LPWAN to Application standardization within the IETF

By Juan Carlos Zuniga, Sigfox, IETF Internet Area Co-Chair, (edited by Alan J Weissberger)

Introduction:

Amongst the plethora of different Internet of Things (IoT) technologies [see Addendum], Low Power Wide Area Networks (LPWANs) [1] offer mature and well-established solutions for the Industrial Internet of Things (IIoT).

Note 1.  A LPWAN is a type of wireless telecommunication wide area network designed to allow long range communications with low power consumption, low cost interface and a relatively low bit rate for the IIoT.  There are many types of LPWANs.  Some like LTE-M and NB-IoT use licensed spectrum, while others such as Sigfox and LoRaWAN use unlicensed spectrum.

LPWANs enables IoT systems to be designed for use cases that require devices to send small amounts of data periodically over often-remote networks that span many miles and use battery-powered devices that need to last many years.

LPWANs achieve those attributes by having the IoT devices (“things”) send only small packets of information periodically or even infrequently—status updates, reports, etc.—upon waking from an external trigger or at a preprogrammed time interval.

………………………………………………………………………………………………

In order to enable these IIoT connectivity solutions, a common standard is needed to allow the various types of LPWANs to communicate with applications using a common language.  For this to occur, each network must have the ability to connect to the Internet.  However, due to the severely restrictive nature of LPWANs, the abilities of Internet Protocols, specifically IPv6, cannot sufficiently meet the needs of these networks.

To overcome these issues, the Internet Engineering Task Force (IETF) chartered the LPWAN working group (WG) in 2016 to identify common functionality needs across LPWANs and to standardize the protocols that could enable these functionalities across the various networks.

The goal of the IETF LPWAN WG is to converge the diverse LPWAN radio technologies toward a common hourglass model that will provide users with a standard management strategy across networks and enable common Internet-based services to the applications.

To achieve this goal, the IETF LPWAN WG has produced the Static Context Header Compression and Fragmentation (SCHC) [2] specification, an ultralightweight adaptation layer uniquely designed to support the extremely restricted communication resources of LPWAN technologies.

Note 2.  SCHC is expected to become a recognized acronym like several  other IETF protocols (e.g. HTTP, TCP, DHCP, DNS, IP, etc.).  Please see illustration below of SCHC Architecture.

………………………………………………………………………………………………….

SCHC will soon be published as a new IETF RFC.  Again, it’s objective is to achieve interoperability across the leading LPWANs, including Sigfox, LoRaWAN, NB-IoT and IEEE 802.15.4w(LPWA) [3].

Note 3.  IEEE 802.15.4w or LPWA

Low Power Wide Area Network (LPWAN) extension to the IEEE Std 802.15.4 LECIM PHY layer to cover network cell radii of typically 10-15km in rural areas and deep in-building penetration in urban areas. It uses the LECIM FSK (Frequency Shift Keying) PHY modulation schemes with extensions to lower bit-rates (e.g. payload bit-rate typically < 30 kb/s). Additionally, it extends the frequency bands to additional sub-GHz unlicensed and licensed frequency bands to cover the market demand. For improved robustness in channels with high levels of interference, it defines mechanisms for the fragmented transmission of Forward Error Correction (FEC) code-words, as well as time and frequency patterns for the transmission of the fragments. Furthermore, it defines lower code rates of the FEC in addition to the K=7 R=1/2 convolutional code. Modifications to the Medium Access Control (MAC) layer, needed to support this PHY extension, are defined.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Why do LPWANs need their own interoperability standard?

The common characteristics of LPWANs include a power-optimized radio network, a simple star network topology, frame sizes in the order of tens of bytes transmitted a few times per day at ultra-low speeds, and a mostly upstream transmission pattern that allows devices to spend most of their time in sleep mode. These characteristics lead to ultra-long-range networks that allow for connected devices to have an extremely long battery life and be sold at a very low cost, enabling simple and scalable deployments.

LPWANs are especially well-suited for deployments in environments where battery recharging or swapping is not an option and where only a very low rate of data reporting is required. Also, LPWAN networks are fundamentally different than other networks, as they have been designed to handle infrequent message exchanges of payloads as small as approximately 10 bytes.

To manage these very specific constraints, the IETF has developed the SCHC adaptation layer, which is located between the network layer (e.g. IPv6) and the underlying LPWAN radio technology. SCHC comprises two independent sublayers – header compression and fragmentation – which are critical to meeting the specific characteristics of LPWANs.

The SCHC header compression sublayer has been tailored specifically for LPWAN technologies, and it is capable of compressing protocols such as IPv6, UDP and CoAP. It relies on the infrequent variability of LPWAN applications to define static contexts that are known a priori to both protocol end points.

The SCHC fragmentation sublayer, on the other hand, offers a generic approach to provide both data reliability and the capability of transmitting larger payload sizes over the extremely constrained LPWAN packet sizes and the extremely severe message rate limitations. Even though the fragmentation sublayer mechanisms have been designed to transport long IPv6 packets, they can equally be applied to non-IP data messages and payloads, as the functionality can be implemented independent of the header compression.

In order to be fully operational across LPWAN technologies, SCHC has been developed by the IETF under a generic and flexible approach that aims to address the common and unique requirements of these networks. The SCHC specification offers enough flexibility to optimize the parameter settings that need to be used over each LPWAN technology.

The IETF LPWAN WG is now working on the development of different SCHC profiles optimized for each individual LPWAN technology, including Sigfox, LoRaWAN, NB-IoT and IEEE 802.15.4w. Future work also includes definition of data models to represent the static contexts, as well as operation, administration and management (OAM) tools for LPWANs.

Here’s an illustration of the Sigfox SCHC:

…………………………………………………………………………………………………..

From the early stage IETF Sigfox SCHC profile spec:

The Static Context Header Compression (SCHC) specification describes a header compression scheme and a fragmentation functionality for Low Power Wide Area Network (LPWAN) technologies.
SCHC offers a great level of flexibility that can be tailored for different LPWAN technologies. 
The present (early stage) document provides the optimal parameters and modes of operation when SCHC is implemented over a Sigfox LPWAN.

………………………………………………………………………………..

Addendum –by Alan J Weissberger

IEEE definition of IoT:

“An IoT system is a network of networks where, typically, a massive number of objects, things, sensors or devices are connected through communications and information infrastructure to provide value-added services via intelligent intelligent data processing processing and management management for different different applications (e.g. smart cities, smart health, smart grid, smart home, smart transportation, and smart shopping).”
— IEEE Internet of Things Journal

IoT communications over LPWANs should be:
 Low cost,
 Low power,
 Long battery life duration,
 High number of connections,
 Low bitrate,
 Long range,
 Low processing capacity,
 Low storage capacity,
 Small size devices,
 Simple network architecture and protocols

Also see IETF draft RFC 8376  LPWAN Overview

……………………………………………………………………………………………….

Sigfox Network Characteristics:

 First LPWAN Technology
 The physical layer based on an Ultra-Narrow band wireless modulation
 Proprietary system
 Low throughput ( ~100 bps)
 Low power
 Extended range (up to 50 km)
 140 messages/day/device
 Subscription-based model
 Cloud platform with Sigfox –defined API for server access
 Roaming capability

………………………………………………………………………………………

References:

https://www.ackl.io/blog/ietf-standardization-working-group-enabling-ip-connectivity-over-lpwan

https://techblog.comsoc.org/2017/10/25/lora-wan-and-sigfox-lead-lpwans-interoperability-via-compression/

https://tools.ietf.org/html/draft-ietf-lpwan-schc-over-sigfox-00

 

Huawei and China Telecom Jointly Release 5G Super Uplink Innovation Solution

As a large number of new pre-standard 5G services emerge, they are posing higher requirements on the uplink rate and latency. During MWC2019 in Shanghai, China Telecom and Huawei jointly released the 5G Super Uplink Joint Technology Innovation solution to accommodate those applications.

The 5G Super Uplink solution proposes the innovative networking technology featuring TDD/FDD coordination, high-band/low-band complementation, and time/frequency domain aggregation, which achieves an unprecedented uplink rate of 5G networks and reduces latency over the air interface. This solution truly redefined 5G networks based on industry requirements.

At the “Hello 5G Encouraging the Future” 5G Innovation Cooperation Conference held in April this year, China Telecom formulated the networking strategy that depends on the standalone (SA) networking and applies three SA features of URLLC, eMBB, and eMTC to meet 2B/2C requirements. China Telecom has extensively explored 5G applications in vertical industries such as government affairs, transportation, ecosystem, party building, healthcare, tourism, policing, Internet of Vehicles (IoV), education, and manufacturing. In the future 2B/2C ecosystem, large bandwidth and low latency are the focus of services. For example, the 4K HD video backhaul will give rise to the boom of new media, Internet celebrity live broadcast, and other services, bringing immersive experience to the audience. Drone services, unmanned driving, and telemedicine have higher requirements on the uplink rate and network latency.

The 5G Super Uplink solution proposed by China Telecom and Huawei implements the time-frequency domain aggregation of TDD and FDD in the uplink frequency band. Therefore, the solution can increase uplink spectrum resources of NR, boost the uplink capability of the 5G network, reduce latency, and improve the utilization rate of the uplink spectrum of 2.1 GHz/1.8 GHz. At the launch event, the Proof of Concept (PoC) of “Super Uplink” was demonstrated. The test results showed that the experienced uplink rate of 5G UEs in the cell center was increased by 20% to 60%, the experienced uplink rate of 5G UEs at the cell edge was increased to 2 to 4 times, the air interface latency was reduced by about 30%, and the URLLC services were enabled. Huawei Balong 5000 chipset, customer-premises equipment (CPE), and Mate 20 X were also displayed at the event. Super Uplink is supported from end to end by Huawei 5G technologies.

Huawei Technologies

Corporation Limited, third from left Ding Yun, Executive Director of the Board President, Carrier Business Group Huawei Technologies Co., Ltd., third from right Yang Chaobin, President of 5G Product Line, Huawei Technologies Co., Ltd., second from right.  Photo courtesy of Huawei Technologies
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Liu Guiqing, executive vice president of China Telecom Group Co., Ltd., said: “The five ecosystems extend to 5G and become the important engine for China Telecom’s continuous growth. China Telecom adheres to the philosophy of “Customer First, Attentive Service”, insists on formulating standards first and leading technology development, and pioneers the practice of 5G network innovation. To provide better 5G experience, optimize customers’ service awareness, and enhance differentiated competitiveness in the market, China Telecom cooperates with Huawei to propose the innovative 5G networking technology featuring TDD/FDD coordination, high-band/low-band complementation, and time/frequency domain aggregation. This solution aims to further improve the uplink data capability and reduce latency, providing better development space for vertical industry applications. China Telecom will work with industry partners to seek the optimal network experience solution and promote the prosperity of the industry.”

Ryan Ding, executive director, CEO of the Carrier BG of Huawei Technologies Co., Ltd., commented: “5G not only changes everyday life but also revolutionizes human society. Service requirements are driving the development of 5G technologies. 5G industry innovation represents uplink ultra-large bandwidth, ultra-low latency, end-to-end slicing, and mobile edge computing (MEC). Based on the digital requirements of the industry, Huawei and China Telecom proposed the 5G Super Uplink Joint Technology Innovation solution. It is another breakthrough after Huawei CloudAIR solution.”

Yang Chaobin, president of 5G Product Line, Huawei Technologies Co., Ltd., noted: “The Super Uplink solution can meet the service requirements of large bandwidth and low latency at the same time. We are honored to work with China Telecom to implement the test and verification of 5G Super Uplink. Huawei 5G supports end-to-end Super Uplink and co-deployment of NSA and SA. Huawei will help industry partners continuously innovate to create the optimal 5G experience.”

China Telecom and Huawei continue to cooperate closely in technological innovation, promote 5G innovation, and contribute to 5G industry development. Huawei will support the strategic goal of China Telecom’s 5G development as always, and deepen cooperation on Super Uplink to help China Telecom take the lead in the new era of a 5G intelligent world.

Contact:
Nash Chong
[email protected]

Reference:

https://www.globenewswire.com/news-release/2019/07/01/1876788/0/en/China-Telecom-and-Huawei-Jointly-Release-5G-Super-Uplink-Innovation-Solution.html

……………………………………………………………………………………………………………………………………………………………………………………

 

Philippines’ Globe Telecom to deploy “Air Fiber 5G” this month

Globe Telecom has made the Philippines the first country in Southeast Asia to offer commercial “5G” fixed wireless internet.  The rollout of these services, from early July 2019, form part of Globe’s efforts to connect two million homes across the Philippines by 2020.

The at home ‘Air Fiber 5G’ postpaid plans that Globe has released offer Filipinos the option of high bandwidth and low latency services, especially given the challenge of rolling out fiber optic cables across the country.

“The arrival of 5G has caused excitement in the global world of telecommunications,” said Ernest Cu, president and CEO of Globe Telecom. “Today, we made a crucial step in fulfilling our goal of connecting more Filipino homes, and our vision of bringing first-world Internet to the Philippines,” Cu added.

The Globe At Home Air Fiber 5G postpaid plans will offer fiber-like speeds up to 100Mbps.  Super-sized data packages of up to 2 terabytes will be initially available in select areas in Pasig, Cavite, and Bulacan.

Globe at Home Air Fiber 5G will be available to eligible customers in July 2019. Plans come at P1899 per month for up to 20Mbps, P2499 for up to 50Mbps and P2899 for up to 100Mbps. All come with up to 2TB data capacity.

“Prior to Air Fiber 5G, we have aggressively utilized fixed wireless solutions to connect more homes and businesses to the internet over airwaves,” said Cu. “This strategy resulted in home broadband subscriber base increasing by 55.1 per cent to 1.7 million in the first three months of 2019 from 1.1 million in the same period in 2016.”

The Globe At Home Air Fiber 5G modem

………………………………………………………………………………………………………

“Globe At Home Air Fiber 5G makes use of fixed location wireless radios instead of fiber optic cables which enables the company to go over the circuitous approval process of deploying a fiber optic cable – a task which proves to be arduous and involves securing multiple permits from local government units (LGUs),” Cu said.

“The right of process can sometimes take years to obtain, causing drastic delays in fiber optic roll-out completion,” Cu added.

Alberto de Larrazabal, Globe’s chief commercial officer, told reporters in the Philippines that Globe would use Huawei’s equipment, including radios and modems, to deliver “5G quality broadband internet.”

[Huawei and Finland’s Nokia were Globe’s equipment providers for its 4G-LTE service.]

Cu said that the company has been spending over 21% of its annual total revenues to upgrade and expand its telecommunication and IT infrastructure since 2012. “We have been ramping up our capital spend from P20.3 billion in 2012 to P43.3 billion in 2018, in order to provide our customers better broadband services,” he said.

Editor’s Notes:

  1. The Philippines ranks 107th among 178 countries in fixed broadband speed at 19.55 megabits per second (Mbps) versus the global average of 59.6 Mbps. Among 140 countries, it ranks 107th in terms of mobile internet speed at 15.10 Mbps, nearly half of the 27.22 Mbps global average.
  2. Globe is owned by Philippine conglomerate Ayala Corp, with Singapore Telecommunications Ltd holding a minority stake.

……………………………………………………………………………………………….

References:

https://www.globe.com.ph/about-us/newsroom/consumer/globe-at-home-air-fiber-5g.html

https://businessmirror.com.ph/2019/06/26/globe-at-home-air-fiber-5g-unveiled-to-connect-more-filipinos/

https://sg.channelasia.tech/article/663513/philippines-rolls-commercial-5g-services-through-globe-telecom/

https://www.gmanetwork.com/news/scitech/technology/699258/faster-internet-service-unveiled-to-connect-more-filipinos-at-home/story/

https://www.bworldonline.com/globe-launches-first-5g-service-in-southeast-asia/

https://techblog.comsoc.org/2018/11/26/huaweis-all-bands-go-to-5g-strategy-explained-partnership-with-china-telecom-described/

SK Telecom and Samsung Bring South Korea Closer to 5G Standalone Commercialization

The two companies successfully completed interoperability test between 5G Standalone Core and Commercial Network Solutions (based on 3GPP Release 15 which is not 3GPP’s final submission to ITU-R for IMT 2020 RIT/SRITs.

SK Telecom and Samsung Electronics today announced the successful completion of South Korea’s first interoperability assessment between 5G Standalone (SA) Core and other commercial network systems over a pre-standard 5G network. This successful result brings the two companies one step closer to 5G SA commercialization.

The 5G SA Core, jointly developed by SK Telecom and Samsung Electronics, not only supports technologies including network slicing and function modularization based on 3GPP standards, but also offers additional functions that operators have been using since LTE, include billing, subscriber management and operational convenience system. The interoperability assessment is the final stage for verifying the validity of 5G SA data transmission, signifying that the SA system is ready to be launched for commercial service.

Both companies implemented several cutting-edge technologies in the 5G SA Core that has been used for the interoperability. The technologies include Data Parallel Processing technology that performs QoS and transmission control simultaneously; Data Acceleration technology that classifies and distributes similar traffic types; and Path Optimization technology that automatically delivers data traffic to Mobile Edge Computing (MEC) platform.

“Along with the initial phase of NSA rollout, SK Telecom has been continuously focusing on researching and developing the SA technology in order to provide customers a differentiated service quality with innovative products, which will be launched in the first half of next year,” said Park Jin-hyo, Chief Technology Officer and Head of ICT R&D Center at SK Telecom. “By strengthening bilateral collaboration with Samsung, SK Telecom will drive and lead highly innovative 5G technologies and solutions.”

“The fundamental structure of 5G SA is built on a completely new configuration, successfully delivering the most optimized 5G service to customers and enterprises across numerous industries,” said Jaeho Jeon, Executive Vice President and Head of R&D, Networks Business at Samsung Electronics. “Maintaining Korea’s leadership in network innovations through continuous investments in next-generation technologies is important to Samsung and SK Telecom, and the companies will continue to collaborate on developing and commercializing 5G SA.”

Once 5G SA is commercialized, data processing efficient will be improved by threefold, allowing efficient control for supporting massive data traffic. Moreover, 5G SA system is highly optimized for emerging next generation services such as Autonomous driving, Smart Factory, Smart Farm, and AR/VR.

For the past five years, the two companies have been collaborating on LTE and 5G development, which ultimately led to this successful 5G SA Core interoperability test. Some of other accomplishments include the commercialization of Virtualized LTE Core and Packet Optimization system; and they have completed the development of 3GPP Rel. 15 based SA Core in July last year, and successfully launched 5G NSA commercial service in April this year.

…………………………………………………………………………………………………….

About SK Telecom:

SK Telecom is the largest mobile operator in Korea with nearly 50 percent of the market share. As the pioneer of all generations of mobile networks, the company has commercialized the fifth generation (5G) network on December 1, 2018 and announced the first 5G smartphone subscribers on April 3, 2019. With its world’s best 5G, SK Telecom is set to realize the Age of Hyper-Innovation by transforming the way customers work, live and play.

Building on its strength in mobile services, the company is also creating unprecedented value in diverse ICT-related markets including media, security and commerce.

……………………………………………………………………………………………………

For more information, please contact:

[email protected] or [email protected].

 

Media Contact

Yong-jae Lee

SK Telecom Co. Ltd.

(822) 6100 3838

(8210) 3129 6880

[email protected]

Irene Kim

SK Telecom Co. Ltd.

(822) 6100 3867

(8210) 8936 0062

[email protected]

Ha-young Lee

BCW Korea

(822) 3782 6421

[email protected]

 

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

Proposal to develop a draft new ITU-R WP 5D Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

ITU-R WP5D July 2019 meeting contribution by LM Ericsson

Abstract:

Ericsson proposes that ITU-R WP 5D develops a Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum bands.

[This author thoroughly agrees with Ericsson’s proposal!]

Introduction:

IMT-2020 networks have the capacity of satisfying the need for high data rate coverage for enhanced mobile broadband services in under-served and remote, sparsely populated areas. In this contribution we are suggesting that work be started on a Report giving details on prospects associated with the provisioning of enhanced mobile broadband services to remote, sparsely populated and underserved areas, proposing enhancements of user equipment (UE) as well as for networks in suitable frequency bands

  • for user equipment, possible solutions based on affordable user deployed equipment combined with access to local spectrum at user premises could be considered and examined, and
  • for network equipment, possible solutions based on high gain massive MIMO antennas could be reviewed.

A significant part of the global population is currently connected to existing cellular and mobile broadband sites. As a complement, users in remote sparsely populated and under-served areas could be connected to higher tower sites.

The proposed Report could, for example, consider an existing GSM cellular site grid designed for voice coverage, which could be estimated to reach high downlink data rates at a cell edge of IMT-2020 coverage ranges using conventional UE and network equipment. The Report would need, however, to focus on and consider the uplink performance characteristics which may be regarded as not being satisfactory without further elaborations on policy, spectrum and other aspects. For example, consider suggesting enhancements on UE and network equipment as well as consider using high tower installations that may provide coverage reach far beyond that is currently supported by typical GSM sites.

Background:

With regard to current perceptions, it is easy to get the impression that IMT-2020 is primarily targeting a shorter-range network build using millimeter wave (mmW) bands supporting extremely demanding requirements on latency, capacity, and very high peak data rates.

However, it is suggested that IMT-2020 is designed to operate in frequency bands ranging from low-bands to high-bands and can be configured to perform better or on-par with IMT-Advanced in every aspect, also in rural sparsely populated areas. IMT-2020 has evolved from IMT-Advanced, adding significant improvements to an already capable and proven design. IMT-2020 provides two fundamental benefits relevant for longer-range coverage

  • Firstly, it is designed to fully utilize massive MIMO, and
  • Secondly, it is based on a flexible and lean design reducing energy consumption.

To achieve longer-range, earlier cellular and mobile broadband systems have relied on low-bands. System operated in bands around the frequency range 450 MHz having excellent coverage, but with the limitation of available bandwidth. Pushing uses to higher and higher frequency bands is clearly resulting in increased capacity, but also in reduced coverage range.

For IMT-2020 massive MIMO configuration there is no longer a simple relation between low-band use and longer-range coverage. Using high-band frequencies the size of individual antenna element decreases, resulting in reduced efficiency of each antenna element. However, with massive MIMO this effect can be compensated for by adding antenna elements, effectively keeping the physical antenna size constant while moving to higher frequency bands.

Long-range cellular coverage is very much about using higher towers, higher power, and high gain antennas. In previous cellular systems, higher radio frequency (RF) power resulted in larger network energy consumption. IMT-2020 efficiently supports lean-design and massive MIMO as it provides the right tools to deploy longer-range systems supporting high peak data rates with lower average network energy consumption.

One offered solution to achieve both good coverage as well as high capacity is to use two or more frequency bands from low-band, mid-band and / or high-band, in an aggregated configuration. This approach has proven to be very effective in dense urban areas when deploying IMT-2020 in mmW bands in combination with a low-band or mid-band that can provide improved coverage.

When combined in an effective way, the high-band off-loads the traffic from the low-band and / or mid-band, resulting in significantly improved coverage as well as capacity. This could potentially also be a promising solution for bringing IMT-2020 to underserved rural sparsely populated areas. Combining IMT-2020 using a band in the range 3.5 GHz and IMT-Advanced in a band below the frequency 1 GHz on a GSM cellular grid can provide superior capacity compared to a standalone IMT-Advanced network deployment below 1 GHz. The reason being that in mid-bands in the range 3.5 GHz there is access to more bandwidth, and the low-band on a band below 1 GHz, provide coverage for cell edge users at the same time.

Considering the above, the proposed Report could review, discuss and assess the feasibility for potential enhancements for both network equipment and UE, it may consequently be viable to deploy IMT-2020 network in a band in the range 3.5 GHz providing high capacity and long-range coverage in underserved rural sparsely populated areas. This could be more feasible and economical than deploying new sites in these areas.

IMT-2020 could potentially provide high peak data rate and high capacity mobile broadband services in underserved rural sparsely populated areas by utilizing a band in the range 3.5 GHz, where typically 100 MHz bandwidth is available compared to 20 MHz that can be expected to be available in band in the range below 1 GHz. The Report could elaborate several possible enhancements using higher towers for extended range coverage. Further contribution based on studies, within the context of the proposed Report, would be required to find a technically as well as economically best practice solution resulting in sufficiently long-range, cell-edge throughput, and capacity. Such a solution could be to consider and review the use of both the existing grid of cellular towers and possibly the higher but also sparser television towers in combination, as well as reviewing a standalone 3.5 GHz configuration, or possible aggregation between the range 3.5 GHz for downlink and low-bands for uplink.

In addition, spectrum and policy aspects having a possible impact on a feasible network configuration may need to be addressed by a possible Report.

Proposals:

Ericsson proposes that WP 5D develops a draft new Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum.

Editor’s Note:

Attachments 1 and 2 of Ericcson’s proposal, with more detailed proposals and time schedules, are only available to ITU member organizations and individuals with a TIES account.

ZTE and China Mobile demo 5G 8K+VR ultra-wide bandwidth and 5G MU-MIMO at Mobile World Congress Shanghai 2019

by Margaret Ma, ZTE

1.  5G 8K+VR ultra-wide bandwidth:

ZTE Corporation a leading provider of telecommunications, enterprise and consumer technology solutions for the mobile internet, and China Telecom have today demonstrated 5G 8K+VR ultra-wide bandwidth experience at a 5G experience zone at Mobile World Congress (MWC) Shanghai 2019.

The 5G commercial network-based demonstration has not only showcased the excellent performance and business-enabled capabilities of China Telecom’s commercial network, but also reflected ZTE’s excellent 5G end-to-end commercial capabilities, providing a good model for 5G business cases.

ZTE will fully support the construction of China Telecom’s 5G commercial networks, exploring the application and business models of the 5G industry, helping establish China Telecom’s 5G brand leadership and achieve a win-win co-operation in the 5G era.

In addition, for visitors to MWC Shanghai 2019, China Telecom and ZTE have arranged a 5G Tour, travelling 5km with continuous coverage of the 5G network onboard a 5G experience bus. On this trip, visitors can enjoy diversified service experiences, including 5G-8K VR panoramic live streaming, 16-channel HD video live streaming, and 5G commercial smartphone video calls.

A screen on the bus shows the real-time 5G date rate that visitors can achieve, with a peak date rate of more than 1GBPS.

Empowered by the technologies of China Telecom and ZTE, the 5G-8K VR panorama live streaming combines 8K and the VR technology. The images and data captured by a 8K VR 360-degree camera are transmitted through a 5G network, allowing visitors to wear VR glasses and enjoy an immersive viewing experience.

With the capability of providing complete 5G end-to-end solutions, ZTE looks forward to working closely with industry partners to actively promote 5G business applications and practices, thereby facilitating the digital transformation of vertical industries.

……………………………………………………………………………………………………………………………………………………………………………..

2. 5G MU-MIMO:

In addition, ZTE and China Mobile demonstrated a 5G MU-MIMO (Multi-User, Multiple-Input Multiple-Output) multi-user performance test based on 5G commercial base stations and smart phones at Mobile World Congress Shanghai 2019. The demonstration showcases both companies’ leading positions in commercial performance.

The MU-MIMO makes full use of multi-antenna features to maximize the utilization of spectrum resources, creating much greater revenue for users. It is the core technology of 5G to realize ultra-wide bandwidth.

This MU-MIMO test was carried out in China Mobile’s Guangzhou 5G field, employing ZTE’s industry-leading 160M full-band 4/5G dual-mode commercial base station. The base station supports dynamic spectrum sharing, achieving dual-network integration at 2.6GHz, and 16 ZTE commercial mobile phone Axon10 Pro.

The test result showcased that a 5G single cell throughput is over 3.7Gbps, while a single EU downlink data rate is more than 200Mbps. The result is also a four-time increase in network system capacity than that of the SU-MIMO technology. The test footage and data were also transmitted back to China Mobile’s booth at MWC Shanghai in real time from Guangzhou.

ZTE and China Mobile have been strategic partners for years, working together on 5G technical innovation and industry development. The two parties have witnessed a series of milestones in the path to 5G commercialization. China Mobile and ZTE jointly developed the world’s leading 5G prototype base station, the world’s leading 5G site, the world’s leading 2.6GHz NR IoDT and the world’s leading end-to-end system.

With great capability of providing complete 5G end-to-end solutions, ZTE looks forward to working closely with industry partners to actively promote 5G business applications and practices, thereby facilitating the digital transformation of vertical industries.

…………………………………………………………………………………………………………………………………………………………………………………………………

About ZTE:
ZTE is a provider of advanced telecommunications systems, mobile devices, and enterprise technology solutions to consumers, carriers, companies and public sector customers. As part of ZTE’s M-ICT strategy, the company is committed to provide customers with integrated end-to-end innovations to deliver excellence and value as the telecommunications and information technology sectors converge. Listed in the stock exchanges of Hong Kong and Shenzhen (H share stock code: 0763.HK / A share stock code: 000063.SZ), ZTE’s products and services are sold to over 500 operators in more than 160 countries. ZTE commits 10 per cent of its annual revenue to research and development and has leadership roles in international standard-setting organizations. ZTE is committed to corporate social responsibility and is a member of the UN Global Compact. For more information, please visit www.zte.com.cn.

…………………………………………………………………………………………………………………………………………………………………………………………………

Media Contact:
Margaret Ma
ZTE Corporation
Tel: +86 755 26775189
Email: [email protected]

References:

https://www.zte.com.cn/global/about/news/20190628e3

http://asiatoday.com/pressrelease/zte-and-china-mobile-showcase-leading-mu-mimo-multi-user-performance-mwc-shanghai-2019

Virgin Media Experimenting with 10 Gbps mmWave backhaul in UK fixed broadband FTTP trial

UK’s Virgin Media has been exploring possibilities of delivering backhaul traffic over the air (OTA) in a small village in the English countryside. Although this is something which Virgin Media has been doing for years, this time the company is experimenting with mmWave as opposed to microwave.

“As we invest to expand our ultra-fast network we’re always looking at new, innovative ways to make build more efficient and connect premises that might currently be out of reach,” said Jeanie York, Chief Technology and Information Officer at Virgin Media. “While presently this is a trial, it’s clear that this technology could help to provide more people and businesses with the better broadband they deserve.”

The challenge which seems to be addressed here is combining the complications of deploying infrastructure and the increasing data appetite of the consumer. As you can see below, the trial makes use of mmWave to connect two ‘trunk’ points over 3 km with a 10 Gbps signal. The signal is converted at the cabinet, before being sent through the last-mile on a fiber connection.Virgin Media

Although this trial only connected 12 homes in the village of Newbury, Virgin Media believes this process could support delivery of residential services to 500 homes. This assumption also factors in a 40% average annual growth in data consumption. With further upgrades, the radio link could theoretically support a 20 Gbps connection, taking the number of homes serviced to 2,000.

The advantage of this approach to delivering broadband is the ability to skip over tricky physical limitations. There are numerous villages which are experiencing poor connections because the vast spend which would have to be made to circumnavigate a valley, rivers or train lines. This approach not only speeds up the deployment, it simplifies it and makes it cheaper.

Looking at the distance between the two ‘trunks’, Virgin Media has said 3km is just about as far as it can go with mmWave. This range takes into account different weather conditions, the trial included some adverse conditions such as 80mph winds and 30mm rainfall, but radios chained together and used back-to-back could increased this coverage and scope of applications.

Countryside

Virgin Media has unveiled the results of a new trial using wireless to deliver broadband to customers in remote locations.

………………………………………………………………………………………………………………………………………………………………………………………………………

With alt-nets becoming increasingly common throughout the UK, new ideas to make use of mmWave and alternative technologies will need to be explored. Traditional network operators will find revenues being gradually eroded if a new vision of connectivity is not acquired.

Of course, use of mmWave for fixed broadband internet is common in the U.S., but it is proprietary to the equipment vendor (no standards) and line of sight is required from the network operators equipment to an antenna mounted on the rooftop of the home  being served.

………………………………………………………………………………………………………………………………………………………………………

Reference:

http://telecoms.com/498170/virgin-media-to-take-a-mmwave-approach-to-full-fibre/

AT&T FlexWare and Cybersecurity power Exide’s Digital Transformation

AT&T is powering Exide’s digital transformation with its FlexWare network virtualization solution.  AT&T FlexWare is one of AT&T’s core software-centric services from the company’s “edge solutions portfolio.” AT&T says its near real-time service cuts long set up times and complex processes.

FlexWare enables businesses to launch virtual network functions (VNFs) to improve productivity and communication across its geographically dispersed physical sites. With FlexWare, AT&T can move the VNFs, such as firewall or security VNFs, to devices on a company’s network.

“Our technology will give Exide the support it needs to continue operating at high standards and to prepare for new opportunities in a 5G world,” said John Vladimir Slamecka, AT&T Region President for Europe, the Middle East and Africa. “We’re building a platform that is ready for new data hungry apps made possible with the arrival of 5G; such as AR and VR. That’s why we are moving compute resources closer to the network edge, opening the door to new experiences and opportunities.”

AT&T’s FlexWare, for virtualized network edge services, is now in place across Exide’s global locations, including throughout Europe, North America and Asia Pacific.  FlexWare at the edge allows Exide to use both highly secure MPLS and internet access services for its network needs. Starting with network routing, Exide is able to access all wide area network components utilizing high bandwidth capabilities to help provide greater flexibility as the needs of each change over time. AT&T FlexWare also allows Exide to fulfill its centralized IT requests without needing local site support.

……………………………………………………………………………………………………….

Exide is a battery and energy storage company which was founded 130 years ago.  It manufactures and recycles batteries for a broad range of industrial and transportation applications including cars, boats, forklifts and uninterrupted power units.  The company has more than 10,000 employees located across 80 countries.

“Our global presence in today’s fast paced technology environment presents the unique challenge of blending reliable legacy platforms with emerging digital solutions.  This requires a data transport infrastructure that supports a broad number of traditional and disruptive applications,” said Brian Woodworth, Exide Chief Information Officer. “AT&T is leading the way as a trusted and visionary provider of network edge solutions, so naturally we turned to AT&T to collaborate with us on our digital journey to become the preferred supplier to our customers across the globe,” he added.

Exide is also using managed network security services from AT&T Cybersecurity.   From an AT&T report on this vital topic:

The security landscape is growing increasingly treacherous as hackers of every type continue to evolve their attack strategies to evade detection while maximizing profit from their time and effort. It doesn’t matter if it’s an organized criminal gang looking to make money from ransomware schemes, covert state-sponsored groups attempting to steal data and disrupt operations, or just malevolent individuals trying to impress others in the hacker community—every bad actor is smarter than they were last year, and better equipped to wreak havoc.

However, we wonder if AT&T takes cybersecurity seriously for its own customers, like this author who has experienced two AT&T account unexplained security breaches in the last few months?

…………………………………………………………………………………………………………………..

AT&T says it is “offering customers like Exide unrivaled visibility and security through people, process and technology allowing them to better protect their global business.”  This author certainly hopes that happens!

…………………………………………………………………………………………………………

References:

https://about.att.com/story/2019/att_powers_exide_digital_transformation.html

For more information about AT&T FlexWare (nice video):  https://www.business.att.com/solutions/Service/network-services/sdn-nfv/virtual-network-functions/

For more information about AT&T Cybersecurity: https://att.com/security

https://www.business.att.com/learn/cybersecurity-report-volume-8-5.html

T-Mobile mmWave 5G to be available in six cities on June 28th along with Samsung Galaxy S10 5G smartphone

T-Mobile US has announced it will use millimeter wave (mmWave) spectrum to offer up “pre-standard 5G” services in parts of six cities beginning on June 28th.  Sales of the Samsung Galaxy S10 5G will commence that same day (see References below). The company published detailed coverage maps showing where subscribers in Atlanta, Cleveland, Dallas, Las Vegas, Los Angeles and New York can expect to access their 5G network.

T-Mobile has said its plan for nationwide coverage hinges on its vast portfolio of 600 MHz spectrum, but the “Un-carrier” also has its own stash of high-band frequencies. Sprint activated its mobile 5G offering using mid-band 2.5 GHz spectrum. The complementary aspects of Sprint’s and T-Mobile’s spectrum is a key piece of the pending $26.5 billion merger, which is awaiting regulatory approval which may be delayed due to several states filing opposition lawsuits.

 

T-Mobile US CEO John Legere, has been highly critical of AT&T’s and Verizon’s millimeter wave-based 5G deployments (particularly the lack of coverage maps). He wrote in a June 20th blog post that the “New T-Mobile” (merged with Sprint) could deliver the range of spectrum needed for 5G.

Current 5G networks in the U.S. aren’t anything to write home about. That’s because they’re mostly focused on high-band millimeter wave (mmWave) spectrum, which doesn’t travel far from the cell site and is blocked by things like trees, windows and doors. It’s a massively important part of 5G, don’t get me wrong, but it’s just that – a PART. We’ve been clear all along… real, game-changing 5G will require a range of spectrum – low, mid and high – and only the New T-Mobile will be able to deliver it.”

Legere stated that the “New T-Mobile” (merged with Sprint) would be better able to deliver 5G because:

  • We’ve got the high-band spectrum with mmWave, which delivers massive capacity over a very small footprint.
  • Later this year, when compatible smartphones launch, we’ll launch broad 5G on our low-band 600 MHz spectrum, providing the wide area coverage necessary to reach across America.
  • If regulators approve our merger with Sprint, we’ll have the crucial mid-band spectrum (2.5 GHz), which provides the balance of coverage and capacity that enables a seamless and meaningful 5G experience. Mid-band spectrum is key to providing an ideal mix of coverage and capacity for 5G networks, and the combination of Sprint’s mid-band and our low-band will allow New T-Mobile to use both spectrum more efficiently, increasing capacity even more.

………………………………………………………………………………………………………………………………………………………………………………………………………………………………

T-Mobile said it will use “Multi-band Dual Connectivity” to aggregate “5G in the millimeter wave band and LTE.”

T-Mobile plans to launch a larger 5G network later this year using the low-band 600Mhz 5G spectrum, a technology not supported by the Galaxy S10 5G.  5G smart phones that support both mmWave and the low-band spectrum are expected later this year.

However, critical infrastructure for mmWave 5G will require many more small cells (due to limited range)  that will need to be mounted on mainly local (public) government property with fiber backhaul.  We wonder why that gating item is hardly ever discussed on line or in the telecom business press?  It is probably why T-Mobile’s 5G mmWave coverage is extremely limited as you can see from their coverage maps.

References:

https://www.t-mobile.com/news/samsung-galaxy-s10-5g

https://www.t-mobile.com/5g

https://www.tmonews.com/2019/06/t-mobile-galaxy-s10-5g-launch-network-six-cities/

 

GSA Silicon Summit: Focus on Edge Computing, AI/ML and Vehicle to Everything (V2X) Communications

Introduction:

Many “big picture” technology trends and future requirements were detailed at GSA’s Silicon Summit, held June 18, 2019 in Santa Clara, CA.  The conference was  a “high level” executive briefing for the entire semiconductor ecosystem- including software, middleware and hardware.  Insights on trends, key issues, opportunities and technology challenges (especially related to IoT security) were described and debated in panel sessions.  Partnerships and collaboration were deemed necessary, especially for start-ups and small companies, to advance the technology, products and services to be offered in this new age of AI, ML/DL, cloud, IoT, autonomous vehicles, (fake) 5G, etc.  Companies involved in the development of next generation Mobility and Edge Intelligence systems architectures and solutions discussed what opportunities, advancements and challenges exist in those key areas.

With the rapid proliferation of smart edge computing devices and applications, the volume of data produced is growing exponentially. Connected, and “intelligent,” devices are predicted to grow to 200 billion by 2020, generating enormous amounts of data every single day. The business potential created by this data comes with huge expectations.  Edge devices, edge intelligence, high bandwidth connectivity, high performance computing, machine learning and other technologies are essential to enabling opportunities in markets such as Mobility and Industrial IoT.

This article will focus on Edge Computing, AI moving closer to the endpoint device (at the network edge or actually embedded in the end point device/thing), and vehicle to vehicle/everything communications.

While there were many presentations and panels on security, that is beyond the scope of the IEEE ComSoc Techblog.  However, we share Intel’s opinion, expressed during a lunch panel session, that standards for Over The Air (OTA) security software/firmware updates are necessary for almost all smart/intelligent devices that are part of the IoT.

Architectural Implications of Edge Computing, Yogesh Bhatt VP of Products- ML, DL and Cognitive Tech Ericsson – Silicon Valley:

Several emerging application (data flow) patterns are moving intelligence from the cloud to local/metro area to on premises and ultimately to the endpoint devices.  These applications include: cloud native apps like content delivery; AI enabled apps like sensing, thinking and acting; immersive apps like media processing/augmentation/distribution.

AI enabled Industrial apps are increasing.  They were defined as: The ability to collect and deliver the right data/video/images, at the right velocity and in the right quantities to wide set of well-orchestrated ML-models and provide insights at all levels in the operation.  Connectivity and compute are being packaged together and offered as “a service.”  One example given was 4K video over (pre-standard) “5G” wireless access at the 2018 U.S. Open.  That was intended to be a case study of whether 5G could replace miles of fiber to broadcast live, high definition sports events.

Yogesh Bhatt VP of Products- ML, DL and Cognitive Tech Ericsson – Silicon Valley

Image courtesy of GSA Global

……………………………………………………………………………………………………………………………………………………….

Required Architecture for Emerging App Patterns: Application Cloud, Management & Monetization Network slices, Mobile Fixed Cloud infrastructure, Distributed Cloud and Transport.   The flow of emerging apps requires computing capability to be distributed based on the application pattern and flow.  That in turn mandates cross-domain orchestration and automation of services.

Key take-aways:

  • Emerging Application patterns will require significant compute capabilities close to the data sources and sinks (end points)
  • Current Device-to-Cloud Architecture need to expand to encompass hosting points that provides such processing capabilities
  • The processing capabilities at these Edge locations would be anything but like the centralized Cloud Data Centers (DCs)

……………………………………………………………………………………………………………………………………………………….

Heterogeneous Integration for the Edge, Yin Chang Sr. VP, Sales & Marketing ASE Group:

ASE sees the “Empowered Edge” as a key 2019 strategic trend.  Edge computing drivers include: latency/determinism, cost of bandwidth, better privacy and security, and higher reliability/availability (connections go down, limited autonomy).

  • At the edge (undefined where that is -see my comment below) we might see the following: Collect/Process data, Imaging Device, Image processing, Biometric Sensor, Microphone, Sensors with embedded MCUs, Environmental Sensor.
  • At the core (assumed to be somewhere in the cloud/Internet): Compute/Intelligent processing, AI & Machine Learning, Networks/Server Processors, High Bandwidth Memory (HBM), Neuro-engine (future), Quantum computing (future).

Compute capabilities are moving to the edge and endpoints:

  • Edge Infrastructure and IoT/Endpoint Systems are growing in compute power per system.
  • As the number of IoT/Endpoint systems outgrows other categories, TOTAL Compute will be at the Endpoint.

Challenges at the Edge will require a cost effective integration solution which will need to deal with:

  • Cloud connectivity – latency and bandwidth limitations
  • Mixed device functionality – sense, compute, connect, power
  • Multiple communication protocols
  • Form factor constraints
  • Battery life
  • Security
  • Cost High density

ASE advocates Heterogeneous Integration at the Edge— by material, component type, circuit type (IP), node and bonding/ interconnect method.  The company has partnered with Cadence to realize System in Package (SiP) intelligent design with “advanced functional integration.”  That partnership addresses the design/verification challenges of complex layout of advanced packages, including ultra-complex SiP, Fan-Out and 2.5D packages.

One such SiP design for wireless communications is antenna integration:

  • Antenna on/in Package for SiP module integration
  • Selective EMI Shielding for non-limited module level FCC certification
  • Selective EMI Shielding  – partial metal coating process by sputter for FCC EMI certification
  • Small Size Antenna Integration – Chip antenna, Printed circuit antenna (under development)

…………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Democratizing AI at the Endpoint, Brian Faith, CEO of QuickLogic:

QuickLogic was described as “a platform company that enables our customers to quickly and easily create intelligent ultra-low power endpoints to build a smarter, more connected world.”  The company was founded in 1989, IPO in 1999, and now has a worldwide presence.  Brian said they were focused on AI for growth markets including:

▪ Hearable/Wearable
▪ Consumer & Industrial IoT
▪ Smartphone/Tablet
▪ Consumer Electronics

AI and edge computing are coming together such that data analytics is moving from the cloud to the edge to the IoT endpoint (eventually).  However, there are trade-offs for where computing should be located which are based on the application type.  Some considerations include:

▪Applications latency & power consumption (battery life) requirements
▪Data security can be a factor
▪Local insights are trivial and non-actionable
▪Smart Sensors => rich data => actionable if real-time
▪Network sends insightful data (less bandwidth needed)
▪Cloud focuses on aggregate data insights and actions

AI Adoption Challenges:

1.   Resource-Constrained Hardware:

▪ Can’t just run TensorFlow
▪ Limited SRAM, MIPS, FPU / GPU
▪ Mobile or wireless battery/power requirements

2.  Resource-Constrained Development Teams:

▪ Embedded coding more complex & fragmented than cloud PaaS
▪ Scarcity of data scientists, DSP, FPGA and firmware engineers
▪ Limited bandwidth to explore new tools / methods

3.  Lack of AI Automated Tools:

• Typical process: MATLAB modeling followed by hand coded C/C++
• Available AI tools focus on algorithms, not end-to-end workflows
• Per product algorithm cost: $500k, 6-9 months; often far greater

For Machine Learning (ML) good training is vital as is the data:

• Addresses anticipated sources of variance
• Leverages application domain expertise
• Includes all potentially relevant metadata
• Seeks optimal size for the problem at hand

ML Algorithms should fit within Embedded Computing Constraints:

Endpoint Inference Models:

• Starts with model appropriate to the problem
• Fits within available computing resources with headroom
• Utilizes least expensive features that deliver desired accuracy

SensiML Toolkit:

• Provides numerous different ML and AI algorithms and automates the selection process
• Leverages target hardware capabilities and builds models within its memory and computing limits
• Traverses library of over 80 features to optimize selection to best features to fit the problem

A Predictive Maintenance for a Motor Use Case was cited as an example of AI/ML:

Challenges:

▪Unique model doesn’t scale across similar motors (due to concrete, rubber, loading)
▪ Endpoint AI decreases system bandwidth, latency, power

Monitoring States:

▪ Bearing / shaft faults
▪ Pump cavitation / flow inefficiency
▪ Rotating machinery faults
▪ Seismic / structural health monitoring
▪ Factory predictive maintenance

QuickLogic aims to democratize AI-enabled SoC Design using SiFi templates and a cloud based SoC platform with a goal of a custom SoC in 12 weeks!  In 2020 the company plans to have: an AI Software Platform,  SoC Architecture, and eFPGA IP Cores.  Very impressive indeed, if all that can be realized.

……………………………………………………………………………………………………………………………………………………………………………………………………………………

Empowering the Edge Panel Session:

Mike Noonen of Mixed-Com chaired a panel discussion on Empowering the Edge.  Two key points made was the edge computing is MORE SECURE than cloud computing (smaller attack surface) and that as intelligence (AI/ML/data processing) moves to the edge, connections will be richer and richer.  However, no speaker or panelist or moderator defined where the edge actually is located? Is it on premises, the first network element in the access network, the mobile packet core (for a cellular connection), LPWAN or ISP point of presence?  Or any of the above?

Mike Noonen of Mixed-Com leads Panel Discussion

Photo courtesy of GSA Global

……………………………………………………………………………………………………………………………………………………………………………………………………………………

After the conference, Mike emailed this to me:

“One of the many aspects of the GSA Silicon Summit that I appreciate is the topic/theme (such as edge computing). The speakers and panelists addressing the chosen theme offer a 360 degree perspective ranging from technical, commercial and even social aspects of a technology. I always learn something and gain new insights when this broad perspective is presented.”

I couldn’t agree more with Mike!

…………………………………………………………………………………………………………………………………………………………………………………………………………………………..

V2X –Vehicle to Everything connectivity, Paul Sakamoto, COO of Savari:

V2X connectivity technology today is based on two competing standards: DSRC: Dedicated Short Range Communications (based on IEEE 802.11p WiFi) and C-V2X: Cellular Vehicle to Everything (based on LTE).  Software can run on either, but the V2X connectivity hardware is based on one of the above standards.

DSRC: Dedicated Short Range Communications: 

  • Legacy Tech – 20 years of work, Low Latency Performance Range and reliability
  • No carrier fees; minimize fixed cost
  • Infrastructure needs; how to pay?
  • EU Delegate Act win, but  5GAA is contesting

C-V2X: Cellular Vehicle to Everything:

  • Developed from LTE-Big Money Backing
  • Cellular communications history; good range and reliability
  • Carrier fees required;  subsidy for fixed costs
  • Mix in with base stations to amortize costs
  • China has chosen it as part of the government’s 5G plan

V2X Challenge: Navigate the Next 10 Years:

For mobile use, the main purpose is safety and awareness:
• Tight message security
• Low latency (<1ms)
• Needs client saturation
• Short range

For infrastructure, the main purpose is efficiency and planning:
• Tight message security
• Moderate latency (~100ms)
• Needed where needed
• Longer range

In closing, Paul said V2X is going to be a long raise with many twists and turns.  Savari’s strategy is to be ”radio agnostic,” use scalable computing and scalable security elements, have a 7-10 year business plan with a 2-3 year product development cycle, and be ready to pounce at any inflection point (which may mean parallel developments).

May 20, 2020 Update:

ITU-R WP 5D will produce a draft new Report ITU-R M.[IMT.C-V2X] on “Application of the Terrestrial Component of IMT for Cellular-V2X.”

3GPP intends to contribute to the draft new Report and plans to submit relevant material at WP 5D meeting #36.  3GPP looks forward to the continuous collaboration with ITU-R WP 5D for the finalization of Report ITU-R M.[IMT.C-V2X].

…………………………………………………………………………………………………………………………………………..

 

Page 196 of 204
1 194 195 196 197 198 204