Verizon, Ericsson Team Up for Massive MIMO Deployment

Verizon and Ericsson have deployed frequency division duplexing (FDD) Massive Multiple Input-Multiple Output (MIMO) technology on the Verizon’s wireless network in Irvine, Calif., a step forward in implementing “5G” wireless communications. Ericsson provided 16 transceiver radios and 96 antenna elements in an array for the deployment.

The two companies say the Massive MIMO deployment will improve spectral and energy efficiency, increasing network capacity for current devices in the market.  Other network enhancements are expected to provide higher and more consistent speeds for using apps and uploading and downloading files, clearing the pathway for “5G” deployment.

The massive MIMO deployment is running on a 20 MHz block of AWS spectrum.  Four-way transmit has been widely deployed throughout the Verizon network and has contributed to significant 4G LTE advancements, according to the announcement. The high number of transmitters from the Massive MIMO provides more possible signal paths.  It also enables beamforming, which directs the beam from the cell site directly to where the customer is, dramatically cutting down on interference.  Reduced interference results in higher and more consistent speeds for customers.

Image result for pic of massive MIMO

Note:  Massive MIMO is a candidate feature for IMT 2020 (standardized 5G).  Please see last references for authoritative status of IMT 2020.


“While continuing to drive 5G development, the deployment of Massive MIMO offers very tangible benefits for our customers today.  As we innovate, we learn and continue to lay the groundwork and set the standards for 5G technology,” said Nicola Palmer, Verizon Wireless chief network officer, in a prepared statement. “Our collaboration with Ericsson on this new deployment continues to drive industry-wide innovation and advancements.”

“We have a tremendous excitement around 5G, and today we made a great announcement to our commitment of driving the 5G ecosystem,” Verizon SVP Atish Gude said

Niklas Heuveldop, Ericsson head of market area North America said: “Massive MIMO is a key technology enabler for 5G, but already today, 4G LTE service providers and end users can benefit from the superior capacity and network performance this technology enables.  The current trial is an important step in the collaboration we have with Verizon to prepare their network for 5G.”

Ericsson is active with massive MIMO deployments on other carrier networks, including Sprint, who announced a deployment last month.


ABI Research: MIMO starting to realize its full potential in LTE Advanced networks

On the Path to 5G, Verizon, Ericsson Team Up for Massive MIMO Deployment

IEEE ComSoc Webinar: 5G: Converging Towards IMT-2020 Submission

IMT 2020 workshop which includes hyperlinks to enable you to download the presentations:
Note: There were 4 organizations that presented their proposed IMT 2020 RAN (AKA RIT/SRIT) schemes at this workshop:
3GPP 5G, ETSI DECT, Korea IMT 2020 and China IMT 2020

ABI Research: MIMO starting to realize its full potential in LTE Advanced networks

As LTE progresses to more advanced versions such as 3GPP standard LTE-Advanced, LTE-Advanced Pro and the recently marketed Gigabit LTE, ABI Research expects that MIMO [1] will become an increasingly important part of mobile network operators’ options in their evolution to 5G (officially known as IMT 2020).

While MIMO has not delivered on its promises so far, no doubt exists that the technology will become a foundational building block for mobile networks in the evolution to 4G/5G, and advanced antenna systems will receive increasing attention and research and development (R&D) by both vendors and MNOs.

Advanced antenna systems, including complex passive antennas and large-scale active antennas, will become part of the roadmap to advanced LTE and 5G, according to ABI Research.

Note 1. Long term evolution (LTE) is based on Multiple Input Multiple Output (MIMO)-Orthogonal frequency-division multiplexing (OFDM) and continues to be developed by the 3rd Generation Partnership Project (3GPP).

OFDM is a frequency-division multiplexing (FDM) scheme used as a digital multi-carrier modulation method. A large number of closely spaced orthogonal sub-carrier signals are used to carry data on several parallel data streams or channels.



LTE Advanced (true 4G before the term was hijacked by marketing heads) adds support for picocells, femtocells, and multi-carrier channels up to 100 MHz wide. LTE has been embraced by both GSM/UMTS and CDMA operators.


ABI Research thinks that Massive MIMO will be a key feature of 5G and deploying advanced MIMO for 4G-LTE is a long-term investment which will prepare the ground for the deployment of the next generation of networks.

“While MIMO has not delivered on its promises so far, we are left with no doubt that the technology will become a foundational building block for mobile networks in the evolution of 4G and 5G and advanced antenna systems will receive increasing attention and R&D by both vendors and MNOs,” says Nick Marshall, Research Director at ABI Research. “We expect increasing acquisition activities in the antenna market, particularly involving MIMO technology.”

Overall the installed base of MIMO-enabled LTE antennas will grow by more than double worldwide from 2017 to 2021 to reach almost 9 million, with the Asia Pacific region outpacing this with a growth rate of three times. The Asia Pacific region will grow to represent most of the market by 2021. Although the MIMO-enabled LTE platform retains the largest installed base through 2021, growing by a factor of almost two times, it is the MIMO-Enabled LTE-Advanced platform growing at a faster rate and MIMO-enabled LTE-Advanced Pro at almost six times which rise rapidly to match the scale of the earlier MIMO-enabled LTE platform. The cellular antenna market forms a very dynamic and innovative ecosystem with many vendors including Amphenol, Comba, CommScope, Huawei, Kathrein and RFS all competing to include these advanced multi-antenna features,

“Advanced antenna systems including complex passive antennas and large scale massive MIMO active antennas will become part of the roadmap to advanced LTE and 5G,” concludes Marshall. “The need for active antennas when MIMO becomes more advanced will also change the market map, which has largely depended on passive antennas for previous generations.”

These findings are from ABI Research’s “Evolution of MIMO in LTE Networks report. This report is part of the company’s Mobile Networks Service research service, which includes research, data, and analyst insights.

For more info,including an Executive Summary:

About ABI Research:
ABI Research stands at the forefront of technology market intelligence, providing business leaders with comprehensive research and consulting services to help them implement informed, transformative technology decisions. Founded more than 25 years ago, the company’s global team of senior and long-tenured analysts delivers deep market data forecasts, analyses, and teardown services. ABI Research is an industry pioneer, proactively uncovering ground-breaking business cycles and publishing research 18 to 36 months in advance of other organizations. For more information, visit





Recent Posts