible deployments e.g. centralized location or distributed (remote) location.

–     Modularize the function design, e.g. to enable flexible and efficient network slicing.

–     Wherever applicable, define procedures (i.e. the set of interactions between network functions) as services, so that their re-use is possible.

–     Enable each Network Function and its Network Function Services to interact with other NF and its Network Function Services directly or indirectly via a Service Communication Proxy if required. The architecture does not preclude the use of another intermediate function to help route Control Plane messages (e.g. like a DRA).

–     Minimize dependencies between the Access Network (AN) and the Core Network (CN). The architecture is defined with a converged core network with a common AN – CN interface which integrates different Access Types e.g. 3GPP access and non-3GPP access.

–     Support a unified authentication framework.

–     Support “stateless” NFs, where the “compute” resource is decoupled from the “storage” resource.

–     Support capability exposure.

–     Support concurrent access to local and centralized services. To support low latency services and access to local data networks, UP functions can be deployed close to the Access Network.

–     Support roaming with both Home routed traffic as well as Local breakout traffic in the visited PLMN.

The 5G architecture is defined as service-based and the interaction between network functions is represented in the following two ways:

–     A service-based representation, where network functions (e.g. AMF) within the Control Plane enables other authorized network functions to access their services. This representation also includes point-to-point reference points where necessary.

–     A reference point representation, shows the interaction exist between the NF services in the network functions described by point-to-point reference point (e.g. N11) between any two network functions (e.g. AMF and SMF).

…………………………………………………………………………………………………………………………………………………………………………………………………………………..

GSMA’s Position on 5GC:

The network evolution from 4G-LTE mobile packet core (EPC) to 5G Core (5GC) plays a central role in creating a powerful network platform that is capable of being exposed and automated for service providers.

5GC has been designed from its inception to be “cloud native,” inheriting many of the technology solutions used in cloud computing and with virtualization at its core.  Virtualization of network functions enables  5GC to be redesigned and become open and flexible enough to meet the diversity of service and business requirement in 5G era.

5GC will also offer superior network slicing and QoS features. Another important characteristic is the separation of the control plane and user plane that besides adding flexibility in connecting the users also allows an easier way to support a multitude of access technologies, better support for network slicing and edge computing.

5GC proposes a service based architecture  (SBA), which provides unprecedented efficiency and flexibility for the network.  SBA is an architectural for building system based on fine-grained, interaction of loosely coupled and autonomous components called services. This architecture model is chosen to take full advantage of the latest virtualization and software technologies.

Service-based architectures have been in use in the software industry to improve the modularity of products. A software product can be broken down into communicating services. With this approach, the developers can mix and match services from different vendors into a single product.

Compared to the previous generation reference point architecture as EPC, the elements of service based architecture are defined to be the NF (network functions), which interconnect with the rest network functions across a single API calling interface and provide the authorized services to them. Network repository functions (NRF) allows every network function to discover the services offered by other network functions. A service is an atomized capability in a 5G network, with the characteristics of high-cohesion, loose-coupling, and independent management from other services. This allows individual services to be updated independently with minimal impact to other services and deployed on demand. A service is managed based on the service framework including service registration, service authorization, and service discovery. It provides a comprehensive and highly automated management mechanism implemented by NRF, which greatly reduces the complexity of network maintenance. A service will interact with other services in a light-weight manner, e.g. API invocation.

Virtualization and cloud computing have resulted in lowering the cost of computing by pooling resources in shared data centers.

  • 5G core networks can be shrunk in size by using virtualization. Varies components of the core network can be run as communicating virtual machines.
  • Moving the control plane of the 5G core network to a cloud provider lowers the deployment cost.

The 5G core is a mesh of interconnected services as shown in the figure below:

…………………………………………………………………………………………………………………………………………………………………………………………………………..

Ericsson Addendum:

According to Ericsson’s latest Mobility Reportpublished earlier this week, global 5G subscriptions will exceed 2.6bn within the next six years and by that time Ericsson predicts that 5G will cover 65 percent of the world. It also believes that total mobile subscriptions, including to previous generation networks, will reach 8.9bn from 8bn over the next six years. More than quarter of the global subscriptions will be 5G by 2025 and will account for around 45 percent of worldwide mobile data traffic.

Additionally, Ericsson has also announced its partnership with NVIDIA in order to develop technologies that will enable communication service providers to build virtualized 5G radio access networks, which will boost the introduction of new AI and IoT-based services. The ultimate focus will be to commercialize virtualized RAN technologies to offer radio networks with flexibility and ability to enter the market in a shorter time for new services like VR, AR and gaming.

References:

https://www.ericsson.com/en/press-releases/2019/11/ericssons-cloud-packet-core-to-strengthen-sk-telecoms-5g-network2

https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf

https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2018-2-PDF-E.pdf

https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/

https://www.ericsson.com/en/portfolio/digital-services/cloud-core/cloud-packet-core

https://www.sdxcentral.com/articles/news/ericsson-and-verizon-claim-worlds-first-cloud-native-tech-on-live-core/2019/07/

https://medium.com/5g-nr/5g-service-based-architecture-sba-47900b0ded0a

 

Ericsson 5G data call using dynamic spectrum sharing with Qualcomm 5G Modem-RF System

Ericsson said in a press release that it made the world’s first 5G data call using dynamic spectrum sharing.   Ericsson Spectrum Sharing allows an existing LTE carrier to operate 5G New Radio (NR) and LTE simultaneously – with a simple software upgrade. The solution is based on innovative intelligent scheduler algorithms that enable optimal performance as the mix of 4G and 5G devices in the network changes over time.

The 5G data call was made between a 5G mobile test device powered by the Qualcomm Snapdragon X55 5G Modem-RF System and a commercial LTE smartphone.  The LTE smartphone and the 5G testing device data call sections were running simultaneously on the same FDD low band spectrum, the referenced commercial hardware and Ericsson Radio System software.   The call took place in August at Ericsson’s lab in Ottawa, Canada using an Ericsson macro radio that supported both 4G and 5G.

Ericsson said that this technology is poised to change how new generation radio access technologies are introduced in operator networks using one of the most limited resources in mobile, which is spectrum.  With dynamic spectrum sharing (DSS), operators can introduce 5G immediately in the same band as 4G. The technology dynamically allocates spectrum resources between 4G and 5G based on user demand.

Ericsson says its DSS is based on proprietary scheduler algorithms that enable optimal performance as the mix of 4G and 5G devices in the network changes over time.

Ericsson Spectrum Sharing

Ericsson Spectrum Sharing software dynamically shares spectrum between 4G and 5G carriers based on traffic demand. For every millisecond, the split of simultaneous 4G and 5G capacity is adjusted to secure an optimal performance for any mix of 4G and 5G active devices in the network. This minimizes spectrum wastage and results in the best end-user performance.

………………………………………………………………………………………………………………………………………………………………………………………………

Per Narvinger, Head of Product Area Networks, Ericsson, says, “With Ericsson Spectrum Sharing, service providers can reuse their Ericsson Radio System investments on bands currently used for LTE to support the introduction of 5G. With the TCO advantages offered by Ericsson Spectrum Sharing, we are convinced that it will be a catalyst to drive the rapid build-out of wide area 5G coverage. This first call marks an important milestone in evolving the 5G networks to cater for the extreme demands ahead.”

“This achievement is the result of our longstanding collaboration with Ericsson and is a critical step toward enabling operators worldwide to utilize DSS for a seamless global transition to nationwide 5G,” said Durga Malladi, senior vice president and general manager, 4G/5G, Qualcomm Technologies, Inc. “With DSS support included in our comprehensive Snapdragon X55 5G Modem-RF System architecture, we’re looking forward to helping fast-track the mobile industry to nationwide coverage during the second phase of 5G commercialization next year.”

………………………………………………………………………………………………………………………………………………………………………………………………

As 5G commercial rollouts move ahead, spectrum sharing represents an attractive option for service providers looking to rapidly roll out 5G on FDD bands without the need to re-farm spectrum. This milestone achieved by Ericsson and Qualcomm Technologies shows real progress towards rapid 5G commercialization, with dynamic spectrum sharing playing a key role.

Traditionally, new generation radio access technologies are deployed on separate spectrum blocks – as was the case with 2G, 3G and 4G. This would require operators to buy new spectrum or re-farm the existing spectrum to allocate the new generation. This is a very slow and costly process. Spectrum re-farming could take a decade but with spectrum sharing, this can be done overnight. Dynamic spectrum sharing revolutionizes the introduction of new technologies with a breakthrough innovation that allows the deployment of both 4G and 5G in the same band and dynamically allocates spectrum resources between 4G and 5G based on user demand.

Ericsson says it provides an opportunity for service providers to extend the coverage of new 5G NR mid and high bands by applying Inter-band NR Carrier Aggregation between low-mid and low-high frequency bands. Here, Ericsson Spectrum Sharing is key to allowing an easy introduction of NR on low bands. In combination with NR Carrier Aggregation, spectrum sharing can typically double the coverage area of new 5G mid and high band cells, delivering hundreds of megabits per second indoors and at cell edge.

According to an Ericsson study* 73 percent of the service providers that were the first to move on with 4G have gained market share in their respective markets. The combination of l fast time-to commercialization with low investments requirements has made spectrum sharing an essential part of an operator’s 5G strategy.

*Ericsson study on 15 largest markets in the world that have 4G (Data from Ovum WCS database).

–> Read more about sharing spectrum for faster and smoother deployments of 5G

………………………………………………………………………………………………………………………………………………………………………………………………….

Verizon’s CEO Hans Vestberg has repeatedly said that the carrier plans to use Ericsson’s DSS as an integral part of its 5G strategy. However, Ericsson’s DSS technology only works on its New Radio equipment deployed in the same spectrum currently being used for LTE.  And, Verizon has not divulged whether it is deploying Ericsson NR equipment in any of its LTE spectrum. When talking about 5G, Verizon mainly talks about its mmWave deployments in high frequency spectrum that has never been used for LTE.

T-Mobile CEO John Legere said on a recent earnings call, “To get to dynamic spectrum sharing, you’ll deploy New Radio. So, I am yet to hear anybody in Verizon declare that they are deploying New Radio in low-band or mid-band. And, if you want to use DSS, you are effectively committing in the same breath to rolling out 5G in mid- and low band. I haven’t heard that yet as a declared strategy for a Verizon.”

 

References:

https://www.ericsson.com/en/news/2019/9/ericsson-spectrum-sharing

https://www.ericsson.com/en/networks/offerings/5g/sharing-spectrum-with-ericsson-spectrum-sharing

https://www.fiercewireless.com/5g/ericsson-makes-5g-data-call-using-dynamic-spectrum-sharing

 

 

T-Mobile Claim: 1st Standalone 5G Data Session on a Multi-Vendor Radio and Core Network

T-Mobile and Ericsson have conducted the first standalone 5G data session in the United States.

“This major 5G breakthrough is another example of how the T-Mobile engineering team continues to innovate and drive the entire industry forward. I could not be more proud of them,” said Neville Ray, Chief Technology Officer at T-Mobile. “5G brings a new era in wireless, and if our merger with Sprint is approved, the New T-Mobile will bring together the resources and vision necessary to ensure America has a network that’s second to none,” he added.

Existing 5G networks are non standalone (NSA) and require a simultaneous connection to an LTE network. While a non-standalone architecture still offers better speeds and performance than just LTE, a standalone architecture makes sense for some new enterprise 5G services such as smart cities.

T-Mobile used Ericsson’s AIR 6488 radio and Baseband 6630. These products, from Ericsson’s Radio System portfolio, can become standalone with just a software update Ericsson says (we have our doubts).

According to Ericsson, Standalone New Radio (SA NR) – coupled with cloud-native 5G Core – will help to power exciting new applications such as mobile VR, cloud gaming, and connected cars. Such applications require almost real-time responses and reliable connectivity.

Image result for Stand Alone 5G pic

3GPP Release 15 “5G New Radio (NR)” is an OFDM-based global wireless spec for pre-standard 5G mobile networks.

It has two versions: Non-Standalone (NSA) 5G NR (widely deployed) and Standalone 5G NR (not deployed yet).

…………………………………………………………………………………………………….

Accomplishing this standalone 5G milestone on a multi-vendor 5G next generation network was no small feat. To complete the successful data session in its Bellevue, Washington lab, T-Mobile enlisted the help of industry leaders Ericsson, Nokia, Cisco and MediaTek.

Ericsson said in a blog post:

 Standalone New Radio (SA NR) – coupled with cloud-native 5G Core – will provide better support for all use cases and unlock the power of next-generation mobile technology. It will supercharge applications that require real-time responses and massive connectivity such as mobile augmented and virtual reality (AR/VR), cloud gaming, smart factories and meters, and connected vehicles. 

Ericsson has been providing T-Mobile with equipment for multi-band 5G networks since 2018.

T-Mobile has not specified what spectrum it used for the standalone 5G data session, but a spokesperson has confirmed it was sub-6GHz.

As part of concessions to win the Department of Justice’s approval for the proposed T-Mobile-Sprint merger, Sprint will divest its prepaid business to Dish. Dish will have access to T-Mobile’s network through an MVNO arrangement for seven years while Dish builds out its own 5G standalone network.

T-Mobile says it plans to introduce standalone 5G in 2020, but that will NOT be compatible with IMT 2020 which won’t be completed till the end of that year!

All of today’s 5G networks in the US are currently non standalone (NSA),  based on 3GPP Release 15 5G NR in the data plane.  3GPP Release 16, together with parts of Release 15, will be 3GPP’s final IMT 2020 RIT submission to ITU-R WP5D.

3GPP has agreed revised completion dates for Release 16 – schedule shifted out by 3 months:

  • Release 16 RAN-1 Freeze RAN # 86 December 2019
  • Release 16 RAN Stage 3 Freeze RAN # 87 March 2020
  • Release 16 ASN.1 Freeze RAN # 88 June 2020
  • Release 16 RAN-4 Freeze RAN # 89 September 2020

References:

https://www.telecomstechnews.com/news/2019/aug/01/tmobile-ericsson-us-first-standalone-5g-data-session/

https://www.ericsson.com/en/news/2019/7/t-mobile-5g-data-session

https://www.t-mobile.com/news/t-mobile-achieves-a-worlds-first-with-standalone-5g-data-session

https://www.ericsson.com/en/press-releases/2018/2/ericsson-and-t-mobile-to-deploy-multi-band-nationwide-5g-network

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

Proposal to develop a draft new ITU-R WP 5D Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

ITU-R WP5D July 2019 meeting contribution by LM Ericsson

Abstract:

Ericsson proposes that ITU-R WP 5D develops a Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum bands.

[This author thoroughly agrees with Ericsson’s proposal!]

Introduction:

IMT-2020 networks have the capacity of satisfying the need for high data rate coverage for enhanced mobile broadband services in under-served and remote, sparsely populated areas. In this contribution we are suggesting that work be started on a Report giving details on prospects associated with the provisioning of enhanced mobile broadband services to remote, sparsely populated and underserved areas, proposing enhancements of user equipment (UE) as well as for networks in suitable frequency bands

  • for user equipment, possible solutions based on affordable user deployed equipment combined with access to local spectrum at user premises could be considered and examined, and
  • for network equipment, possible solutions based on high gain massive MIMO antennas could be reviewed.

A significant part of the global population is currently connected to existing cellular and mobile broadband sites. As a complement, users in remote sparsely populated and under-served areas could be connected to higher tower sites.

The proposed Report could, for example, consider an existing GSM cellular site grid designed for voice coverage, which could be estimated to reach high downlink data rates at a cell edge of IMT-2020 coverage ranges using conventional UE and network equipment. The Report would need, however, to focus on and consider the uplink performance characteristics which may be regarded as not being satisfactory without further elaborations on policy, spectrum and other aspects. For example, consider suggesting enhancements on UE and network equipment as well as consider using high tower installations that may provide coverage reach far beyond that is currently supported by typical GSM sites.

Background:

With regard to current perceptions, it is easy to get the impression that IMT-2020 is primarily targeting a shorter-range network build using millimeter wave (mmW) bands supporting extremely demanding requirements on latency, capacity, and very high peak data rates.

However, it is suggested that IMT-2020 is designed to operate in frequency bands ranging from low-bands to high-bands and can be configured to perform better or on-par with IMT-Advanced in every aspect, also in rural sparsely populated areas. IMT-2020 has evolved from IMT-Advanced, adding significant improvements to an already capable and proven design. IMT-2020 provides two fundamental benefits relevant for longer-range coverage

  • Firstly, it is designed to fully utilize massive MIMO, and
  • Secondly, it is based on a flexible and lean design reducing energy consumption.

To achieve longer-range, earlier cellular and mobile broadband systems have relied on low-bands. System operated in bands around the frequency range 450 MHz having excellent coverage, but with the limitation of available bandwidth. Pushing uses to higher and higher frequency bands is clearly resulting in increased capacity, but also in reduced coverage range.

For IMT-2020 massive MIMO configuration there is no longer a simple relation between low-band use and longer-range coverage. Using high-band frequencies the size of individual antenna element decreases, resulting in reduced efficiency of each antenna element. However, with massive MIMO this effect can be compensated for by adding antenna elements, effectively keeping the physical antenna size constant while moving to higher frequency bands.

Long-range cellular coverage is very much about using higher towers, higher power, and high gain antennas. In previous cellular systems, higher radio frequency (RF) power resulted in larger network energy consumption. IMT-2020 efficiently supports lean-design and massive MIMO as it provides the right tools to deploy longer-range systems supporting high peak data rates with lower average network energy consumption.

One offered solution to achieve both good coverage as well as high capacity is to use two or more frequency bands from low-band, mid-band and / or high-band, in an aggregated configuration. This approach has proven to be very effective in dense urban areas when deploying IMT-2020 in mmW bands in combination with a low-band or mid-band that can provide improved coverage.

When combined in an effective way, the high-band off-loads the traffic from the low-band and / or mid-band, resulting in significantly improved coverage as well as capacity. This could potentially also be a promising solution for bringing IMT-2020 to underserved rural sparsely populated areas. Combining IMT-2020 using a band in the range 3.5 GHz and IMT-Advanced in a band below the frequency 1 GHz on a GSM cellular grid can provide superior capacity compared to a standalone IMT-Advanced network deployment below 1 GHz. The reason being that in mid-bands in the range 3.5 GHz there is access to more bandwidth, and the low-band on a band below 1 GHz, provide coverage for cell edge users at the same time.

Considering the above, the proposed Report could review, discuss and assess the feasibility for potential enhancements for both network equipment and UE, it may consequently be viable to deploy IMT-2020 network in a band in the range 3.5 GHz providing high capacity and long-range coverage in underserved rural sparsely populated areas. This could be more feasible and economical than deploying new sites in these areas.

IMT-2020 could potentially provide high peak data rate and high capacity mobile broadband services in underserved rural sparsely populated areas by utilizing a band in the range 3.5 GHz, where typically 100 MHz bandwidth is available compared to 20 MHz that can be expected to be available in band in the range below 1 GHz. The Report could elaborate several possible enhancements using higher towers for extended range coverage. Further contribution based on studies, within the context of the proposed Report, would be required to find a technically as well as economically best practice solution resulting in sufficiently long-range, cell-edge throughput, and capacity. Such a solution could be to consider and review the use of both the existing grid of cellular towers and possibly the higher but also sparser television towers in combination, as well as reviewing a standalone 3.5 GHz configuration, or possible aggregation between the range 3.5 GHz for downlink and low-bands for uplink.

In addition, spectrum and policy aspects having a possible impact on a feasible network configuration may need to be addressed by a possible Report.

Proposals:

Ericsson proposes that WP 5D develops a draft new Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum.

Editor’s Note:

Attachments 1 and 2 of Ericcson’s proposal, with more detailed proposals and time schedules, are only available to ITU member organizations and individuals with a TIES account.

Ericsson announces 5G standalone NR software and 2 new Massive MIMO radios

Ericsson released a software update to its cellular base station hardware that the vendor says will markedly improve 5G network performance by increasing its capacity and coverage, especially indoors and in hard-to-reach areas. The upgrade will support a 3GPP Release 15 specification of Standalone 5G New Radio (NR)  which, unlike NSA (Non Stand Alone), does not need 4G LTE infrastructure such as signalling, mobile packet core and network management.

Ericsson says its 5G standalone NR software makes for a new network architecture, delivering key benefits such as ultra-low latency and even better coverage (says the company).

Ericsson also announced what it calls inter-band NR carrier aggregation, which is software that extends the coverage and capacity of NR on mid bands and high bands when combined with NR on low bands. Ericsson claims the software can help improve speeds in areas with poor coverage and in indoor environments.

Ericsson says it is evolving its cloud solution with an offering optimized for edge computing to meet user demand. This will enable service providers to offer new consumer and enterprise 5G services such as augmented reality and content distribution at low cost, low latency, and high accuracy.

Fredrik Jejdling, Executive Vice President and Head of Business Area Networks, Ericsson, says: “We continue to focus our efforts on helping our customers succeed with 5G. These new solutions will allow them to follow the 5G evolution path that fits their ambitions in the simplest and most efficient way.”

The new standalone 5G NR software can be installed on existing Ericsson Radio System hardware. Coupled with Ericsson’s 5G dual-mode Cloud Core solutions, the new products are aimed at opening new business opportunities for service providers – especially having established an architecture that facilitates agility, provides advanced support for network slicing and enables the speedy creation of new services.

Most pre-standard “5G” network operators have deployed NSA (Non Stand Alone) using LTE infrastructure.  Once the 5G coverage has been established, they can now also deploy standalone.

Low bands will play a key role in cost-efficiently extending the coverage provided by 5G deployments to date. Ericsson has also launched Inter-band NR Carrier Aggregation – a new software feature that extends the coverage and capacity of NR on mid- and high bands when combined with NR on low bands. This will improve speeds indoors and in areas with poor coverage.

Two new Massive MIMO radios have also been added to the Ericsson Radio System mid-band portfolio, allowing service providers to build 5G with precision: AIR 1636 for wider coverage which provides optimized performance on longer inter-site distances; and AIR 1623 for easy site build with minimal total cost of ownership.

Ericsson's 5G hardware is now being used in networks launching all over the world.Ericsson’s 5G hardware is now being used in networks all over the world.  Image courtesy of Ericsson

…………………………………………………………………………………………………………………………………………………………………………

5G (with low latency as per 3GPP Release 16 and later- IMT 2020) will enable augmented reality, content distribution and gaming, and other applications that require low latency and high bandwidth to perform with accuracy. To help service providers meet these requirements and offer new consumer and enterprise services, Ericsson is evolving its cloud solution with the launch of Ericsson Edge NFVI (Network Functions Virtualization Infrastructure), optimized for the network edge.

A compact and highly efficient solution, Ericsson Edge NFVI is part of the end-to-end managed and orchestrated distributed cloud architecture, which makes it possible to distribute workloads, optimize the network and enable new services in the cloud.

Ericsson is also launching the Ericsson partner VNF Certification Service, a partner certification program for virtual network functions (VNF). The service is open to all VNF vendors and grants a certification on the Ericsson NFVI platform using Ericsson Labs. This will create an ecosystem with a shorter time-to-market for working with partners and applications.

Industry Analyst Hugh Ujhazy, Vice President, IOT & Telecommunications at International Data Corporation (IDC), Asia Pacific, says: “Ericsson’s latest 5G offerings equip service providers with an even broader 5G portfolio by adding the Standalone NR option.  The series of solutions being added to the Ericsson 5G platform will allow service providers to deploy 5G sensibly and address new business opportunities with full flexibility. What you get is faster, cheaper, makes better use of existing assets and with fewer truck rolls.  That’s pretty cool.”

Dana Cooperson, Research Director, Analysis Mason, says: “Improved E2E 4G/5G network architecture flexibility and new 5G use cases require distribution to the edge. To be successful in providing new services it is essential to have a cost-efficient platform for distributed workloads. Ericsson’s initiative with the Edge NFVI solution and distributed cloud architecture will contribute to service providers’ success in 5G.”

References:

https://www.ericsson.com/en/press-releases/2019/6/ericsson-launches-enhanced-5g-deployment-options

https://venturebeat.com/2019/06/17/ericsson-updates-5g-cell-tower-software-to-improve-speed-and-coverage/

 

 

Singtel, Ericsson and Singapore Polytechnic launch “5G Garage”

Singapore network operator Singtel has opened Singapore’s first live 5G facility in conjunction with Ericsson and Singapore Polytechnic.  The 5G facility at Singapore Polytechnic’s Dover Road campus is named “5G Garage.” It is connected to Singapore’s pilot 5G network using the 3.5-GHz spectrum allocated by regulator IMDA for 5G trials.  5G Garage will serve as a training center, test bed and idea creation lab to develop Singapore’s 5G ecosystem.

The strategic objectives are:

• Build and operate a 5G facility where enterprises can develop and test 5G solutions
• Co-develop 5G solutions relevant to industries such as transportation, logistics, healthcare and manufacturing
• Develop and deliver 5G wireless technology curriculum for the SP’s School of Electrical and Electronic Engineering
• Develop 5G capabilities of our workforce

Mark Chong, Group Chief Technology Officer, Singtel, said, “Singtel is pleased to partner Ericsson and SP on our 5G Garage initiative. As Singapore advances its digital economy and becomes a Smart Nation, the benefits of 5G will first be seen in enterprises, especially in their digital transformation when they integrate technology into their processes, services and products. With 5G standards largely established (????), now is an opportune time for SMEs and enterprises to join us in shaping our 5G future.”

“As Singapore advances its digital economy and becomes a Smart Nation, the benefits of 5G will first be seen in enterprises, especially in their digital transformation when they integrate technology into their processes, services and products,” Chong added.

Martin Wiktorin, Country Manager Singapore, Brunei and the Philippines, Ericsson, states: “5G has the potential to transform industries and bring enhanced mobile broadband experience for consumers. At Ericsson, we are already collaborating globally with 42 operators, 45 institutes and 31 industry partners, to create a thriving 5G ecosystem. We are delighted to partner Singtel and Singapore Polytechnic towards the setting up of the 5G Garage, which we hope will stimulate SP students to come up with new 5G use cases.”

Enterprises will be able to use the facility to develop and test 5G solutions, and the three parties plan to co-develop 5G solutions for industries ranging from transport and logistics to healthcare to manufacturing.  As part of the collaboration, around 250 final year students from the polytechnic’s Diploma in Electrical & Electronic Engineering and Diploma in Computer Engineering will integrate 5G education and training into their coursework.  Students in Singtel’s Engineering Cadet Scholarship Program will be given the opportunity to take up internships in the 5G garage.

5G Garage is the latest project in Singtel and Ericsson’s 5G Centre of Excellence programme which focuses on upgrading of employees’ skills, technology demonstrations, live field trials and collaborations with educational institutions. Last November, Singtel and Ericsson made Singapore’s first 5G data call over their 5G pilot network at one-north.

Reference:

…………………………………………………………………………………………………………………………………………………………………………………………….
Addendum:

“The 5G Garage will be an exciting place where SP staff and students will work alongside Singtel, Ericsson and their partners to research and experiment with 5G technology, conduct 5G use case trials, and develop innovative 5G solutions and applications for businesses and industry,” said SP’s principal and chief executive, Mr Soh Wai Wah.

Out of more than 80 final-year projects developed by around 300 SP engineering students, three were chosen with potential for 5G Garage: an autonomous surveillance system that uses drones; a self-driving vehicle that can send real-time videos of the traffic situation to the cloud for data analysis and “intelligent” decision-making; and a pipe-climbing robot that uses magnetic wheels to attach itself onto metal structures and can provide a live feed of its surroundings via a mobile app.

Mr Mark Chong, Singtel group chief technology officer, said the engineering students demonstrated their capability to develop engineering solutions and help enterprises.

“The benefits of 5G will first be seen in enterprises, especially in their digital transformation when they integrate technology into their processes, services and products. With 5G standards largely established, now is an opportune time for SMEs and enterprises to join us in shaping our 5G future,” he said.

Infocomm Media Development Authority chief executive Tan Kiat How, the guest of honour at the event, said 5G will be an integral part of Singapore’s infrastructure. He said: “Apart from improved network speed and capacity, 5G’s significantly lower latency will allow us to maximize the potential of IoT (Internet of things) and smart city applications. These include autonomous vehicles, robotics or smart lamp posts.”

https://www.straitstimes.com/singapore/singtel-ericsson-spore-poly-set-up-5g-testing-centre