Massive MIMO Deployments in India: Bharti Airtel vs. Vodafone Idea?

by Danish Khan  (edited and augmented by Alan J Weissberger)

The deployment of massive MIMO [1] technology has led to a series of claims and counter claims between India wireless network operators Vodafone Idea Ltd. (VIL) and Bharti Airtel. Both privately held telcos claim that they lead in terms of the deployment size of this pre-5G technology.

Note 1.  Massive multiple-input, multiple-output, or massive MIMO, is an extension of MIMO, which essentially groups together antennas at the transmitter and receiver to provide better throughput and better spectrum efficiency.

Moving from MIMO to massive MIMO, according to IEEE, involves making “a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency.”

Many different configurations and deployment scenarios for the actual antenna arrays used by a massive MIMO system can be envisioned (see Fig. 1). Each antenna unit would be small and active, preferably fed via an optical or electric digital bus.

Figure 1

Figure 1. Some possible antenna configurations and deployment scenarios for a massive MIMO base station.

……………………………………………………………………………………………………………………………………………………………………………………………………..

In a statement, Huawei said that Bharti Airtel has deployed more than 100 hops of enhanced MIMO microwave link based on the latest MIMO technology developed by the Chinese gear maker. The deployment, Huawei said, will deliver 1Gbps capacity over a single 28 Mhz spectrum, improving the backhaul capacity by four times.

“Bharti implements the largest-scale MIMO deployment around the world,” Huawei said in the statement. Airtel had made its first commercial deployment of massive MIMO in September 2017.

Bharti Airtel today (Sept 26, 2017) announced the deployment of India’s first state-of-the-art Massive Multiple-Input Multiple-Output (MIMO) technology which is a key enabler for 5G networks. As one of the few commercial deployment of Massive MIMO globally, the deployment puts India on the world map of technology advancement and digital revolution. Airtel is starting with the first round of deployment in Bangalore & Kolkata and will expand to other parts of the country.

Deployed as part of Airtel’s ongoing network transformation program, Project Leap, the Massive MIMO technology will expand existing network capacity by five to seven times using the existing spectrum, thereby improving spectral efficiency. Customers will now be able to experience two to three times superfast speeds on the existing 4G network. Data speeds will now also be seamless, offering enhanced user experience even indoors, in crowded places and high rise buildings. It would enable multiple users and multiple devices to work simultaneously without facing any congestion or experience issues especially at hotspot locations.

But in an interview with ET last week, Vodafone Idea chief technology officer, Vishant Vora had claimed that it was the leader in MIMO deployments in India. “We have deployed over 10,000 massive MIMOs in India. This is the largest deployment of massive MIMOs in India and neither of my two competitors has that. They are 100-200 and we are at 10,000 plus. This is the largest deployment outside China and in the world,” Vora said.

Vodafone Idea told ET this past March:

Vodafone Idea has deployed more than 5000 massive MIMO, small cells and TDD sites across Church gate, Prabhadevi, Pali hill, Lokhandwala, Versova, Andheri, Jogeshwari, Bandra and Dadar among other regions.  The telco has also installed over 1900 indoor coverage solutions for high rises and commercial places.

“With meticulous pre-merger planning and rigorous post-merger execution, we have ensured that our customers remain confidently connected and enjoy uninterrupted services even as we integrate and optimize our network in a phased manner across circles,” said Vishant Vora, CTO, Vodafone Idea.

………………………………………………………………………………………………………………………………………………………………………………………………

Huawei is also providing 4G equipment and massive MIMO technology to Vodafone Idea in seven circles.  Huawei didn’t provide additional information.

The MIMO technology achieves four times capacity with same spectrum, allowing a telecom operator to build a 5G-ready transport network without investment in additional spectrum .  MIMO deployment also allows telcos to address the capacity-related network issues in urban areas in India, besides deploying new sites to provide coverage in rural parts.

Mukesh Ambani-led Reliance Jio has also started to deploy massive MIMO technology in some of the metro cities that are seeing huge traffic growth resulting in bad data speed experience.

………………………………………………………………………………………………………………………………………………………………………………………………

References:

https://telecom.economictimes.indiatimes.com/news/massive-mimo-airtel-and-vodafone-idea-stake-claim-with-deployment-size/71404917

https://ieeexplore.ieee.org/document/6736761

https://www.airtel.in/press-release/09-2017/airtel-deploys-massive-mimo-indias-first-5g-capable-technology

https://telecom.economictimes.indiatimes.com/news/vodafone-idea-enhances-network-capacity-in-mumbai/68359629

Verizon, Qualcomm, and Ericsson collaborate on successful Massive MIMO Trial

Verizon said in a press release that it completed the first successful FDD (Frequency Division Duplexing) massive MIMO (Multiple Input Multiple Output) trial with a fully compatible customer device thanks to its collaboration with Ericsson and Qualcomm.   The trial included the use of the latest Ericsson massive MIMO software and hardware along with a mobile test device powered by Qualcomm’s Snapdragon 845 Mobile Platform with an X20 LTE modem.

According to the aforementioned press release:

Massive MIMO is a key technology component in the evolution towards 5G. It has the potential of greatly improving network capacity and the customer’s experience. To realize the gains, both the network and devices need to support new TM9 [1] functionality which leverages advanced beam forming schemes between the network equipment and the mobile device. This will raise network spectral efficiency and customer speeds.

Note 1.  In 3GPP Release-10 (LTE-Advanced) Transmission Mode 9 (TM9) was introduced.  TM9 is designed to help reduce interference between base stations to maximise signal stability and boost performance. The new TM-9 enables the enhancement of network capabilities and performance with minimum addition of overhead. More information on TM9 is here.

………………………………………………………………………………………………………..

Qualcomm introduced the 845 Mobile Platform at the Snapdragon Summit in Hawaii in early December.   The trial comes after Verizon and Ericsson deployed massive MIMO on the wireless carrier’s Irvine, Ca network in late October.

“We don’t wait for the future, we build it. And this is another great example of moving the industry forward,” Verizon Chief Network Engineer and Head of Wireless Networks Nicola Palmer said in the release. “Massive MIMO is a critical component of our 4G LTE Advancements and will play an important role in 5G technology that will result in single digit latency and scalability in the billions of connections,” he added.

Joe Glynn, vice president, business development at Qualcomm Technologies, Inc. said: “This milestone further demonstrates Qualcomm Technologies’ leadership and commitment to continually bring innovative technologies to consumers to improve their mobile experiences. We look forward to continuing our work with Verizon and Ericsson to push the limits of LTE while ushering in a world of 5G.”

Massive MIMO is an LTE Advanced (4G) technology which has been described as being akin to a set of focused flashlights targeting users rather than a single floodlight. The high number of transmitters enables more possible signal paths and beam forming, which directs the beam from the cell site directly to where the customer is located, dramatically cutting down on interference.

Figure 1

Figure 1. Massive MIMO exploits large antenna arrays to spatially multiplex many terminals.

……………………………………………………………………………………………………………………………….

Image result for images for massive MIMO

Figure 2. Active Phased Array Antenna (APAA) shown above right in 5G base stations. The combination of analog beam forming via APAA and digital MIMO signal processing for the multi-beam multiplexing is believed to be one of the promising approaches for reducing the complexity and power consumption of 5G base stations.  However, that has yet to be proven in a commercial 5G deployment.

………………………………………………………………………………………………………………………………….

In October, Verizon and Ericsson announced they had achieved a milestone in LTE Advanced technologies by completing their first deployment of FDD massive MIMO on Verizon’s wireless network in Irvine, California. Massive MIMO improves both spectral and energy efficiency, increasing network capacity for currently compatible devices in the market. Customers experience higher and more consistent speeds when using apps and uploading and downloading files.

Ericsson’s massive MIMO portfolio is expected to be available next year, putting it in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the market in the first half of 2018.

The past year saw a lot of talk around massive MIMO, which is considered by many to be a foundation technology for 5G. At the inaugural Mobile World Congress Americas in September, Sprint and Ericsson unveiled results of 2.5 GHz massive MIMO field tests conducted in Seattle and Plano, Texas, using Sprint’s spectrum and Ericsson’s radios.

  • In early September, Ericsson said massive MIMO was part of a trial with T-Mobile US using mid-band FDD spectrum on three sites in Baltimore, Maryland.
  • In February, Blue Danube Systems announced the completion of commercial trials using its massive MIMO technology in licensed FDD LTE spectrum with AT&T and Shentel.

Niklas Heuveldop, Head of Market Area North America, Ericsson, said: “Advanced Antenna Systems and Massive MIMO are key technology enablers for 5G, and 4G LTE service providers and end users will also benefit from the superior capacity and network performance these technologies enable. The latest trial is another important step in the collaboration we have with Verizon and Qualcomm Technologies to further evolve 4G and prepare the network for 5G.”

The Ericsson Massive MIMO portfolio is expected to be available next year, putting it well in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the markets in the first half of 2018.

References:

https://www.verizon.com/about/news/verizon-qualcomm-and-ericsson-collaborate-trial-latest-massive-mimo-advancements-path-5g

Verizon, Ericsson Team Up for Massive MIMO Deployment

http://www.samsung.com/global/business-images/insights/2017/Massive-MIMO-Comes-of-Age-0.pdf

http://www.ni.com/white-paper/52382/en/

https://techblog.comsoc.org/2017/10/17/mimo-starting-to-realize-its-full-potential-in-lte-networks/

https://techblog.comsoc.org/2015/06/30/separating-5g-fact-from-hype-is-massive-mimo-a-solution-or-dead-end/

https://www.itu.int/en/ITU-T/Workshops-and-Seminars/qos/201707/Documents/Rami%20Alnatsheh-%20Orchestrating%20the%20Performance%20of%205G.pdf

https://www.everythingrf.com/News/details/2639-zte-completes-massive-mimo-tests-for-imt-2020-5g

https://arxiv.org/pdf/1612.03993.pdf

http://www.analog.com/en/analog-dialogue/articles/massive-mimo-and-beamforming-the-signal-processing-behind-the-5g-buzzwords.html

 

Qualcomm to ISPs: Mesh WiFi networking via IEEE 802.11ax is the future of smart homes

Mesh networking can centralize IoT and other devices in smart homes and make them easier to manage, according to Qualcomm’s Connectivity Business unit lead, Rahul Patel.  Carrier-class mesh networking could resolve connection issues, said Patel  who strongly suggests internet service providers (ISPs) offer a mesh networking service.

  • Market research firm Gartner predicts that 8.4 billion connected “Things” will be in use in 2017, up 31 percent from 2016.
  • GMSA report “The Impact of the Internet of Things: The Connected Home”   suggests that up to 50 connected or Internet of Things (IoT) devices will be in use in the average connected home by 2020.

According to Qualcomm’s Wi-Fi router consumer survey of 1500 respondents from the UK, France, and Germany this year, 50% said they use a device in three different rooms simultaneously.  [Those folks must have a lot of people living in their homes with separate rooms!]

Today, home broadband networks sometimes find themselves buckling under the weight of numerous mobile, IoT, and connected devices. Information streams can become confused, bottlenecks occur, and ISP throttling can cause too much strain for efficiency or reliability (expect more of this as FCC has just repealed net neutrality rules).

Qualcomm’s mesh technologies, including Wi-Fi SON, are already used by vendors including Eero, Google Wi-Fi, TP-Link, Luma, and Netgear.

Qualcomm is directing its mesh WiFi standards efforts within the IEEE 802.11ax task group which it serves as co-vice chair.  That specification is being designed to improve overall spectral efficiency, especially in dense deployment scenarios. It’s predicted to have a top speed of around 10 Gb/s and operate in the already existing 2.4 GHz and 5 GHz spectrum bands.

Qualcomm has created a 12-stream mesh WiFi platform powered by a quad-core iCMOS micro-processor with a 64-bit architecture.

Editor’s Note:

IEEE 802.11ax draft 3.0  is scheduled to go out for IEEE 802.11 Working Group Letter ballot in May 2018 with Sponsor Ballot scheduled for May 2019.  Please see references for further details.

…………………………………………………………………………………………………………………….

Patel says that development is already in play to use the platform, and mesh will be the “next big thing” for the Wi-Fi industry, with products expected to appear in the market based on Qualcomm technologies in the second half of 2018.

Carrier-class mesh networking could be used to map entire neighborhoods, in which connectivity problems can be quickly detected and fixed without constant customer reports, complaints, and costly engineer footfall.

As consumers expect more from their home Wi-Fi, however, they also expect ISPs to make sure systems are in working order and deliver what they promise.

“The operator is shouldering the burden of fixing issues in the home,” Patel says. “If they don’t, cloud providers such as Google will take over.”

If ISPs do not rise to the challenge, consumers may choose to go to a cloud provider instead.

“That [home] traffic is getting piped into their clouds rather than BT or Sky, and so ISPs are losing out on the traffic they are piping into someones home,” Patel added. “You as an operation are perceived to be the one to support the Wi-Fi in the home.”

“If you (ISPs) don’t move fast, you lose out on the home becoming a cloud providers’ and have no control over what happens in the home,” Patel said.

References:

http://www.zdnet.com/article/mesh-networking-is-the-future-of-iot-smart-homes/

http://www.ieee802.org/11/Reports/tgax_update.htm

http://www.ieee802.org/11/Reports/tgax_update.htm#nov2017

https://en.wikipedia.org/wiki/IEEE_802.11ax

Verizon, Ericsson Team Up for Massive MIMO Deployment

Verizon and Ericsson have deployed frequency division duplexing (FDD) Massive Multiple Input-Multiple Output (MIMO) technology on the Verizon’s wireless network in Irvine, Calif., a step forward in implementing “5G” wireless communications. Ericsson provided 16 transceiver radios and 96 antenna elements in an array for the deployment.

The two companies say the Massive MIMO deployment will improve spectral and energy efficiency, increasing network capacity for current devices in the market.  Other network enhancements are expected to provide higher and more consistent speeds for using apps and uploading and downloading files, clearing the pathway for “5G” deployment.

The massive MIMO deployment is running on a 20 MHz block of AWS spectrum.  Four-way transmit has been widely deployed throughout the Verizon network and has contributed to significant 4G LTE advancements, according to the announcement. The high number of transmitters from the Massive MIMO provides more possible signal paths.  It also enables beamforming, which directs the beam from the cell site directly to where the customer is, dramatically cutting down on interference.  Reduced interference results in higher and more consistent speeds for customers.

Image result for pic of massive MIMO

Note:  Massive MIMO is a candidate feature for IMT 2020 (standardized 5G).  Please see last references for authoritative status of IMT 2020.

……………………………………………………………………………………………………….

“While continuing to drive 5G development, the deployment of Massive MIMO offers very tangible benefits for our customers today.  As we innovate, we learn and continue to lay the groundwork and set the standards for 5G technology,” said Nicola Palmer, Verizon Wireless chief network officer, in a prepared statement. “Our collaboration with Ericsson on this new deployment continues to drive industry-wide innovation and advancements.”

“We have a tremendous excitement around 5G, and today we made a great announcement to our commitment of driving the 5G ecosystem,” Verizon SVP Atish Gude said

Niklas Heuveldop, Ericsson head of market area North America said: “Massive MIMO is a key technology enabler for 5G, but already today, 4G LTE service providers and end users can benefit from the superior capacity and network performance this technology enables.  The current trial is an important step in the collaboration we have with Verizon to prepare their network for 5G.”

Ericsson is active with massive MIMO deployments on other carrier networks, including Sprint, who announced a deployment last month.

References:

ABI Research: MIMO starting to realize its full potential in LTE Advanced networks

On the Path to 5G, Verizon, Ericsson Team Up for Massive MIMO Deployment

 

http://www.zdnet.com/article/verizon-and-ericsson-deploy-massive-mimo-on-irvine-lte-network/

IEEE ComSoc Webinar: 5G: Converging Towards IMT-2020 Submission

IMT 2020 workshop which includes hyperlinks to enable you to download the presentations:
Note: There were 4 organizations that presented their proposed IMT 2020 RAN (AKA RIT/SRIT) schemes at this workshop:
3GPP 5G, ETSI DECT, Korea IMT 2020 and China IMT 2020

ABI Research: MIMO starting to realize its full potential in LTE Advanced networks

As LTE progresses to more advanced versions such as 3GPP standard LTE-Advanced, LTE-Advanced Pro and the recently marketed Gigabit LTE, ABI Research expects that MIMO [1] will become an increasingly important part of mobile network operators’ options in their evolution to 5G (officially known as IMT 2020).

While MIMO has not delivered on its promises so far, no doubt exists that the technology will become a foundational building block for mobile networks in the evolution to 4G/5G, and advanced antenna systems will receive increasing attention and research and development (R&D) by both vendors and MNOs.

Advanced antenna systems, including complex passive antennas and large-scale active antennas, will become part of the roadmap to advanced LTE and 5G, according to ABI Research.

Note 1. Long term evolution (LTE) is based on Multiple Input Multiple Output (MIMO)-Orthogonal frequency-division multiplexing (OFDM) and continues to be developed by the 3rd Generation Partnership Project (3GPP).

OFDM is a frequency-division multiplexing (FDM) scheme used as a digital multi-carrier modulation method. A large number of closely spaced orthogonal sub-carrier signals are used to carry data on several parallel data streams or channels.

 

……………………………………………………………………………………….

LTE Advanced (true 4G before the term was hijacked by marketing heads) adds support for picocells, femtocells, and multi-carrier channels up to 100 MHz wide. LTE has been embraced by both GSM/UMTS and CDMA operators.

………………………………………………………………………………………

ABI Research thinks that Massive MIMO will be a key feature of 5G and deploying advanced MIMO for 4G-LTE is a long-term investment which will prepare the ground for the deployment of the next generation of networks.

“While MIMO has not delivered on its promises so far, we are left with no doubt that the technology will become a foundational building block for mobile networks in the evolution of 4G and 5G and advanced antenna systems will receive increasing attention and R&D by both vendors and MNOs,” says Nick Marshall, Research Director at ABI Research. “We expect increasing acquisition activities in the antenna market, particularly involving MIMO technology.”

Overall the installed base of MIMO-enabled LTE antennas will grow by more than double worldwide from 2017 to 2021 to reach almost 9 million, with the Asia Pacific region outpacing this with a growth rate of three times. The Asia Pacific region will grow to represent most of the market by 2021. Although the MIMO-enabled LTE platform retains the largest installed base through 2021, growing by a factor of almost two times, it is the MIMO-Enabled LTE-Advanced platform growing at a faster rate and MIMO-enabled LTE-Advanced Pro at almost six times which rise rapidly to match the scale of the earlier MIMO-enabled LTE platform. The cellular antenna market forms a very dynamic and innovative ecosystem with many vendors including Amphenol, Comba, CommScope, Huawei, Kathrein and RFS all competing to include these advanced multi-antenna features,

“Advanced antenna systems including complex passive antennas and large scale massive MIMO active antennas will become part of the roadmap to advanced LTE and 5G,” concludes Marshall. “The need for active antennas when MIMO becomes more advanced will also change the market map, which has largely depended on passive antennas for previous generations.”

These findings are from ABI Research’s “Evolution of MIMO in LTE Networks report. This report is part of the company’s Mobile Networks Service research service, which includes research, data, and analyst insights.

For more info,including an Executive Summary:

https://www.abiresearch.com/market-research/product/1026964-evolution-of-mimo-in-lte-networks/#

About ABI Research:
ABI Research stands at the forefront of technology market intelligence, providing business leaders with comprehensive research and consulting services to help them implement informed, transformative technology decisions. Founded more than 25 years ago, the company’s global team of senior and long-tenured analysts delivers deep market data forecasts, analyses, and teardown services. ABI Research is an industry pioneer, proactively uncovering ground-breaking business cycles and publishing research 18 to 36 months in advance of other organizations. For more information, visit www.abiresearch.com.

Backgrounder:  

COMPLIMENTARY TUTORIAL ON MMWAVE AND MASSIVE MIMO

http://www.comsoc.org/blog/complimentary-tutorial-mmwave-and-massive-mimo

 

 

Recent Posts