Qualcomm’s Snapdragon 888 “5G Mobile Platform” to power nexgen smartphones

Today, at its Snapdragon Tech Summit, Qualcomm unveiled its newest cellular 5G mobile platform for smartphones and other 5G endpoints in a move to extend its seemingly insurmountable lead in the cellular SoC smartphone market.

The Snapdragon 888 is Qualcomm’s newest high-end applications processor 5G SoC for smartphones.  It is built on Samsung’s new 5nm semiconductor process and features an eight-core design, with the big core starting with a new super-core ARM Cortex-X1, which Qualcomm calls a “Super Core” at 2.84GHz. There are also three 2.4GHz A78 cores, four 1.8GHz A55 cores, and the GPU graphics cores have been upgraded to the Adreno 660, a design that is unbeatable in terms of performance. The Snapdragon 888 is also Qualcomm’s first integrated flagship 5G SoC, incorporating the Snapdragon X60 5G baseband.

The Snapdragon 888 will feature Qualcomm’s Snapdragon X60 modem announced earlier this year, which uses the 5nm process for better power efficiency and improved 5G carrier aggregation across the mmWave and sub-6GHz spectrum. Global multi-SIM support, 5G SA independent, 5G NSA non-independent, and dynamic spectrum sharing. Between the new 5nm architecture and the power efficiency gains from the integrated modem, it appears that the new chip could provide some substantial battery life improvements in 5G.

In addition to the 5G improvements, Qualcomm also previewed several other advances for the Snapdragon 888, including a sixth-generation AI engine (running on a “redesigned” Qualcomm Hexagon processor) all at an astonishing 26 tera operations per second (TOPS). And a second-generation sensing hub that promises to deliver significant improvements in performance and performance for AI tasks. There’s a big jump in power efficiency.

 

At the Summit, the company demonstrated the power of Snapdragon 888 through a Radio-Controlled race car connected entirely by a 5G mmWave network.  Two race cars were connected to a private 5G network that was built with the help of Verizon and Ericsson and controlled over 5G using a Snapdragon 888 reference design with the Snapdragon X60 5G Modem-RF System. The drivers controlled these cars from over a mile away and viewed live video of the track from afar using the amazing capture capabilities of Snapdragon 888. Additionally, with the help of Tension, the race can be viewed on multiple low latency streams to track the RC cars’ position on a dynamic map using the newest location capabilities of the Qualcomm® Location Suite for improved accuracy. This showcases the use case possibilities when high performance, reliable, and low latency communications are the norm.

Qualcomm Snapdragon 888

Lekha Motiwala, director of product management for Qualcomm Technologies, Inc., shared an inside look at the Company’s most premium offering.

  • Snapdragon 888, with the 3rd generation Qualcomm® Snapdragon™ X60 5G Modem-RF System, enables global compatibility by offering mmWave and sub-6 across all major bands worldwide, as well as support for 5G carrier aggregation, global multi-SIM, stand alone, non-stand alone, and Dynamic Spectrum Sharing.
  • The new 6th generation Qualcomm® AI Engine, with the completely re-engineered Qualcomm® Hexagon™ processor, takes a pivotal leap forward in AI compared to the previous generation to improve performance, power efficiency—all at an astonishing 26 tera operations per second (TOPS). The platform is further enhanced by the 2nd generation Qualcomm® Sensing Hub, which incorporates lower-power always-on AI processing for intuitive, intelligent features.
  • Since its inception, Qualcomm® Snapdragon Elite Gaming™ has delivered dozens of mobile-first technologies to smartphones, including Updateable GPU Drivers, Desktop Forward Rendering, and frame rates achieving up to 144 frames per second (fps). The 3rd generation of Snapdragon Elite Gaming featured in Snapdragon 888 delivers Qualcomm Technologies’ most significant upgrade in Qualcomm® Adreno™ GPU performance.
  • Snapdragon 888 will triple down on the future of computational photography and transform smartphones into professional quality cameras. With the faster gigapixel speed Qualcomm Spectra™ ISP, users can capture photos and videos at 2.7 gigapixels per second or roughly 120 photos at 12MP resolution—up to 35% faster than the previous generation.

Qualcomm Snapdragon 888

Image Credit: Qualcomm

……………………………………………………………………………………………………………………………………………………………………………………………….

“I’m thrilled about what’s ahead,” said Qualcomm President Cristiano Amon. “The potential of 5G is astounding.”  A number of analysts seemed to agreed with Amon’s positive outlook for their new flagship 5G mobile platform:

“The Snapdragon 888 is Qualcomm’s halo product,” wrote Anshel Sag, a consumer and chip tech analyst at research and consulting firm Moor Insights & Strategy, in response to questions from Light Reading. “The Snapdragon 888 will be the chip that most of the leading Android OEMs [original equipment manufacturers] will leverage to ship their flagship smartphones.”

“I believe that the Snapdragon 888’s X60 5G modem is going to be the biggest differentiator from the competition as most of the industry lags behind Qualcomm in modem capabilities,”  Sag added.

“Specs are up across the board,” Tweeted IDC analyst Phil Solis of the Snapdragon 888, noting that it supports more operations per second than any other smartphone on the market.

“We believe that the Snapdragon 888’s modem, AI, gaming and camera specs look very impressive,” wrote Sravan Kundojjala of Strategy Analytics. “Historically, premium tier chips accounted for less than 15% of Qualcomm’s total application processor shipments, but accounted for the bulk of Qualcomm’s revenue and profit, thanks to high average selling prices.”

………………………………………………………………………………………………………………………………………………………………………………………………………………….

According to research firm Strategy Analytics, Qualcomm was the world’s largest provider of cellular baseband processors with 39% share in the second quarter of this year.  Qualcomm commanded fully 50% share of the 5G baseband market during that time period.  Qualcomm was also the world’s biggest supplier of smartphone application processors with 32% revenue share in the second quarter, according to Strategy Analytics.

………………………………………………………………………………………………………………………………………………………………………………………………………………….

Qualcomm’s cellular ecosystem partners had this to say:

  • “Verizon is on the forefront of showcasing the transformative capabilities of 5G Ultra Wideband,” said Nicola Palmer, chief product officer at Verizon. “Qualcomm Technologies’ Snapdragon Tech Summit Digital 2020 is an opportunity to reflect on the successes we’ve had this year, including launching nationwide 5G coverage, dozens of 5G Ultra Wideband cities, MEC deployments, and a multitude of 5G devices and innovations. It also gives us the opportunity to look towards 2021 as we continue to bring the possibilities of 5G to life for businesses, individuals, and society.”
  • “NTT DOCOMO has been a leading mobile innovator in Japan for nearly 30 years and this leadership has continued into the 5G era, as the first operator in Japan to launch commercial 5G service in March this year,” said Naoki Tani, executive vice president and chief technology officer, NTT DOCOMO, INC. “5G enables a new era of mobile experiences that are making people’s lives more convenient and comfortable, and these experiences are being brought to life on the DOCOMO 5G network through our exciting portfolio of 5G devices powered by Qualcomm Snapdragon 5G mobile platforms. We look forward to the next generation of 5G devices powered by Qualcomm Technologies’ industry-leading Snapdragon 888 5G Mobile Platform to deliver the best experiences on DOCOMO’s 5G network.”
  • “Our work with Qualcomm Technologies is aligned with our mission to make the latest Natural Language Processing technology accessible to researchers and businesses around the globe, and run as fast and efficiently as possible” said Clément Delangue, co-founder and chief executive officer of Hugging Face. “We need our models to run on the most premium of mobile platforms… and that means Qualcomm Snapdragon.”
  • “Xperia smartphones are feature-packed with Sony’s advanced imaging and entertainment technologies, and it’s essential for our products to be powered by the latest premium Snapdragon mobile platform to offer the best-in-class experiences to our fans. One of the entertainment experiences which we are very passionate about is mobile gaming, and we are overwhelmed by the incredible positive response we’ve received from fans around the world for Xperia 1 II and Xperia 5 II,” said Mitsuya Kishida, president, Sony Mobile Communications Inc. “We are committed to further enhancing mobile entertainment in the 5G era and look forward to working closely with Qualcomm Technologies to continue delivering world-class mobile gaming and other experiences on the go.”
  • “In collaboration with Epic Games, the OnePlus 8 Series became the first smartphones to deliver Fortnite at 90 FPS, a groundbreaking mobile gaming achievement made possible by Qualcomm Snapdragon Elite Gaming,” said Kyle Kiang, chief marketing officer, OnePlus.
  • “Over the past decade, from the first generation of Xiaomi mobile phones to the 10th anniversary masterpiece Xiaomi 10 series, we have been joining hands together with Qualcomm Technologies to bring the most advanced mobile experiences to users around the world,” said Lei Jun, Founder, chairman and chief executive officer of Xiaomi. “Snapdragon 888 is the most powerful mobile platform from Qualcomm Technologies ever. In addition to the industry leading 5G connectivity, it has brought groundbreaking breakthroughs and innovations in AI, gaming, and camera. I’m glad that our new flagship smartphone Mi11 will be the one of the first devices with Snapdragon 888. This is another cutting-edge product from us and will be loaded with various hardcore technologies.”
  • The following OEMs provided their support for Snapdragon 888, including ASUS, Black Shark, Lenovo, LG, MEIZU, Motorola, Nubia, realme, OnePlus, OPPO, Sharp, vivo, Xiaomi, and ZTE.

This year’s Snapdragon Tech Summit Digital keynotes are being live streamed on Dec 1 and 2 at 7:00 a.m. PST (qualcomm.com/snapdragonsummit). The Qualcomm Twitter handle will have live updates before and during the keynotes. #SnapdragonSummit.

References:

https://www.qualcomm.com/news/releases/2020/12/01/qualcomm-redefines-premium-snapdragon-tech-summit-digital-2020

 

Qualcomm Snapdragon 888 Integrates X60 Modem Powering 2021 Flagship, Check Official Response of Partners

https://www.lightreading.com/iot/qualcomm-hopes-snapdragon-888-will-widen-its-5g-lead/d/d-id/765799?

 

Nokia, Elisa and Qualcomm achieve 5G speed record of 8 Gbps in Helsinki, Finland

Elisa, Nokia and Qualcomm Technologies announced that they reached a record 5G speed of 8 Gbps on a commercial 5G network in Finland, serving two 5G mmWave devices. The lightning fast speed was showcased at Elisa’s flagship store in Helsinki. The service is expected to be deployed in 2021.

The speed was achieved using Nokia 5G mmWave technology and Qualcomm Technologies’ 5G smartphone form factor test devices on Elisa’s commercial 5G network. The 5G base station used two Nokia AirScale radios, each using 800 MHz of commercial millimeter wave 5G spectrum at 26 GHz. They provided connectivity to two 5G smartphone form factor test devices run by a Qualcomm Snapdragon X55 5G Modem-RF System with Qualcomm QTM525 mmWave antenna modules. Each device reached 4 Gbps peak speeds from the base station.

The fast 5G bit rate will support new low-latency, high-bandwidth services such as rapid video and game downloads, as well as mission-critical or virtual reality (VR) and augmented reality (AR) applications. It will enable remotely controlled devices for industrial needs and VR/AR large stadium concert broadcasts. It will allow enhanced fixed wireless access connectivity, too, as an alternative to fiber optic broadband.

Sami Komulainen, Executive Vice President, Production at Elisa, said: “This is an important development and another step in our efforts to bring the fastest speeds and best 5G experiences to our customers. Elisa was the first in Finland and amongst the first in the world to deploy 5G. Reaching 8Gbps is a natural step in our 5G development and we want to explore the possibilities 5G offers and push the technology further to benefit our customers.”

Tommi Uitto, President of Mobile Networks at Nokia, commented: “We are proud to work with our partners on this important and significant achievement that will deliver incredible 5G experiences to people and businesses in Finland. This is another milestone in the development of 5G services and demonstrates the capacity of our commercially deployed 5G solutions.”

Enrico Salvatori, Senior Vice President and President, Qualcomm Europe/MEA, said: “We are incredibly proud of this collaboration on this landmark event, which represents a significant milestone for 5G mmWave. Qualcomm Technologies’ research and development efforts to drive the next generation of wireless connectivity, along with our work with Elisa and Nokia, has made this milestone a commercial reality. The throughputs achieved today show the true potential for mmWave deployments and we are excited to continue collaborating with industry leaders to make 5G mmWave a commercial reality.”

Resources:

About Elisa:
Elisa is a pioneer in telecommunications and digital services. We serve approximately 2.8 million consumer, corporate and public administration organisation customers, and have over 6.3 million subscriptions in our extensive network. Cooperation with Vodafone and Tele2, among others, enables globally competitive services. Our core markets are Finland and Estonia, and we also provide digital services for international markets. Elisa’s shares are listed on the Nasdaq Helsinki. In 2019, our revenue was EUR 1.84 billion euros, and we employed 4,900 people. As a responsible Finnish market leader, our operations are guided by continuous improvement. We will be a carbon neutral company from 2020 onwards. Further information on www.elisa.com, Facebook (@elisasuomi) and Twitter (@ElisaOyj)

About Nokia:
We create the technology to connect the world. Only Nokia offers a comprehensive portfolio of network equipment, software, services and licensing opportunities across the globe. With our commitment to innovation, driven by the award-winning Nokia Bell Labs, we are a leader in the development and deployment of 5G networks.
Our communications service provider customers support more than 6.4 billion subscriptions with our radio networks, and our enterprise customers have deployed over 1,300 industrial networks worldwide. Adhering to the highest ethical standards, we transform how people live, work and communicate. For our latest updates, please visit us online www.nokia.com and follow us on Twitter @nokia.

Media Inquiries: Email: press.services@nokia.com

About Qualcomm:
Qualcomm is the world’s leading wireless technology innovator and the driving force behind the development, launch, and expansion of 5G.  When we connected the phone to the internet, the mobile revolution was born. Today, our foundational technologies enable the mobile ecosystem and are found in every 3G, 4G and 5G smartphone. We bring the benefits of mobile to new industries, including automotive, the internet of things, and computing, and are leading the way to a world where everything and everyone can communicate and interact seamlessly.
Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

References:

https://www.globenewswire.com/news-release/2020/11/18/2128824/0/en/Nokia-Elisa-and-Qualcomm-achieve-5G-speed-record-in-Finland.html

Linksys and Qualcomm Launch the First 5G and Wi-Fi 6 Mobile Hotspot in Korea and Hong Kong

Linksys, the connected home division within the Belkin International and Foxconn Interconnect Technology (FIT) entity (formerly owned by Cisco Systems), has introduced the first 5G and Wi-Fi 6 Mobile Hotspot in Korea with Korea Telecom (KT), the largest Korean mobile carrier and in Hong Kong with CSL. The Linksys 5G Mobile Hotspot is powered by the Qualcomm® Snapdragon™ X55 5G Modem-RF System and Qualcomm® FastConnect™ 6800 mobile connectivity system.

The Linksys 5G Mobile Hotspot harnesses 5G and Wi-Fi 6 for blazing fast and seamless connectivity. The device is the world’s thinnest and lightest 5G mobile hotspot and includes a USB-C port with Qualcomm® Quick Charge™ Technology, ensuring devices are powered up and optimally connected at home or on-the-go.

The Linksys 5G Mobile Hotspot enables a fast and stable network by utilizing the latest Wi-Fi 6 standard and dual-band Wi-Fi (802.11ax) technologies. With USB tethering that supports large-capacity LTE high-speed data, users can stay connected regardless of what environment or situation they are in.

“Mobile hotspots are essential to use fast, seamless wireless networks in a variety of environments, enabling increased connectivity, mobility and productivity across many use cases,” said L.C. Wu, chief operating officer, Connected Home Division (Linksys, Wemo, Phyn), Belkin International. “Linksys is excited to launch the first 5G mobile hotspot supporting 5G and Wi-Fi 6 in Korea with KT and Hong Kong with CSL. We will continue to rollout new innovative 5G devices around the world, and expect many consumers will enjoy a fast and stable mobile life with our products.”

Additional specs include:

  • The thinnest and lightest 5G mobile hotspot in the market – 15.5mm thickness and 185g weight
  • Connects up to 16 devices
  • 4000mAh battery capacity allows all-day usage
Linksys 5G (BKE-500) -$ HeroImage

                                                             Linksys 5G (BKE-500) 5G/WiFi 6 mobile hotspot: Image Credit: Linksys

The Linksys Mobile Hotspot will deliver 5G supersonic speeds to 15+ devices, all day, and on the go. The ultra-thin and lightweight design and all-day battery life is a match made in tech heaven.

  • Portable 5G supersonic speed and bandwidth
  • WiFi 6 speeds up to 1.8 Gbps (AX1800), Handles 15+ Devices
  • Ultra-thin design for maximum convenience
  • All-Day Battery capacity to keep you connected at all times*
  • Powered by leading edge 5G technology by Qualcomm®
  • Quick charging through USB-C, QC3.0 certified
  • Future-ready with the latest IPv6 internet protocol

………………………………………………………………………………………………………………………………………………………………………………………….

About Linksys
The Linksys brand has pioneered wireless connectivity since its inception in 1988, being the first router brand to ship 100 million units worldwide. Recognized for its award-winning Velop Intelligent Mesh™ Technology and integrated Linksys Aware WiFi motion sensing software, Linksys enables a connected lifestyle with simplified home and business control, enhanced security and seamless Internet access through innovative features and a growing application and partner ecosystem. Linksys products are sold in more than 60 countries and can be found in major retailers around the world.

About Belkin International
In 2018, Foxconn Interconnect Technology merged with Belkin International (Belkin®, Linksys®, Wemo®, Phyn®) to create a global consumer electronics leader. Today, this group leads in connecting people with technologies at home, at work and on the go within the accessories (“Connected Things” – Belkin brand) and the smart home (“Connected Home” – Linksys, Wemo and Phyn brands) markets.

Qualcomm Snapdragon, Qualcomm FastConnect and Qualcomm Quick Charge are products iof Qualcomm Technologies, Inc. and/or its subsidiaries.

……………………………………………………………………………………………………………………………………………………………………………………

References:

https://markets.businessinsider.com/news/stocks/linksys-and-qualcomm-launch-the-first-5g-and-wi-fi-6-mobile-hotspot-in-korea-and-hong-kong-1029750945#

https://www.qualcomm.com/wi-fi-6

https://www.linksys.com/us/wifi-6/#prods

Qualcomm SoCs for Wi-Fi 6E in 6GHz band and Bluetooth 5.2 with superior performance

Qualcomm has launched a new portfolio of flagship mobile system on a chip (SoC) featuring support for Wi-Fi 6E (aka IEEE 802.11ax), which will soon be operational in the 6 GHz band. The first products to be launched are two SoCs, the Qualcomm FastConnect 6900 and the Qualcomm FastConnect 67000.

The FastConnect 6900 will provide speeds of up to 3.6 Gbps, implementation of 4-stream Dual Band Simultaneous (DBS) with multiband (including 6 GHz) capabilities. The FastConnect 6700 chip will meanwhile deliver speeds approaching 3 Gbps. The Verge noted that one of the chips will be for smartphones and the other for routers.

Both chips will both support Wi-Fi 6, low latency, and Bluetooth audio features for classic and new use cases. They will sport Qualcomm 4K QAM for enhanced gaming and ultra HD streaming and 160 MH channels support in both 5 and 6 GHz bands, expanding throughput while reducing congestion. They will also help save power, by generating less channel congestion.  The chips are now sampling and will ship in production during the second half of 2020.

Qualcomm FastConnect 6900 and 6700 modules: Wi-Fi 6E support and ...

“Wi-Fi 6E delivers an unprecedented improvement in capacity to meet the rapid growth of connected devices and data demand. The introduction of supporting chipsets so soon after the FCC ruling ensures customers will see the benefits quickly and is an indicator of both Qualcomm Technologies’ investment and broad industry collaboration,” said Geoff Blaber, vice president, research, Americas, CCS Insights.

“Wi-Fi Alliance® members have mobilized around 6 GHz in an unprecedented way, and we’re excited to see Wi-Fi 6E solutions rapidly coming to market with the availability of new unlicensed spectrum in the U.S.,” said Kevin Robinson, Senior VP of Marketing, Wi-Fi Alliance. “Solutions like these from Qualcomm will help users fully experience Wi-Fi® in 6 GHz and quickly benefit from faster speeds, higher capacity, and lower latency applications.”

Next-Generation Wi-Fi 6E for Mobile and Computing
New portfolio extends advanced Wi-Fi 6 feature implementations into the 6 GHz band. Key features include:

Unmatched Wi-Fi Speed:

  • FastConnect 6900 offers the fastest available Wi-Fi 6 speed, up to 3.6 Gbps, of any mobile Wi-Fi offering in the industry.
  • FastConnect 6700 delivers impressive peak speeds approaching 3 Gbps.

Driving this performance for both FastConnect systems are differentiated features such as:

  • Qualcomm® 4K QAM (2.4, 5, 6 GHz) – an industry first implementation of this advanced modulation technique can extend the maximum QAM rate, across any supported band, from 1K to 4K for enhanced gaming and ultra HD streaming.
  • 160 MHz channels support in both 5 and 6GHz bands, dramatically expanding throughput while reducing congestion.

FastConnect 6900 delivers an extra boost of performance through additional unique feature implementation of 4-stream Dual Band Simultaneous (DBS) with multi-band (including 6 GHz) capabilities.

Essential Improvement of Capacity and Network Efficiency: Delivering reliable performance, even in the most congested home, enterprise and public networks.

  • 6 GHz dramatically expands Wi-Fi capacity by adding up to 1200 MHz of additional spectrum, more than doubling the number of pathways currently available for sending and receiving data.
  • Dual band 160 MHz supports up to seven additional non-overlapping channels in the 6 GHz band, in addition to 160 MHz channels available in the 5 GHz band.
  • Deploys high-performance Uplink / Downlink MU-MIMO and OFDMA mobile technologies across all available bands.
  • New Wi-Fi 6 Uplink MU-MIMO capability can increase network capacity by more than 2.5x.

Ultra-Low Latency: A new class of low latency and high speed for emerging mobile applications, providing the foundation for explosive growth in mobile gaming and XR application.

  • Feature implementation delivers latency reduction up to 8x in congested environments for dramatically improved mobile gaming experiences.
  • Wireless VR-class latency (<3ms) for Head Mounted Displays (HMD) provides a strong foundation for this rapidly growing industry segment.

Advanced Technology and Power Efficiency: Power savings due to less channel congestion and improved scheduling.

  • 14nm process node combined with advanced power-management architecture provides up to 50 percent improvement in power efficiency, compared to previous generation solutions.

Bluetooth 5.2 with Advanced Audio
FastConnect 6900 and 6700 integrate Bluetooth 5.2 with the latest audio advancements for greatly improved wireless experiences. Key features include:

Bluetooth 5.2 Above and Beyond

  • Leading Bluetooth 5.2 implementation includes a second Bluetooth antenna with intelligent switching capabilities, overcoming common signal shadowing issues for unparalleled Bluetooth reliability and range.
  • Engineered to be ready to address emerging LE Audio experiences such as multi-point audio sharing and broadcast audio, enabling multiple audio connections simultaneously.

Superior Bluetooth Audio

  • Qualcomm® aptX™ Adaptive supporting wire-equivalent audio (up to 96kHz) and Qualcomm® aptX™ Voice providing super-wideband quality calls.

End-to-End Enhanced Experiences

  • When paired with the premium features of Qualcomm® QCC5141, QCC5144, QCC3046 and QCC3040 Audio SoCs, users can expect robust, premium audio quality with low power consumption.
  • Innovative transmit power and coexistence algorithms deliver materially improved range and link robustness.

………………………………………………………………………………………………………………………………………………

“Leveraging decades of focused research and development, our second-generation Wi-Fi 6 platforms set a new performance benchmark for home and enterprise networking applications,” said Nick Kucharewski, vice president and general manager, wireless infrastructure and networking, Qualcomm Technologies, Inc. “With Tri-Band Wi-Fi 6 and scaling to 16 streams, Qualcomm Networking Pro Series Platforms pair wireless expertise with robust architecture designed to deliver Gigabit speeds, massive capacity, and stable-as-wire reliability our customers depend on.”

“The new 6 GHz band and Wi-Fi 6E standard ushers in a new age in wireless connectivity – a dramatic advance in performance and a new paradigm in wireless networking. Industry-leading Wi-Fi 6E technology – including Qualcomm’s new Wi-Fi 6E platforms – will transform every use case segment, from home to the enterprise, industrial applications, and even fixed wireless access, with new unbelievable applications sure to follow. The Wi-Fi 6E future looks very bright indeed,” said Claus Hetting, CEO & Chairman, Wi-Fi Now.

“Wi-Fi Alliance® members have mobilized around 6 GHz in an unprecedented way, and we’re excited to see Wi-Fi 6E solutions rapidly coming to market with the availability of new unlicensed spectrum in the U.S.,” said Kevin Robinson, Senior VP of Marketing, Wi-Fi Alliance. “Solutions like these from Qualcomm will help users fully experience Wi-Fi® in 6 GHz and quickly benefit from faster speeds, higher capacity, and lower latency applications.”

Qualcomm Tri-Band Wi-Fi 6 expands the capabilities of the Qualcomm Networking Pro Series portfolio, whose hallmark is the delivery of consistent high performance in the most densely congested environments:

  • Qualcomm® Max User Architecture: Industry-first architecture to manage and maintain connectivity for up to 2,000 clients simultaneously, with network stability and sustained throughput.
  • Qualcomm® Multi-User Traffic Management: Provides advanced scheduling algorithms and buffering with universal uplink data support. Advanced multi-user implementations specialized for high user counts include up to 37-user OFDMA support per channel and 8-user MU-MIMO support per channel.
  • Qualcomm® 4K QAM technology: Designed to deliver 20% higher throughput compared to standard Wi-Fi 6E, helping achieve device-to-device transfers of up to 2.4 Gbps per link to compatible mobile and compute devices.  
  • Qualcomm® Tri-Band Wi-Fi 6 for Mesh Networks: Qualcomm® Wi-Fi SON has been enhanced to interconnect the Mesh Nodes using the 6 GHz band.
  • Qualcomm® Wi-Fi Security Suite: Comprehensive WPA3 implementation coupled with state-of-the-art embedded crypto accelerators designed to provide secure transactions across a full range of Wi-Fi data touchpoints.

“Aruba’s enterprise customers demand high-performance, reliable and secure Wi-Fi connectivity solutions that can be scaled to deliver extreme density and capacity. Through our collaboration with Qualcomm Technologies, we’ve utilized their advanced Wi-Fi technology to continuously evolve the seamless, connected experiences that our customers demand,” said Onno Harms, senior director of Product Management for WLAN Platforms at Aruba, a Hewlett Packard Enterprise company. “The newly opened 6 GHz spectrum and the advent of Wi-Fi 6E are important industry milestones that promise to usher in a new wave of Wi-Fi innovation that will bring exceptional wireless experiences to life.”

“We see this announcement from Qualcomm Technologies as a positive step forward in what’s possible for networking across the industry,” said David Henry, senior vice president of Connected Home Products and Services for NETGEAR. “We look forward to continuing our collaboration with Qualcomm Technologies as we incorporate the Networking Pro Series to deliver robust and seamless experiences that enable us to expand the ecosystem.”

“Our recent announcement highlighting CommScope’s RUCKUS Wi-Fi 6 Certified access points is a great example of pushing the boundaries of what’s possible for wireless communications. Integrating the Qualcomm Technologies Networking Pro Series platform into the RUCKUS portfolio enables customers to benefit from the latest improvements in security, speed and Wi-Fi connectivity, creating a more powerful and robust product that will strengthen the rich suite of solutions available in the industry,” said Pramod Badjate, senior vice president for CommScope’s RUCKUS portfolio.

Qualcomm Networking Pro Series platforms are shipping now with commercial availability expected this year.

For more information about our Wi-Fi 6E products, visit qualcomm.com/wi-fi-6e

*All peak speeds refer to maximum physical layer (PHY) rate.

About Qualcomm
Qualcomm is the world’s leading wireless technology innovator and the driving force behind the development, launch, and expansion of 5G.  When we connected the phone to the internet, the mobile revolution was born.  Today, our foundational technologies enable the mobile ecosystem and are found in every 3G, 4G and 5G smartphone.  We bring the benefits of mobile to new industries, including automotive, the internet of things, and computing, and are leading the way to a world where everything and everyone can communicate and interact seamlessly.

Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

…………………………………………………………………………………………………………………………………….
References:

https://www.qualcomm.com/wi-fi-6e

https://www.qualcomm.com/news/releases/2020/05/28/qualcomm-introduces-worlds-most-advanced-mobile-wireless-connectivity

https://www.qualcomm.com/news/releases/2020/05/28/qualcomm-answers-surging-connectivity-demand-comprehensive-new-portfolio-wi

 

Qualcomm Introduces 3rd Generation 5G Modem-RF System for 5G endpoints

Qualcomm has announced its third-generation 5G modem-to-antenna silicon system – the Snapdragon X60 5G Modem-RF System. The company said the device is the world’s first 5G modem to support spectrum aggregation across all key 5G bands and combinations, including mmWave and sub-6 GHz using FDD and TDD. This will enable speeds of up to 7.5 Gbps down and 3 Gbps up.

The modem features the new Qualcomm QTM535 mmWave antenna module and QTM535, the company’s third-generation 5G mmWave module for mobile, as well as a more compact design than the previous generation, allowing for thinner, sleeker smartphones.

Image result for pic of Snapdragon X60 5G Modem-RF System

Qualcomm said the modem will up performance for operators and increase 5G speeds in mobile devices. It added that the Snapdragon X60 is engineered to accelerate network transition to 5G standalone mode through support for any key spectrum band, mode or combination, along with 5G Voice-over-NR (VoNR) capabilities.

The company said the Snapdragon X60 is the world’s first to support mmWave-sub6GHz aggregation, allowing operators to maximize their spectrum resources to combine capacity and coverage. Additionally, the Snapdragon X60 contains the world’s first 5G FDD-TDD sub-6 carrier aggregation solution, in addition to supporting 5G FDD-FDD and TDD-TDD carrier aggregation, along with dynamic spectrum sharing (DSS), allowing operators a wide range of deployment options – including the ability to repurpose LTE spectrum for 5G – to effectively deliver higher average network speeds and accelerate 5G expansion. This 5G modem-to-antenna solution can deliver up to 7.5 gigabits per second (Gbps) download speeds and 3 Gbps upload speeds, and the aggregation of sub-6 GHz spectrum in standalone mode allows the doubling of peak data rates in 5G standalone mode compared to solutions with no carrier aggregation support. VoNR support in Snapdragon X60 will be an important step in the global mobile industry’s transition from non-standalone to stand-alone mode, as it will allow mobile operators to provide high-quality voice services on 5G NR.

“Qualcomm Technologies is at the heart of 5G launches globally with mobile operators and OEMs introducing 5G services and mobile devices at record pace. As 5G standalone networks are introduced in 2020, our third-generation 5G modem-RF platform brings extensive spectrum aggregation capabilities and options to fuel the rapid expansion of 5G rollouts while enhancing coverage, power efficiency and performance for mobile devices. We are excited about the fast adoption of 5G across geographies and the positive impact 5G is having on the user experience,” said Cristiano Amon, president, Qualcomm Incorporated.

Qualcomm previously said its second-generation 5G modem, the X55, was being used by over 30 device manufacturers.

For more information, visit the Snapdragon X60 Modem-RF System product page.

Or watch the Snapdragon X60 video.

Reference:

https://www.qualcomm.com/news/releases/2020/02/18/qualcomm-introduces-third-generation-5g-modem-rf-system-enhance-5g

 

Qualcomm Unveils Roadmap for 5G in 2020 at Snapdragon Tech Summit

During the first day of the annual Snapdragon Tech Summit in Hawaii, Qualcomm Incorporated President, Cristiano Amon said that 2020 will be the year for mainstream 5G (that’s before any part of IMT 2020 standard is finalized) and provide more consumers around the world with 5G’s multi-gigabit speeds. The new Qualcomm® Snapdragon™ 5G mobile platforms were said to define what is possible in flagship smartphones while enabling broad based 5G adoption across the growing number of commercial 5G networks.

“5G will open new and exciting opportunities to connect, compute, and communicate in ways we’ve yet to imagine and we are happy to be a key player driving the adoption of 5G around the world,” said Amon. “Our Snapdragon 5G mobile platforms announced today will continue to show leadership in the industry and deliver on the promise of scaling 5G in 2020.”

“One year ago, we were talking 5G future. In 2019, we’ll be talking about 5G,” said Cristiano Amon, Qualcomm’s president. Forty operators and forty OEMs across the world are investing in 5G, he said. By 2021, there will be more than 2.8 billion subscribers, with more to come he said.

Alex Katouzian, senior vice president and general manager, mobile, Qualcomm Technologies, Inc., unveiled two new 5G Snapdragon mobile platforms to lead and scale 5G and AI in 2020. The flagship Snapdragon 865 Mobile Platform, which includes the Snapdragon X55 Modem-RF System, is the world’s most advanced, global 5G platform, designed to deliver unmatched connectivity and performance for the next generation of flagship devices. The Snapdragon 765/765G bring integrated 5G connectivity, AI processing and select Qualcomm® Snapdragon Elite Gaming™ experiences. We expect Snapdragon 865 and 765/765G to power the most advanced Android-based smartphones launching in 2020 – regardless of whether users are in 5G or 4G coverage. Full platform details will be shared tomorrow.

Katouzian also introduced our first family of mobile platform-based modules, the Snapdragon 865 and 765 Modular Platforms. These modular platforms are products of an end-to-end strategy to empower the industry with the tools needed to scale 5G with ease, offering our customers lower development costs while also more quickly commercializing products with new industrial designs for mobile and IoT devices. The first carriers announcing support of the certification program for Snapdragon Modular Platforms are Verizon and Vodafone, with more expected in 2020.

Qualcomm Snapdragon

Quotes from Partner Companies (mostly customers) at the Snapdragon Summit:

“Given its role to date in helping advance the global 5G ecosystem, I’m excited to see Qualcomm Technologies announce plans for mobile platform-based modules designed to further scale products across the industry,” said Nicki Palmer, chief product development officer, Verizon. She added, “the Snapdragon Tech Summit is a great venue for ecosystem partners to collaborate and for Verizon to share our vision of where 5G will make the greatest impact on society.”

“5G is a focus for the entire Lenovo organization – from network infrastructure to personal devices, being the first to launch a 5G smartphone and preview a 5G PC,” said Sergio Buniac, president, Motorola. “As the mobile arm, Motorola will continue leading the 5G era with our expanded lineup of 5G solutions in 2020 — driven by the high-performing Snapdragon 765 and 865 Mobile Platforms, re-invigorating our place in the premium flagship space.”

“The 5G era opens up new opportunities and challenges. It brings great innovations and redefines how users interact with devices, audio, and video applications. The next generation of “Super Internet” will be an all-new model that combines 5G + AI + IoT, and Xiaomi will be at the forefront of this, developing and bringing 5G smartphones to the masses,” said Bin Lin, co-founder, vice chairman, Xiaomi Corporation. “In 2020 Q1, Xiaomi is proud to announce that we will be introducing our flagship Mi 10 – one of the world’s first smartphones to feature the flagship Snapdragon 865 Mobile Platform.”

“OPPO and Qualcomm Technologies have maintained a close and strong collaboration, and today we are honored to witness the launch of Qualcomm Technologies’ latest 5G mobile platforms and be part of its global commercialized plan. In 2020 Q1, OPPO will launch its flagship product using the Snapdragon 865 Mobile Platform, together bringing a faster and superior 5G experience to users. In the era of 5G and intelligent connectivity, OPPO will continue to invest in 5G products, research, standard development and application scenarios, with Qualcomm Technologies and other partners in the industry, to bring more 5G values and possibilities to users around the world,” said Alen Wu, vice president and president of global sales, OPPO.

“Our highest priority for 2020 is making 5G more accessible – bringing an affordable yet premium grade, future proof 5G experience for the best possible performance in NSA and SA networks with the Snapdragon 765 Mobile Platform,” said Juho Sarvikas, chief product officer, HMD Global. “Aside from being an excellent mobile platform for best-in-class 5G connectivity, Snapdragon 765 mobile platform allows us to offer breakthrough entertainment capabilities combined with our PureDisplay technology, and our unique ZEISS powered imaging solutions that enable fans to create and share amazing content over 5G.

We also congratulate Qualcomm Technologies on the announcement of its Snapdragon Modular Platform. This innovative approach to making 5G more accessible to OEMs will dramatically streamline the development process and we look forward to exploring possibilities of working with Qualcomm Technologies on this exciting platform.”

……………………………………………………………………………………………..

This year’s Snapdragon Tech Summit keynotes are being live streamed daily Dec 3, 4 and 5 at 9:00 a.m. HST (11:00 a.m. PST / 2:00 p.m. EST / 7:00 p.m. GMT at www.qualcomm.com/snapdragontechsummit

Reference:

https://www.qualcomm.com/news/releases/2019/12/03/annual-snapdragon-tech-summit-qualcomm-unveils-roadmap-bringing-5g

https://www.pcworld.com/article/3481783/qualcomms-next-gen-snapdragon-865-mobile-chip-focuses-on-5g.html

 

 

 

Siemens & Qualcomm create private 5G network for industrial applications

Siemens and Qualcomm have set up a private standalone 5G wireless network for industrial applications in a test center in Nuremberg, Germany.  The test center network uses 5G NR (data plane) over the 3.7-3.8 GHz band to connect Simatic control systems and IO devices.  It enables Siemens and Qualcomm Technologies to test technologies, solve problems, and come up with solutions for the future of private wireless applications in industrial settings. Qualcomm Technologies set up 5G industrial test devices along with a 5G standalone test network that includes a 5G core network and 5G base station with remote radio head. Siemens provided the actual industrial setup including Simatic control systems and IO devices.

“We are excited to announce our 5G private network proof-of-concept collaboration project with Siemens. This project will provide invaluable real-world learnings that both companies can apply to future deployments and marks an important key milestone as 5G moves into industrial automation,” said Enrico Salvatori, Senior Vice President, Qualcomm Europe, Inc. & President, Qualcomm Europe/MEA. “Combining our 5G connectivity capabilities with Siemens’ deep industry know-how will help us deploy technologies, refine solutions, and work to make the smart industrial future a reality.”

Using the network in the test center, vehicle makers can see automated guided vehicles interact live. The intention is to “drive forward the development and technical implementation of private 5G networks in the industrial sector,” said Eckard Eberle, CEO of process automation at Siemens.

In the course of this joint research effort at the Siemens Automotive Test Center, currently available industrial technologies such as OPC UA and Profinet will be tested and evaluated – technologies that require a 5G private network in order to work. In Germany, private networks can use the local broadband spectrum from 3.7-3.8 GHz, which has been reserved for industrial usage in local deployments. These private networks allow industrial sites to control and manage their own networks as they see fit, allowing for high reliability, low latency, and the ability to reconfigure the network to suit changing needs while at the same time keeping data onsite for added security.

……………………………………………………………………………………………………………………………………………………………………………………………….

Qualcomm Technologies and Siemens have a longstanding technical collaboration focused on cooperation in wireless technologies. This has resulted in over 15 years of success and the development of Siemens’ unique Scalance portfolio of industrial wireless products. With Qualcomm Technologies’ leading expertise in 5G technologies, this collaboration continues to evolve —leading into the first 5G private standalone network in an industrial environment using the 3.7-3.8GHz band. This allows solutions to be tested and developed which the industry will be able to use with the upcoming Release 16 of the 5G standard.

The two  companies are also exhibiting elsewhere in Nuremberg, Germany at the Smart Production Solutions (SPS) 2019 conference that continues this week.  At SPS, Qualcomm joined with Bosch Rexroth to showcase time-synchronized industrial devices over a live 5G network.

Time-sensitive networking (TSN) over 5G will provide greater flexibility for factory operations, said Yongbin Wei, vice president of engineering at Qualcomm. The company is planning to demonstrate full 5G TSN in the next 3GPP release 16 in 2020.

Bosch Rexroth makes a ctrlX Automation platform so that industrial machine makers can pick between real-time wired industrial Ethernet or real-time 5G wireless as needed, without having to change the machine application.

Elsewhere at SPS, STMicroelectronics and maxon showed off a $129 industrial servo control development kit for drives, robotics and automation. Called the Evalkit-Robot-1, it is designed to help users work with precise positioning and motion in servo drives and robotics. A maxon 100-watt motor with a built-in encoder is included in the kit as well as an intelligent three-phase motor controller with an inverter stage that includes ST power transistors.

………………………………………………………………………………………………………………………………………………………………………………………………………………

The one area of the globe currently leading the way with 5G is Europe, said Sebastiano Di Filippo, senior director, business development for Qualcomm Technologies Europe. As an example of Europe’s advanced activity in this area, he noted that the European Commission recently announced that it is “harmonizing its 26GHz radio spectrum band for 5G.”

As for 5G’s application in industry, Di Filippo said “real time computing at the edge is a major application for 5G.” With this in mind, specific factory applications Qualcomm is investigating for 5G include wearable devices, automated guided vehicle, robots, wireless edge analytics, sensors, and computer vision.

References:

https://www.webwire.com/ViewPressRel.asp?aId=250700

https://www.fierceelectronics.com/electronics/siemens-qualcomm-showcase-private-5g-net-for-industrial-apps

https://www.automationworld.com/factory/blog/21103544/bosch-rexroth-and-siemens-collaborate-with-qualcomm-on-5g

 

Qualcomm, Samsung, and Huawei announce 5G SoCs at IFA in Berlin

The Berlin-based IFA consumer electronics show keynotes from Qualcomm, Huawei, and Samsung illustrated the telecom supplier industry’s strong dedication to 5G System on a Chip (SoC).  Yet this comes more than one year before the IMT 2020 Radio Interface Technology (RIT) standard has been completed and six months (or more) before 3GPP Release 16 (which will specify ultra low latency and ultra high reliability) has been finalized.  Hence, we wonder if major revisions of announced 5G SoC’s and chipsets will be required in IMT 2020 standard endpoint devices?

Qualcomm President Cristiano Amon’s keynote presentation described the company’s 5G strategy, which is focused in part on driving access to 5G end point devices.  Amon promised to bring 5G mobile phones to the masses with a high-end modem and said Qualcomm chips would also power mid-price 5G devices reaching the market next year.

Qualcomm’s second-generation X55 modem supports 5G at both sub-6 GHz and millimeter wave frequencies and supports peak downlink speeds of 7 Gbps and peak uplink speeds of 3 Gbps.

Notable in Qualcomm’s IFA presentation is support for dynamic spectrum sharing (DSS) across the 6-, 7- and 8-series Snapdragon mobile platforms. In addition to bringing down the price point on 5G phones, this fits with operators plans to rapidly scale coverage in 2020 by using DSS, which lets LTE and 5G operate in the same band at the same time.  More on DSS (Ericsson and Qualcomm 5G data call) in this techblog post.

As wireless network providers introduce or expand their 5G network offerings, “We need to enable the operators to have that ecosystem ready so you can start providing new devices with dynamic spectrum sharing… We want all the users to have the benefit of this technology,” Amon told the IFA audience.

To make that 5G ecosystem possible, Amon announced Qualcomm would bring its portfolio of 5G mobile platforms out of just the 8-series and into the 7- and 6-series in 2020. Amon said a dozen OEMs were already onboard. with the 5G-enabled 7-series. “We are going to bring 5G to scale with our many partners.”

“Qualcomm have done a phenomenal job to drive the 5G ecosystem,” said industry analyst Paolo Pescatore. “It’s going faster than anyone could have ever imagined.”

–>We certainly agree with that comment – Qualcomm has done a splendid job, but much more work remains before an IMT 2020 chipset/SoC is introduced – most likely in mid 2021.  Qualcomm will likely be partnering with carriers to market new devices. It’s typical for operators to market subsidized handsets in the United States, but much less so in Europe.

qualcomm 5G IFA

Image courtesy of Qualcomm.

5G chipsets from Qualcomm, the world’s biggest supplier of mobile phone chips, now run on five devices from Samsung Electronics, including the $1,299 Galaxy S10 5G model and the new $2,000 Galaxy Fold.  Samsung is the world’s #1  smartphone maker.  It has also put Qualcomm chips in its lower-priced A90 5G model, which had used Samsung chips in an earlier version.

Amon said that Qualcomm plans to add 5G capabilities to its lower-cost Snapdragon 6 and 7 series devices, which could make 5G phones available at lower prices than the current models, which are mostly flagship devices priced at a premium. Qualcomm’s 6 and 7 series Snapdragon chips are found in devices from Lenovo Group Ltd’s Motorola, Xiaomi Corp, Oppo and Vivo that retail in the $300 range.

Indeed, virtually all flagship 5G mobile devices launched in 2019 in Europe and beyond are built on the Qualcomm’s ®Snapdragon™ 855 Mobile Platform.  Such semiconductor market dominance is unprecedented in this author’s 52 years of experience.

“The transition to 5G is going to be faster than earlier transitions,” Amon told Reuters on the sidelines of the IFA consumer electronics fair in Berlin. “Now we have to bring it to everyone.”

Conversely, this author believes the transition to mass market/high volume 5G (based on IMT 2020 standards), will be much longer than earlier transitions, e.g. from 3G to 4G.

More than 20 network operators and a similar number of smartphone makers – from the United States to Europe to China – are launching 5G services and handsets. Amon estimated there were 2.2 billion mobile users that could upgrade to 5G.  Again, we don’t think that will happen till there’s real 5G interoperability and roaming, which will require all devices and base stations to support IMT 2020 RITs/SRITs at a minimum!

Unlike rivals, Qualcomm is designing its chipsets to handle frequencies “from A to Z,” said Amon at IFA, adding that flexibility to switch between 4G networks and new 5G networks was critical.

………………………………………………………………………………………………………………………………………………………………….

Qualcomm’s 5G chipset competition is limited:

1.   5G chips from Taiwan based Mediatek can only handle sub-6 bands, reducing the cost and complexity of the chips and phone designs.  There really are no other 5G merchant market silicon vendors.  Mediatek’s 5G chip supports Standalone (SA) and Non-Standalone (NSA) 5G infrastructure, but it only supports sub-6GHz spectrum.

“Everything about this chip is designed for the first wave of flagship 5G devices. The leading-edge technology in this chipset makes it the most powerful 5G SoC announced to date and puts MediaTek at the forefront of 5G SoC design,” said MediaTek President Joe Chen. “MediaTek will power rollouts of 5G premium level devices,” Chen added.

2.  China state owned Unisoc announced the MAKALU 5G technology platform and its first 5G Modem IVY510 at MWC2019 in Barcelona, but that company is not represented in ITU-R WP5D meetings where IMT 2020 RIT/SRITs are being standardized.  UNISOC IVY510 is the first 5G Modem of UNISOC based on the MAKALU technology platform, produced with TSMC’s 12nm process. As the first 2G/3G/4G/5G multimode platform of UNISOC, IVY510 complies to the latest 3GPP R15 spec, supports Sub-6GHz 5G spectrum with a channel bandwidth of 100MHz, which is a highly integrated, high performance, low power 5G platform, and supports both standalone (SA) and non-standalone (NSA) network configurations to meet communication and networking requirements during different stages of 5G deployment.

………………………………………………………………………………………………………………………………………………………………….

Samsung announced the Exynos 980 eight-nanometer mobile processor with an integrated 5G modem capable of sub-6 GHz downlink speeds of 2.55 Gbps and 1.28 Gbps uplink.

ENDC refers to 5G/LTE dual connectivity and, based on 3GPP documents, stands for E-UTRAN New Radio-Dual Connectivity. Essentially ENDC allows user equipment to connect to an LTE eNodeB that acts as a master node and a 5G gNodeB that acts as a secondary node. Sprint, for instance, uses this to deploy LTE and 5G in its 2.5 GHz spectrum at the same time; a complement to the split-mode manner the carrier configures its massive MIMO radios.  Samsung said that ENDC provides peak speeds of 3.55 Gbps downstream and $2.55 Gbps upstream.

samsung 5G exynos

Image courtesy of Samsung Electronics.

“With the introduction of our 5G modem last year, Samsung has been driving in the 5G revolution and paved the way towards the next step in mobility,” said Ben Hur, vice president of System LSI marketing at Samsung Electronics. “With the 5G-integrated Exynos 980, Samsung is pushing to make 5G more accessible to a wider range of users and continues to lead innovation in the mobile 5G market,” he added.

………………………………………………………………………………………………………………………………………………………………………………………………………..

Huawei’s Richard Yu reviewed the specs of the Kirin 990, which the company called “the world’s first 5G SoC,” a disputed claim.  Yu touted the Kirin 990 chipset at IFA:  “It’s the world’s most powerful 5G system on a chip. It’s the world’s most powerful 5G modem.”

The Kirin 990 5G is built on a seven-nanometer semiconductor manufacturing process.  It includes silicon technologies from previous iterations of the Kirin line as well as the Balong line.

huawei 5G

Richard Yu, CEO of Huawei’s consumer business group, presents at IFA. Image courtesy of Huawei.

The updated Kirin is set to power Huawei’s upcoming flagship smartphone the Mate 30, which will be officially announced at a Sept. 19th launch event in Munich, Germany.  According to specs provided by Huawei, the Kirin 990 packs more than 10 billion transistors.  It can theoretically support downlink speeds of up to 2.3 Gbps and uplink speeds of 1.25 Gbps upstream.  The chip set has an adaptive receiver that enables it to switch between 4G and 5G where coverage of the faster technology is weak.  And, to save energy, it has a ‘big core’ to handle powerful computing tasks with the support of artificial intelligence, and a ‘tiny core’ for less demanding operation.

Huawei probably won’t sell the Kirin SoC on the semiconductor merchant market, but rather use it internally in its 5G endpoint devices (mostly 5G smart phones- for now). The latest Kirin does not support millimeter wave (mmWave) frequencies, which provide multi-gigabit-per-second speeds at the expense of much shorter range/distance.  The U.S. has auctioned more millimeter wave frequencies than any other country while AT&T and Verizon are using it in their pre-IMT 2020 standard 5G deployments.  Again,  mmWave has a much shorter range than mid and lower band spectrum, but has higher data-carrying capacity.  Currently, millimeter wave-based 5G networks are more or less limited to the U.S. market where regulatory issues make it very difficult for Huawei to sell anything, including smartphones.

Indeed, due to U.S. trade sanctions, Huawei’s 5G-ready Mate 30 smartphone, scheduled to be launched on Sept. 19, won’t be able to run the official version of Google’s Android operating system and app services if U.S. sanctions remain in place.  That eliminates the entire Android app ecosystem which include pre-installing the Google Play store and a suite of popular apps such as Google Maps that buyers would expect to be available from the moment they turn on their new phone and synch it with their profile.  Huawei’s fallback option would be to run the devices on its home-grown Harmony operating system, although company officials and analysts say it is not yet ready for prime time.

All that makes it highly unlikely Huawei will be able to sell any 5G smartphone outside of China. 

“Qualcomm has a scale advantage,” said Ben Wood, analyst at CCS Insight. “Huawei’s commitment to continue innovating on silicon is really impressive, especially given the geopolitical headwinds they are facing. “But at the end of the day, it’s a single-vendor solution. And, even if they had aspirations to sell the chipset, that is getting more difficult all the time,” Wood added.

References:

https://ca.reuters.com/article/idCAKCN1VR1HT-OCATC

https://www.reuters.com/article/qualcomm-5g-idUSL2N25W1K5

https://www.reuters.com/article/us-huawei-tech-europe/with-new-chipset-huawei-forges-ahead-with-smartphone-launch-plan-idUSKCN1VR10O

https://www.rcrwireless.com/20190907/5g/huawei-samsung-5g-ifa

 

Verizon, Qualcomm, and Ericsson collaborate on successful Massive MIMO Trial

Verizon said in a press release that it completed the first successful FDD (Frequency Division Duplexing) massive MIMO (Multiple Input Multiple Output) trial with a fully compatible customer device thanks to its collaboration with Ericsson and Qualcomm.   The trial included the use of the latest Ericsson massive MIMO software and hardware along with a mobile test device powered by Qualcomm’s Snapdragon 845 Mobile Platform with an X20 LTE modem.

According to the aforementioned press release:

Massive MIMO is a key technology component in the evolution towards 5G. It has the potential of greatly improving network capacity and the customer’s experience. To realize the gains, both the network and devices need to support new TM9 [1] functionality which leverages advanced beam forming schemes between the network equipment and the mobile device. This will raise network spectral efficiency and customer speeds.

Note 1.  In 3GPP Release-10 (LTE-Advanced) Transmission Mode 9 (TM9) was introduced.  TM9 is designed to help reduce interference between base stations to maximise signal stability and boost performance. The new TM-9 enables the enhancement of network capabilities and performance with minimum addition of overhead. More information on TM9 is here.

………………………………………………………………………………………………………..

Qualcomm introduced the 845 Mobile Platform at the Snapdragon Summit in Hawaii in early December.   The trial comes after Verizon and Ericsson deployed massive MIMO on the wireless carrier’s Irvine, Ca network in late October.

“We don’t wait for the future, we build it. And this is another great example of moving the industry forward,” Verizon Chief Network Engineer and Head of Wireless Networks Nicola Palmer said in the release. “Massive MIMO is a critical component of our 4G LTE Advancements and will play an important role in 5G technology that will result in single digit latency and scalability in the billions of connections,” he added.

Joe Glynn, vice president, business development at Qualcomm Technologies, Inc. said: “This milestone further demonstrates Qualcomm Technologies’ leadership and commitment to continually bring innovative technologies to consumers to improve their mobile experiences. We look forward to continuing our work with Verizon and Ericsson to push the limits of LTE while ushering in a world of 5G.”

Massive MIMO is an LTE Advanced (4G) technology which has been described as being akin to a set of focused flashlights targeting users rather than a single floodlight. The high number of transmitters enables more possible signal paths and beam forming, which directs the beam from the cell site directly to where the customer is located, dramatically cutting down on interference.

Figure 1

Figure 1. Massive MIMO exploits large antenna arrays to spatially multiplex many terminals.

……………………………………………………………………………………………………………………………….

Image result for images for massive MIMO

Figure 2. Active Phased Array Antenna (APAA) shown above right in 5G base stations. The combination of analog beam forming via APAA and digital MIMO signal processing for the multi-beam multiplexing is believed to be one of the promising approaches for reducing the complexity and power consumption of 5G base stations.  However, that has yet to be proven in a commercial 5G deployment.

………………………………………………………………………………………………………………………………….

In October, Verizon and Ericsson announced they had achieved a milestone in LTE Advanced technologies by completing their first deployment of FDD massive MIMO on Verizon’s wireless network in Irvine, California. Massive MIMO improves both spectral and energy efficiency, increasing network capacity for currently compatible devices in the market. Customers experience higher and more consistent speeds when using apps and uploading and downloading files.

Ericsson’s massive MIMO portfolio is expected to be available next year, putting it in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the market in the first half of 2018.

The past year saw a lot of talk around massive MIMO, which is considered by many to be a foundation technology for 5G. At the inaugural Mobile World Congress Americas in September, Sprint and Ericsson unveiled results of 2.5 GHz massive MIMO field tests conducted in Seattle and Plano, Texas, using Sprint’s spectrum and Ericsson’s radios.

  • In early September, Ericsson said massive MIMO was part of a trial with T-Mobile US using mid-band FDD spectrum on three sites in Baltimore, Maryland.
  • In February, Blue Danube Systems announced the completion of commercial trials using its massive MIMO technology in licensed FDD LTE spectrum with AT&T and Shentel.

Niklas Heuveldop, Head of Market Area North America, Ericsson, said: “Advanced Antenna Systems and Massive MIMO are key technology enablers for 5G, and 4G LTE service providers and end users will also benefit from the superior capacity and network performance these technologies enable. The latest trial is another important step in the collaboration we have with Verizon and Qualcomm Technologies to further evolve 4G and prepare the network for 5G.”

The Ericsson Massive MIMO portfolio is expected to be available next year, putting it well in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the markets in the first half of 2018.

References:

https://www.verizon.com/about/news/verizon-qualcomm-and-ericsson-collaborate-trial-latest-massive-mimo-advancements-path-5g

Verizon, Ericsson Team Up for Massive MIMO Deployment

http://www.samsung.com/global/business-images/insights/2017/Massive-MIMO-Comes-of-Age-0.pdf

http://www.ni.com/white-paper/52382/en/

https://techblog.comsoc.org/2017/10/17/mimo-starting-to-realize-its-full-potential-in-lte-networks/

https://techblog.comsoc.org/2015/06/30/separating-5g-fact-from-hype-is-massive-mimo-a-solution-or-dead-end/

https://www.itu.int/en/ITU-T/Workshops-and-Seminars/qos/201707/Documents/Rami%20Alnatsheh-%20Orchestrating%20the%20Performance%20of%205G.pdf

https://www.everythingrf.com/News/details/2639-zte-completes-massive-mimo-tests-for-imt-2020-5g

https://arxiv.org/pdf/1612.03993.pdf

http://www.analog.com/en/analog-dialogue/articles/massive-mimo-and-beamforming-the-signal-processing-behind-the-5g-buzzwords.html