Telecom Italia “5G” trial to blanket San Marino in 2018

According to the Financial Times (on line subscription required):

Telecom Italia plans to test its home grown “5G” technology in the micro-state of San Marino next year, making it the first country in the world to boast a nationwide 5G network.  The state of San Marino, which has little more than 30,000 citizens, extends to only 61 sq km, making it the smallest republic in the world.

Telecom Italia Mobile (TIM) has signed a memorandum of understanding with the government of the tiny country to upgrade the existing 4G-LTE network in advance of a trial of “5G” services in 2018. It will double the number of mobile sites and will install a network of small cells in downtown San Marino, a Unesco heritage site, this year that will provide the backbone of the future commercial network. Investment in 5G network trials are taking place around the world with carriers in South Korea, China and the US among the most active in testing 5G technology. Giovanni Ferigo, head of technology for Telecom Italia Mobile, said San Marino’s 5G network would be the first in Europe “for sure.”

It was not revealed who created the specs for the Italian telco’s “5G” network or where Telecom Italia will procure the end point devices/handsets.  One would assume that Ericsson is supplying TIM with the “5G” base stations, based on a MOU signed between the two companies in March of this year.  TIM wrote in a press release on March 2, 2017:

TIM and Ericsson are committing to share skills, projects, laboratories and resources for designing, testing and building the technological components of the new 5G network needed to create a complete and open ecosystem around next-generation digital services.

In particular, the agreement will directly involve the research and innovation structures of the two companies, focusing on the design and testing of access infrastructure, the respective antenna systems and network virtualisation solutions, particularly through joint participation in Italian and European research projects and integration of service platforms for testing in the field of innovative Use Cases.

The 5G system will provide peak speeds of up to dozens of Gbps for UltraHD services and cloud computing solutions, a decrease in communication latency, reducing it to a few milliseconds, reliability for mission-critical services and service density with the ability to connect up to a hundred thousand terminals per cell. These characteristics mean that 5G will become the reference mobile network for next-generation digital services (such as virtual reality) and for the industrial Internet (robotics, manufacturing, health, environment, self-driving logistics).

The agreement is part of the “5G for Italy” initiative launched in 2016 by TIM and Ericsson for the establishment of an ecosystem of experimental industrial partners, confirming the commitment of the two companies to innovating technologies and networks in support of the socio-economic growth of the country.

…………………………………………………………………………………………..

Telecom Italia is also testing “5G” in Milano and Torino, but has more freedom in San Marino to experiment because of fewer restrictions on the use of airwaves than in Italy.

“We need to experiment as soon as possible,” Mr Ferigo said.  The work done in San Marino would play a critical role in the future of 5G technology in Italy but was also crucial to the wider European sector as standards for the new network are refined.

“For 5G, our intention is a European leadership in standardization,” he said. The European Commission published a 5G action plan last year when it estimated that sectors such as healthcare, transport, cars and utilities would see economic benefits of €113bn by 2025 from the technology.  However, the European Commission does not generate any telecom standards.  For Europe, that’s ETSI which contributes to 3GPP and its members contribute to ITU-R WP 5D which is standardizing true 5G (as we’ve noted in numerous blog posts/articles).

Earlier this year, Telecom Italia Mobile (TIM) said LTE customers are expected to account for around 90% of its mobile broadband customers by 2019;  That’s due to almost blanket LTE coverage of Italy with network speeds up to 75 Mbps and peaks of 500 Mbps in the main cities via the use of LTE Advanced Carrier Aggregation.

The above referenced FT “5G” article states:

Some countries have committed to the first 5G launches in 2019 but the wider telecoms industry is still struggling to define exactly what 5G technology is and some have argued that it is not yet clear how they can justify spending billions on the new network.

Mr Ferigo said the San Marino launch would be “very important” in defining the use case for 5G that would transform all sectors from healthcare to robotics to public transport. Telecom Italia has started working with companies including Maserati and Ducati on the use of better wireless technology but also the makers of parmesan cheese who want to better monitor the cows in their fields. Small territories have been used in the past for telecoms testing. The first 3G trial in the UK took place on the Isle of Man, while the remote Isle of Bute in Scotland was used to test “white space” technology.

Copyright The Financial Times Limited 2017. All rights reserved.

……………………………………………………………………………………….

References:

http://www.telecomitalia.com/tit/en/archivio/media/note-stampa/corporate/2017/TIM-Repubblica-San-Marino-MoU-5G-ENG.html

http://www.telecomitalia.com/tit/en/archivio/media/note-stampa/market/2017/PN-TIM-Turin-5G-Day.html

http://www.telecomitalia.com/tit/en/archivio/media/comunicati-stampa/telecom-italia/mercato/business/2017/10-03-17CS-TIM-Comune-di-Torino-5G.html

https://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf

https://www.ericsson.com/en/news-and-events/press-center/media-kits/5g

 

Overview & Schedule for ITU-R WP 5D: IMT 2020 True “5G” Standards

Overview of ITU-R Working Party 5D work (as per July 5, 2017 report):

Working Party 5D:

1. Is responsible for the overall system aspects of the terrestrial component of IMT, comprising IMT-2000, IMT-Advanced, and IMT for 2020 and beyond.

2. Has the prime responsibility within ITU-R for issues related to the terrestrial component of IMT, including technical, operational and spectrum related issues to meet the objectives of future IMT systems.

3. Is the lead group for the overall maintenance of existing and the development of new Reports/Recommendations on IMT.

4. Is responsible for studies related on aspects regarding the continued deployment of IMT‑2000 and IMT-Advanced including aspects such as convergence impacts regulatory and operational matters within the purview of Study Group 5.

5. Will continue to work closely with Working Parties 4B and 4C on issues related to the satellite component of IMT.

6. Will continue to work closely with other Working Parties on issues relevant for IMT systems.

……………………………………………………………………………………………….

Scopes for the various ITU-R WP 5D Working Groups:

WG GENERAL ASPECTS:

– To develop deliverables on services, forecasts, and also convergence of services of fixed and mobile networks which take account the needs of end users, and the demand for IMT capabilities and supported services. This includes aspects regarding the continued deployment of IMT, other general topics of IMT and overall objectives for the long-term development of IMT. To update the relevant IMT Recommendations/Reports.

– To ensure that the requirements and needs of the developing countries are reflected in the work and deliverables of WP 5D in the development of IMT. This includes coordination of work with ITU-D Sector on deployments of IMT systems and transition to IMT system.

WG TECHNOLOGY ASPECTS:

– To provide the technology related aspects of IMT through development of Recommendations and Reports. To update the relevant IMT‑2000 and IMT-Advanced Recommendations.  To work on key elements of IMT technologies including requirements, evaluation, and evolution. To develop liaison with external research and standardization forums, and to coordinate the external and internal activities related to the IMT-2020 process.

– To manage the research topics website and its findings.

WG SPECTRUM ASPECTS:

– To undertake co-existence studies, develop spectrum plans, and channel/frequency arrangements for IMT. This includes spectrum sharing between IMT and other radio services/systems coordinating as appropriate with other Working Parties in ITU-R.

AD HOC WORK PLAN:

– To coordinate the work of WP 5D to facilitate efficient and timely progress of work items.

…………………………………………………………………………………………………………………………………

Meeting schedule

The following table shows the proposed meeting dates for Working Party 5D following on WRC‑15. Some adjustment of these dates might be required to accommodate availability of facilities at specific venues. Every effort will be made to keep these dates as listed. Please check the ITU website in case meeting details have changed. (http://www.itu.int/events/monthlyagenda.asp?lang=en)

GROUP

No.

FROM

TO

PLACE

COMMENTS

WP 5D

23

23 February 16

2 March 16

China

7 working day meeting

WP 5D

24

14 June 16

22 June 16

Geneva

7 working day meeting

WP 5D

25

5 October 16

13 October 16

Geneva

7 working day meeting

WP 5D

26

14 February 17

22 February 17

Geneva

7 working day meeting

WP 5D

27

13 June 17

21 June 17

Canada

7 working day meeting

WP 5D

28

3 October 17

11 October 17

Germany

7 working day meeting, including a one-day workshop

WP 5D

29

31 January 18

7 February 18

[Korea]

WP 5D

30

13 June 18

20 June 18

[TBD]

WP 5D

31

9 October 18

16 October 18

[Japan]

WP 5D Expert meeting

31bis

[11 February 19]

[15 February 19]

[TBD]

If needed. Focus of meeting towards RA-19 and WRC-19

CPM19-2

18 February 19

28 February 19

Geneva

WP 5D

32

9 July 19

17 July 19

[TBD]

7 working day meeting

RA-19

21 October 19

25 October 19

Geneva

WRC-19

28 October 19

22 November 19

[Egypt]

WP 5D

33

[9 December] 19

[13 December] 19

[TBD]

Focus meeting on evaluation (WG Technology Aspects)

WP 5D

34

19 February 20

26 February 20

[TBD]

WP 5D

35

24 June 20

1 July 20

[TBD]

WP 5D

36

7 October 20

14 October 20

[TBD]

………………………………………………………………………………………………………………………………..

Work with involved organizations, including research entities:

The strategy for ITU-R WP 5D going forward is to gather information from the organizations involved in the global research and development and those that have an interest in the future development of IMT and to inform them of the framework and technical requirements in order to build consensus on a global level.

ITU-R WP 5D can play an essential role to promote and encourage these research activities towards common goals and to ensure that information from the WP 5D development on the vision, spectrum issues, envisioned new services and technical requirements are widespread among the research community. In the same manner, WP 5D encourages inputs from the external communities involved in these research and technology developments.

It is evident that continuing dialogue between the ITU and the entities taking part in research is a key to the continuing success of the industry in advancing and expanding the global wireless marketplace.

Working Party 5D, as is the case with all ITU organizations, works from input contributions submitted by members of the ITU. In order to facilitate receipt of information from external entities who may not be direct members of ITU, the Radiocommunication Bureau Secretariat may be considered as the point of interface, in accordance with Resolution ITU-R 9‑5.

The following major activities are foreseen to take place outside of the ITU, including WP 5D, in order to successfully complement the WP 5D work:

research on new technologies to address the new elements and new capabilities of IMT‑2020;

the ongoing development of specifications for IMT and subsequent enhancements.

………………………………………………………………………………………

Agreed overall deliverables/workplan of WP 5D

The following table provides the schedule of when approval of the planned major deliverables will be achieved following the procedures of WP 5D.

October 2017

TBD WP 5D #28

Finalize revision of Recommendation ITU-R M.2012

Liaison Reply to Task Group 5/1

February 2018

TBD WP 5D #29

Finalize input to WP 1A on WRC-19 agenda item 1.15

Finalize CPM text on WRC-19 agenda item 9.1, issue 9.1.1

Finalize draft new Report ITU-R M.[IMT.MS/MSS.2GHz]

June 2018

TBD WP 5D #30

Finalize CPM text on WRC-19 agenda item 9.1, issue 9.1.8 (MTC)

Finalize draft new Report ITU-R M.[IMT.EXPERIENCES]

Finalize draft new Report ITU-R M.[IMT. MTC]

Further update/Finalize draft new Report/Recommendation ITU-R
M.[IMT.1518 MHz COEXISTENCE]

Finalize input to WP 4A on WRC-19 agenda item 9.1, issue 9.1.2

October 2018

TBD WP 5D #31

Finalize draft new Report ITU-R M.[IMT.1452-1492MHz]

Finalize draft new Report/Recommendation ITU-R M.[IMT.3300 MHz RLS]

Finalize draft new Recommendation ITU-R M.[MT.3300 MHz FSS]

Finalize draft new Report/Recommendation ITU-R M.[IMT.COEXISTENCE.AMS]

Finalize draft revision of Report ITU-R M.2373

Finalize revision of Recommendation ITU-R M.1036

Finalize draft new Report ITU-R M.[IMT.BY.INDUSTRIES]

Finalize revision of Recommendation ITU-R M.1457

July 2019

TBD WP 5D #32

Finalize Doc. IMT-2020/YYY Input Submissions Summary

Finalize Addendum 4 to Circular Letter IMT‑2020

October 2019

TBD WP 5D #33

February 2020

TBD WP 5D #34

Finalize Doc. IMT-2020/ZZZ Evaluation Reports Summary

Finalize Addendum 5 to Circular Letter IMT‑2020

June 2020

TBD WP 5D #35

Draft new Report ITU-R M.[IMT-2020.OUTCOME]

Finalize Addendum 6 to Circular Letter IMT‑2020

October 2020

TBD WP 5D #36

Finalize draft new Recommendation ITU-R M.[IMT‑2020.SPECS]

Finalize Addendum 7 to Circular Letter IMT‑2020

…………………………………………………………………………………………………………………………………

Detailed timeline and process for Technology related work stream towards IMT-2020:

Working Party 5D has developed a work plan, timeline, process and required deliverables for the future development of IMT, necessary to provide by 2020 timeframe, the expected ITU-R outcome of evolved IMT in support of the next generation of mobile broadband communications systems beyond IMT-Advanced.

Circular Letter(s) are expected to be issued at the appropriate time(s) to announce the invitation to submit formal proposals and other relevant information.

It has been agreed that the well-known process and deliverable formats utilized for both IMT-2000 and IMT-Advanced should be utilized also for IMT-2020 and considered as a “model” for the IMT‑2020 deliverables to leverage on the prior work.

…………………………………………………………………………………………………………………

Dates have been decided for RA-19 (21-25 October 2019) and WRC-19 (28 October – 22 November 2019).

The WP 5D #32 (July) is the main meeting for year 2019.

The WP 5D #33 is to be held in December with a focus on the evaluation process (WG Technology Aspects).

If needed there is an opportunity for expert meeting to focus on preparation towards WRC-19 (WG General Aspects and WG Spectrum Aspects) prior to the WP 5D #32 (July).

Click on above image to enlarge.  Source:  ITU-R WP5D report, 5 July 2017

………………………………………………………………………………………………

Reference:

Timeline for IMT 2020 (5G) Radio Access Recommendations + Evaluation Methodology

Timeline for IMT 2020 (5G) Radio Access Recommendations + Evaluation Methodology

Introduction:

This article was written based on the ITU-R WP5D Niagara Falls, Canada meeting that concluded last week.  We attempt to present the true picture for standardizing IMT 2020 (5G) Radio Interface Technologies (RITs – aka Radio Access Networks or Radio Access Interfaces).

We don’t mention 3GPP release 15 (“5G” features over a LTE network) or 16 (pure 5G- no LTE) which will provide different levels of “5G” support.  Those specs might be submitted to ITU-R WP 5D for their consideration, based on the IMT 2020 RIT Evaluation methodology described in item 2. below.

Global carriers that have announced 5G specs and trials will likely have to do a major upgrade to their “5G” base stations to support the ITU-R IMT 2020 RIT specifications to be completed at the end of 2020 as per item 1. below.  It’s a mystery (to me and other IEEE members on the ComSocSCV email discussion group) as to what companies will provide the pre-standard “5G” handsets and other mobile/fixed end point devices that will have to be upgraded or replaced completely when standardized 5G is finalized in late 2020.

Note: SK Telecom said that’s not a problem as mobile device refresh/replace time is 18 months, so pre-standard 5G handsets will be obsolete when standardized 5G is finally deployed.

1.  Development of IMT 2020 (5G) radio access recommendation(s) by ITU-R WP 5D

Critical milestones in IMT 2020 radio interface development process:
(0): Issue an invitation to propose Radio Interface Technologies (RITs) -March 2016
(1): ITU proposed cut off for submission – July 2019
(2): Cut off for evaluation report to ITU – February 2020
(3): WP 5D decides framework and key characteristics of IMT-2020 RIT and SRIT -June 2020
(4): WP 5D completes development of radio interface specification recommendations- October 2020

Terminology:

RIT= Radio Interface Technologies
SRIT= Set of Radio Interface technologies, each meeting the evaluation criteria

…………………………………………………………………………………………………………………………………….

2.  Key Sections of Evaluation of IMT 2020 Radio Interfaces (from new ITU-R WP5D draft report):

Scope:

This Report provides guidelines for the procedure, methodology and the criteria (technical, spectrum and service) to be used in evaluating the candidate IMT-2020 radio interface technologies (RITs) or Set of RITs (SRITs) for a number of test environments. These test environments are chosen to simulate closely the more stringent radio operating environments. The evaluation procedure is designed in such a way that the overall performance of the candidate RITs/SRITs may be fairly and equally assessed on a technical basis. It ensures that the overall IMT‑2020 objectives are met.

This Report provides, for proponents, developers of candidate RITs/SRITs and independent evaluation groups, the common evaluation methodology and evaluation configurations to evaluate the candidate RITs/SRITs and system aspects impacting the radio performance.   This Report allows a degree of freedom so as to encompass new technologies. The actual selection of the candidate RITs/SRITs for IMT-2020 is outside the scope of this Report.

The candidate RITs/SRITs will be assessed based on those evaluation guidelines. If necessary, additional evaluation methodologies may be developed by each independent evaluation group to complement the evaluation guidelines. Any such additional methodology should be shared between independent evaluation groups and sent to the Radiocommunication Bureau as information in the consideration of the evaluation results by ITU-R and for posting under additional information relevant to the independent evaluation group section of the ITU-R IMT-2020 web page (http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/submission-eval.aspx)

Evaluation guidelines:

IMT-2020 can be considered from multiple perspectives: users, manufacturers, application developers, network operators, service and content providers, and, finally, the usage scenarios – which are extensive. Therefore candidate RITs/SRITs for IMT-2020 must be capable of being applied in a much broader variety of usage scenarios and supporting a much broader range of environments, significantly more diverse service capabilities as well as technology options. Consideration of every variation to encompass all situations is, however, not possible; nonetheless the work of the ITU-R has been to determine a representative view of IMT‑2020 consistent with the process defined in Resolution ITU-R 65, Principles for the process of future development of IMT‑2020 and beyond, and the key technical performance requirements defined in Report ITU-R M.[IMT-2020.TECH PERF REQ] – Minimum requirements related to technical performance for IMT-2020 radio interface(s).

The parameters presented in this Report are for the purpose of consistent definition, specification, and evaluation of the candidate RITs/SRITs for IMT-2020 in ITU-R in conjunction with the development of Recommendations and Reports such as the framework and key characteristics and the detailed specifications of IMT-2020. These parameters have been chosen to be representative of a global view of IMT-2020 but are not intended to be specific to any particular implementation of an IMT-2020 technology. They should not be considered as the values that must be used in any deployment of any IMT-2020 system nor should they be taken as the default values for any other or subsequent study in ITU or elsewhere.Further consideration has been given in the choice of parameters to balancing the assessment of the technology with the complexity of the simulations while respecting the workload of an evaluator or technology proponent.

This procedure deals only with evaluating radio interface aspects. It is not intended for evaluating system aspects (including those for satellit system aspects).

The following principles are to be followed when evaluating radio interface technologies for IMT‑2020:
− Evaluations of proposals can be through simulation, analytical and inspection procedures.
− The evaluation shall be performed based on the submitted technology proposals, and should follow the evaluation guidelines, using the evaluation methodology and the evaluation configurations defined in this Report.
− Evaluations through simulations contain both system-level and link-level simulations. Independent evaluation groups may use their own simulation tools for the evaluation.
− In case of evaluation through analysis, the evaluation is to be based on calculations which use the technical information provided by the proponent.
− In case of evaluation through inspection the evaluation is to be based on statements in the proposal.

The following options are foreseen for proponents and independent external evaluation groups doing the evaluations:

− Self-evaluation must be a complete evaluation (to provide a fully complete compliance template) of the technology proposal.
− An external evaluation group may perform complete or partial evaluation of one or several technology proposals to assess the compliance of the technologies with the minimum requirements of IMT-2020.
− Evaluations covering several technology proposals are encouraged.

6. Overview of characteristics for evaluation
The characteristics chosen for evaluation are explained in detail in Report ITU-R M.[IMT‑2020.SUBMISSION −Requirements, evaluation criteria and submission templates for the development of IMT‑2020], § 3, including service aspect requirements, spectrum aspect requirements, and technical performance requirements , the last of which are based on Report ITU‑R M.[IMT-2020.TECH PERF REQ]. These are summarized in Table 6-1, together with their high level assessment method:
− Simulation (including system-level and link-level simulations, according to the principles of the simulation procedure given in § 7.1).
− Analytical (via calculation or mathematical analysis).
Inspection (by reviewing the functionality and parameterization of the proposal).
…………………………………………………………………………………………………………………………………….

Summary of evaluation methodologies:

  • Characteristic for evaluation
  • High-level assessment method
  • Evaluation methodology in this report

Related IMT-2020 Reports:

ITU-R M.[IMT-2020.TECH PERF REQ] and ITU-R M.[IMT‑2020.SUBMISSION]

7. Evaluation methodology
The submission and evaluation process is defined in Document IMT-2020/2 − Submission, evaluation process and consensus building for IMT-2020.

Evaluation should be performed in compliance with the technical parameters provided by the proponents and the evaluation configurations specified for the test environments in § 8.2 of this Report. Each requirement should be evaluated independently, except for the average spectral efficiency and 5th percentile user spectral efficiency – both of which criteria shall be assessed jointly using the same simulation; consequently, the candidate RITs/SRITs shall fulfil the corresponding minimum requirements jointly.

Furthermore, the evaluation parameters used for the system-level simulation used in the mobility evaluation should be the same as the parameters used for system-level simulation for average spectral efficiency and 5th percentile user spectral efficiency.

The evaluation methodology should include the following elements:
1 Candidate RITs/SRITs should be evaluated using reproducible methods including computer simulation, analytical approaches and inspection of the proposal.
2 Technical evaluation of the candidate RITs/SRITs should be made against each evaluation criterion for the required test environments.
3 Candidate RITs/SRITs should be evaluated based on technical descriptions that are submitted using a technologies description template

In order for the ITU to be in a position to assess the evaluation results of each candidate RIT/SRIT, the following points should be taken into account:
− Use of unified methodology, software, and data sets by the evaluation groups wherever possible, e.g. in the area of channel modelling, link-level simulation, and link-to-system-level interface.
− Evaluation of multiple proposals using a single simulation tool by each evaluation group.
Evaluations of average spectral efficiency, 5th percentile user spectral efficiency, peak spectral efficiency, user experienced data rate, area traffic capacity, peak data rate, mobility, reliability, and connection density of candidate RITs/SRITs should take into account the Layer 1 and Layer 2 overhead information provided by the proponents.
……………………………………………………………………………………………………………

Apple to test “5G” in Cupertino & Milpitas, CA, but which RAN/Modulation Scheme?

Apple  has applied for an experimental license from the FCC to test next-gen “5G” wireless technologies, according to a report from Business Insider and an article in USA Today which wrote:

It’s hardly a surprise that Apple would be pursuing a path to 5G. The promise of this next generation of wireless is that smartphone makers might eventually achieve blistering wireless data speeds of 1 gigabit per second and beyond, along with low latency and other potential benefits. In the U.S., Verizon, AT&T and T-Mobile are all chasing their own 5G future—and each other.

Apple indicates that it plans to test 5G technologies in two locations in controlled facilities, one in Cupertino and another in Milpitas, California. Apple said that it plans to use the 28 and 39 GHz bands via technology provided by Rohde & Schwarz, A.H. Systems and Analog Devices.

Apple’s FCC application reads in part:

Apple Inc. seeks to assess cellular link performance in direct path and multipath environments between base station transmitters and receivers using this spectrum…These assessments will provide engineering data relevant to the operation of devices on wireless carriers’ future 5G networks.

Apple respectfully requests that the Commission grant its request for an experimental license for operations in accordance with Section 5.3(j) of its rules.2 Apple intends to transmit from two fixed points located at Apple-controlled facilities in Cupertino and Milpitas, CA. These transmissions will be consistent with the parameters and equipment identified in Apple’s accompanying Form 442, and will include the use of a horn antenna with a half-power beamwidth of 20 degrees in the E-plane and H-plane and a downtilt between 20 – 25 degrees. Apple anticipates that it will conduct its experiments for a period not to exceed 12 months.

The transmitting equipment Apple intends to use is incapable of station identification. Because Apple will coordinate its operations with existing microwave users in the area, Apple respectfully requests that the Commission exempt this authorization from the station identification requirements.

………………………………………………………………………………………………………………………………………………………………………………….

Light Reading earlier reported Apple to be hiring at least one engineer with knowledge and experience of “radar signal processing,” which implies the signals which are used in millimeter wave transmissions. Millimeter wave is the band of spectrum between 30 GHz and 300 GHz.  The ITU-R WP 5D/IMT 2020 standards committee has proposed 30 GHz to 86 GHz  for use by 5G networks (see below).

……………………………………………………………………………………………………………………………………………………………..

“5G” Carrier Specific vs ITU-R IMT 2020 Standard?

Since Apple’s application notes that it “will conduct its experiments for a period not to exceed 12 months.” Consequently, it stands to reason that the 2019 iPhone 9 will be the first iPhone with “5G” connectivity.  But what version of “5G” will that be?

A few months ago, AT&T and Verizon said  that they will  begin rolling out their own (non standard, carrier specific) 5G networks late this year and in 2018.  That’s before ITU-R WP 5D/IMT2020 standards committee will decide on the Radio Access Network (RAN) to be used for true 5G.  End point devices made for AT&T’s “5G” network won’t work on Verizon’s and vice-versa.  Apple (and other smart phone/tablet makers) will likely delay the release of a volume production 5G iPhone until overall 5G coverage becomes widespread.

On May 25th, Wang Xinhui, Director of Wireless Standardization and Industrial Relationships at ZTE Corporation, said wireless telecommunications operators should work towards to incubate globally harmonized ecosystem for 5G mobile communication in the interests of the healthy development of the telecommunications industry.  In an address to the 3rd Global 5G Event in Tokyo, Mr. Wang said industry standardization for mobile broadband and the Internet of Things should move forward in parallelism, in order to drive adoption by different industries and economic sectors. Mr. Wang is also Vice Chair of International Cooperation of the IMT-2020 (5G) Promotion Group.   Mr. Wang said that 5G should meet the requirements of eMBB (enhanced Mobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications) and mMTC (massive Machine Type Communications), supporting greater mobility and seamless coverage. Industry participants globally should collaborate in a more open manner to build unified standards and industry ecosystems.  [This author doesn’t see such co-operation amongst wireless carriers in the U.S.]

ZTE has signed strategic partnerships on 5G development with the world’s top telecommunications carriers including Deutsche Telekom, Telefonica, SoftBank, KT Group, China Mobile, China Telecom and China Unicom.

…………………………………………………………………………………………………………………………………………………………………….

From an ITU-R press release this past February:

“The IMT-2020 standard is set to be the global communication network for the coming decades and is on track to be in place by 2020. The next step is to agree on what will be the detailed specifications for IMT-2020, a standard that will underpin the next generations of mobile broadband and IoT connectivity,” said François Rancy, Director of ITU’s Radiocommunication Bureau.

We can anticipate that there will now be a number of early technical trials, market trials and deployments of 5G technologies based on the foreseen developments slated for IMT-2020. These systems may not provide the full set of capabilities envisaged for IMT-2020, but the results of these early activities will flow forward into, and assist the development of, the final complete detailed specifications for IMT-2020.

…………………………………………………………………………………………………………………………………………………………………………………………….

5G Frequency Spectrum:

During the World Radiocommunication Conference (WRC) 15, the ITU proposed a set of global frequencies for 5G, which it intends to finalize at the next conference in 2019 (WRC 19):

 24.25–27.5GHz

 31.8–33.4GHz

 37–40.5GHz  40.5–42.5GHz

 45.5–50.2GHz  50.4–52.6GHz

 66–76GHz

 81–86GHz

In 2014, the FCC published a Notice of Inquiry into use of spectrum bands above 24 GHz for Mobile Radio Services, 80 followed by a Notice of Proposed Rulemaking in October 2015, which listed the following potential bands for 5G in the United States.

 27.5-28.35 GHz (28 GHz band)

 37.0-38.6 GHz (37 GHz band)

 38.6-40 GHz (39 GHz band)

 64-71 GHz (unlicensed use)

 70/80 GHz Bands: 71-76 GHz, 81-86 GHz

The FCC issued adopted rules to identify and open up 5G spectrum allocation in July 2016 that identify 3.85 GHz of licensed spectrum and 7 GHz of unlicensed spectrum: licensed use in 28 GHz, 37 GHz, and 39 GHz bands; unlicensed use in 64-71 GHz; and shared access in the 37-37.6 GHz band.

Reference:

http://www.5gamericas.org/files/2214/7257/3276/Final_Mobile_Broadband_Transformation_Rsavy_whitepaper.pdf

……………………………………………………………………………………………………………………………………………………………………………….

Recent Posts