GSA Report: Evolution of LTE to 5G also includes NB-IoT and LTE-M

Pre-standard “5G” roll outs continue and the latest Evolution of LTE to 5G report from GSA identifies 884 operators actively investing in LTE, with 769 operational LTE networks in 225 countries, 194 VoLTE capable networks and 296 operators in 100 countries investing in 5G with 39 – 3GPP Release 15 (5G NR NSA) compliant 5G networks launched – some with limited service.

High end devices are also growing in popularity with more CAT-12 and above devices coming to market and 100 5G devices now announced. GSA expects 5G to be deployed much faster than 4G which took 7 years to reach 100 million subscriptions. We expect 5G to reach 100 million subscriptions in less than 5 years.

GSA Market Research Findings:

• 884 operators actively investing in LTE, including those evaluating/ testing and trialling LTE and those paying for suitable spectrum licences (excludes those using technology neutral licences exclusively for 2G or 3G services).

• 769 operators running LTE networks providing mobile and/or FWA services in 225 countries worldwide.

• 194 commercial VoLTE networks in 91 countries and a total of 262 operators investing in VoLTE in 120 countries.

• 304 launched or launched (limited availability) LTE-Advanced networks in 134 countries. Overall, 335 operators are investing in LTE-Advanced technology in 141 countries.

• Ten launched networks that support user equipment (UE) at Cat-18 DL speeds within limited geographic areas, and one supporting Cat-19 (in a limited area).

• 228 operators with TDD licences and at least 164 operators with launched LTE-TDD networks.

• 151 operators investing in NB-IoT in 72 countries; of these, 98 NB-IoT networks are deployed/launched in 53 countries. 62 operators are investing in LTE-M/Cat-M1 in 36 countries; of these, 38 LTE-M/Cat-M1 networks are deployed/commercially launched in 26 countries. • 296 operators in 100 countries have launched with limited availability, deployed, demonstrated, are testing or trialling, or have been licensed to conduct field trials of mobile 5G or FWA 5G.

• 56 operators in 32 countries have announced the deployment of 5G within their live network.

• 39 operators have announced 3GPP 5G service launches (or limited service launches).

LTE deployments:

The drivers of LTE, LTE-Advanced, LTE-Advanced Pro and increasingly 5G, for operators are more capacity, enhanced performance and improved efficiencies to lower delivery cost. Compared with 3G, LTE offered a big step up in the user experience, enhancing demanding apps such as interactive TV, video blogging, advanced gaming and professional services. Deployment of LTE-Advanced technologies – and particularly carrier aggregation – takes performance to a new level and is a major current focus of the industry. Interest in LTE-Advanced Pro is high too, bringing with it new, globally standardised LPWA solutions – LTE Cat-M1 (LTE-M, eMTC) and Cat-NB1 (NB-IoT) – and new business opportunities. And while LTE-Advanced and LTE-Advanced Pro solutions have yet to be deployed by the majority of operators, vendors and network operators are already looking towards 5G and its potential to meet future capacity, connectivity and service requirements.

Spectrum for LTE deployments:

Pressure for spectrum is high and operators need to deploy the most efficient technologies available. LTE, LTE-Advanced and LTE-Advanced Pro services can be deployed in dozens of spectrum bands starting at 450 MHz and rising to nearly 6 GHz. The most-used bands in commercial LTE networks are 1800 MHz (Band 3), which is a mainstream choice for LTE in most regions; 800 MHz (Band 20 and regional variations) for extending coverage and improving in-building services; 2.6 GHz (FDD Band 7) as a major capacity band; and 700 MHz (with variations in spectrum allocated around the world) again for coverage improvement. The now-completed LTE standards enable the possibility to extend the benefits of LTE-Advanced to unlicensed and shared spectrum.

There are several options for deploying LTE in unlicensed spectrum. The GSA report LTE in Unlicensed and Shared Spectrum: Trials, Deployments and Devices gives details of market progress in the use of LAA, eLAA, LTE-U, LWA and activity in the CBRS band.

Many recent allocations/auctions of spectrum have focused on licensing unused spectrum – including pockets of spectrum in the 2 to 4 GHz range, but also at lower frequencies – for LTE and future 5G services. This spectrum is sometimes dedicated to LTE, sometimes to 5G and sometimes allocated on a technology-neutral basis.

VoLTE global status:

In total GSA has identified 262 operators investing in VoLTE in 120 countries, including 194 operators that have launched VoLTE voice services in 91 countries. There have been recent launches in India, Hungary, Iran, Maldives, Kenya, Mexico, Tuvalu, Ireland, New Zealand and Nieu.

GSA is aware of at least 30 operators deploying VoLTE and nearly 40 other operators planning VoLTE or are testing/trialling the technology. The GSA report VoLTE and ViLTE: Global Market Update, published in August 2019, gives more detail.

LTE-Advanced global status:

Investment in LTE-Advanced networks continues to grow. By July 2019, there were 304 commercially launched LTE-Advanced networks in 134 countries. Overall, 335 operators are investing in LTE-Advanced (in the form of tests, trials, deployments or commercial service provision) in 141 countries.

Many operators with LTE-Advanced networks are looking to extend their capabilities by adding 3GPP Release 13 or Release 14 LTE-Advanced Pro features, e.g. those making use of carrier aggregation of large numbers of channels, or carriers across TDD and FDD modes, LAA, massive MIMO, Mission-Critical Push-to-Talk, LTE Cat-NB1/NB-IoT or LTE-M/Cat-M1.

The GSA report LTE in Unlicensed and Shared Spectrum: Trials, Deployments and Devices tracks the progress of LAA/eLAA, LWA and LTE-U. By July 2019, there were 37 operators investing in LAA (including eight deployed/launched networks), 11 operators investing in LTE-U (including three launched/deployed networks) and three investing in LWA (including one launched network). One operator had undertaken trials of eLAA.

Carrier aggregation has been the dominant feature of LTE-Advanced networks. Varying numbers of carriers and varying amounts of total bandwidth have been aggregated in trials and demos, but in commercial networks, the greatest number of carriers aggregated (where we have data) is five. Some trials and demos have also aggregated up to ten carriers, for instance SK Telecom’s trial in South Korea.

Pre-standard 5G global status:

GSA has identified 296 operators in 100 countries that have launched (limited availability or non-3GPP networks), demonstrated, are testing or trialling, or have been licensed to conduct field trials of 5G-enabling and candidate technologies (up from 235 operators in May 2019).

Detailed analysis of speeds and spectrum used for 5G trials to date is available in the report Global Progress to 5G – Trials, Deployments and Launches on the GSA website. Operators continue to provide clarity about their intentions in terms of launch timetables for 5G or pre-standards 5G. GSA has identified 56 operators in 32 countries that have stated that they have activated one or more 5G sites within their live commercial network (excludes those that have only deployed test sites).

The number that have announced the launch of commercial services remains much lower however, as operators have had to await the availability of 5G devices. These have now started to appear, removing the market blockage.

GSA has identified 100 announced devices (excluding regional variants and prototypes) and a handful of these are now available for customers to buy and use. See GSA’s report 5G Device Ecosystem, published monthly, for more details.

GSA knows of 39 operators who have (as of 6 August 2019) announced 3GPP compatible 5G service launches (either mobile or FWA, some with limited availability): we understand there are ten operators with FWA-only services, 15 with mobile-only services, and 14 with both mobile and FWA services. All services are initially restricted in terms of either geographic availability, devices availability, or the types and numbers of customers being provided with services.

Among recent service launches (or limited service launches) are those by three operators in Kuwait (Viva, Zain and Ooredoo), Batelco in Bahrain, T-Mobile and Vodafone in Germany, Vodafone in the UK, Digi Mobile in Romania, Monaco Telecom and Dhiraagu in the Maldives.

Cellular LPWANs for IoT:

The start of 2019 has continued to see strong growth in the number of cellular IoT networks based on NB-IoT and LTE-M. By July 2019, there were 151 operators investing in NB IoT in 72 countries, up from 148 operators in 71 countries in May 2019. The number of deployed/launched NB-IoT networks was 98 in 53 countries, up from 78 operators in 45 countries in January 2019. There are 62 operators investing in LTE-M networks in 36 countries, up from 57 operators in 34 countries in January 2019. Thirty-eight operators have deployed/launched LTE-M networks in 26 countries, up from 30 operators in January 2019. Orange Spain launched its LTE-M network in June 2019.

Altogether 55 countries now have at least either a launched NB-IoT network or a launched LTE-M network and 24 of those countries have both network types.

…………………………………………………………………………………………………….

GSA will continue tracking the progress of 5G deployments worldwide. GSA reports are compiled from data stored in the GSA Analyser for Mobile Broadband Devices/Data (GAMBoD) database, which is a GSA Member and Associate benefit.

Much of the GSA activity is working on spectrum and the upcoming WRC-19 conference in October/November. If you would like to meet up with GSA in Sharm el-Sheikh, Egypt at the conference,  please email admin@gsacom.com

GSA Update and Analysis: 5G Devices Ecosystem – August 2019

  • The GSA Research team has identified 100 announced 5G devices in total, excluding regional variants and prototypes not expected to be commercialised.In the first half of 2019, the number of announced 5G devices grew rapidly, starting with a few announcements and then gathering pace as operators in various parts of the world launched their first commercial 5G services. We can expect the device ecosystem to continue to grow quickly and GSA will be tracking and reporting regularly on 5G device launch announcements. Its GAMBoD database will contain key details about device form factors, features and support for spectrum bands. Summary statistics are released in this regular publication. By the first week of August, GSA had identified:
    • Thirteen announced form factors (phones, hotspots, indoor CPE, outdoor CPE, laptops, modules, snap-on dongles/adapters, enterprise routers, IoT routers, drones, a switch, a USB terminal and robot).
    • Forty-one vendors that had announced available or forthcoming 5G devices, including sub-brands separately (plus four in partnership with Sunsea).
    • One hundred announced devices, up from 90 at the end of June (excluding regional variants, re-badged devices, phones that can be upgraded using a separate adapter, and prototypes not expected to be commercialised):
    • 26 phones (plus regional variants); at least nine of which are now commercially available
    • eight hotspots (plus regional variants); at least three of which are now commercially available
    • 26 CPE devices (indoor and outdoor, including two Verizon-spec compliant devices) at least eight of which are now believed to be commercially available
    • 28 modules
    • two snap-on dongles/adapters
    • two routers,
    • two IoT routers
    • two drones
    • one laptop
    • one switch
    • one USB terminal
    • one robot

Here are the commercially available 5G devices as listed in the GSA’s latest report August 2019:

  • HTC 5G Hub (hotspot)
  • Huawei 5G CPE 2.0 (indoor and outdoor customer premises equipment, or CPE)
  • Huawei 5G CPE Win (outdoor and window CPE)
  • Huawei 5G CPE Pro (indoor CPE)
  • Huawei Mate X (phone)
  • Huawei Mate 20x 5G (phone)
  • Inseego R1000 Home Router/MiFi IQ 5G (fixed wireless indoor CPE)
  • Inseego MiFi M1000 5G Mobile Hotspot (hotspot)
  • LG V50 ThinQ (phone)
  • Motorola 5G Moto Mod Snap-on (dongle)
  • Netgear Nighthawk M5 Fusion MR5000 (aka Nighthawk 5G Mobile Hotspot) (hotspot)
  • Nokia Fastmile 5G Gateway CPE (indoor/ outdoor CPE)
  • OnePlus OnePlus 7Pro 5G (phone)
  • Oppo Reno 5G (phone)
  • Percepto Drone-in-abox (drone)
  • Samsung SFG-D0100 (indoor CPE)
  • Samsung Galaxy S10 5G (phone)
  • SIMCom Wireless SIM8200- EA-M2 (module)
  • SIMCom Wireless SIM8200G (module)
  • Xiaomi Mi Mix 3 5G (phone)
  • ZTE Axon 10 Pro 5G (phone)
  • ZTE 5G Indoor CPE MC801 (indoor CPE)

……………………………………………………………………………………

What versions of 5G have been deployed/announced? 
After downloading and reading the GSA report, I noticed a huge omission: the version of 5G is not disclosed for any of the “pre-IMT 2020 standard 5G” deployments.  Most are likely to be based on 3GPP release 15 “5G NR” for the data plane NSA (LTE signaling and EPC).  However, many of the 5G fixed wireless deployments (like Verizon’s and C-Spire) are proprietary.

5G silicon? 

Also of note is that within the 5G devices, there are only four 5G silicon vendors chipsets – Qualcomm is by far the largest selling 5G SoC’s/IP, then Mediatek selling on the merchant market, whereas Huawei and Samsung design their own silicon for their 5G terminals/handsets and base stations.

Note while there is not yet any “Intel inside” 5G, Intel has sold its 5G smartphone modem silicon business to Apple recently for $1B.

If 5G were truly such a hot market, why aren’t there other semiconductor vendors pursuing it? 

Posted in 5G Tagged

GSA May Update: Gigabit LTE – Global Status

Editor’s Note:

Gigabit LTE will be the backbone of support for (3GPP Release 15) 5G NR-NSA as it’s used for signaling, evolved packet core (EPC), and network management.  5G with low latency, signaling and a 5G mobile packet core won’t be deployed in mass till IMT 2020 standard has been completed.

INVESTMENT IN GIGABIT LTE NETWORK TECHNOLOGIES WORLDWIDE:

  • At the end of February 2019, GSA has identified 101 operators in 60 countries or territories investing in all the three core LTE-Advanced features for Gigabit LTE (defined as Carrier Aggregation, 4×4 MIMO or higher, and 256 QAM modulation in the downlink)
  • 53 operators have deployed all three of these technologies and / or launched commercial services based on them
  • 313 operators in 133 countries are investing in at least one of the key technologies

DISTRIBUTION OF GIGABIT LTE NETWORKS AND DOWNLINK SPEEDS OF THE FASTEST NETWORKS:

Gigabit LTE does not always equal Gigabit speed. Some networks capable of delivering 1 Gbps downstream do so without using all three key LTE-Advanced (AKA IMT Advanced in ITU-R) features; some networks using all three features do not achieve 1 Gbps

The fastest networks in the GSA database are:

  • KDDI, SK Telecom, Swisscom, Telus, Turkcell:  1.2 Gbps
  • KT: 1.167 Gbps(achieved using MPTCP to combine LTE with 3CA and WiFi)
  • China Unicom:  1.156 Gbps
  • Bell Mobility:  1.15 Gbps
  • 3 Hong Kong, Singtel:  1.1 Gbps
  • Optus: 1.03 Gbps
  • Vodafone Italy:  1.023 Gbps
  • AT&T Mobility, China Mobile Hong Kong, CYTA, Dialog Axiata, DNA, Elisa, HKT, Inwi(Wana), O2 Czech Republic, Ooredoo Qatar, Smartone, Sprint, StarHub, Telenor Denmark, TeliaSonera Denmark, Telstra, Vodafone Germany, Vodafone Ziggo: 1 Gbps

This data is taken from Gigabit LTE Networks: Analysis of Deployments Worldwide (May 2019) published by GSA and available from www.gsacom.com.

……………………………………………………………………………………………………………………………………………………………………..

LTE FAST FACTS: LTE IN UNLICENSED SPECTRUM (DATA AS OF END-APRIL 2019):

  • 8 LAA (License Assisted Spectrum) [1] deployments/launches:
  • AT&T (US), T-Mobile (US), AIS (Thailand), MTS (Russia), Smartone(Hong Kong), TIM (Italy), Turkcell, Vodafone Turkey (deployed)
  • 28 LAA trials and deployments in progress in 18 countries
  • The latest include MOTIV and Vimpelcomin Russia, and 3 Indonesia
  • 1 eLAAtrial (SK Telecom)
  • 3 LTE-U network deployments/launches
  • T-Mobile (US) – though it is now switching focus to LAA, AIS (Thailand), Vodacom (South Africa)
  • 8 LTE-U trials or pilots in progress
  • 1 LWA launch …
  • Chunghwa Taiwan and 2 others are trialing the technology (in Singapore and South Korea)
  • 1 commercial launch of a private LTE network using CBRS
  • 16 operators investing in CBRS trials in the US
  • The latest are Altice, CDE Lightband, CoxCommnications, Extenet, Mobilitieand Windstream
  • 21 commercially available modem/platform chipsets supporting unlicensed access
  • 133 devices announced supporting LTE in unlicensed spectrum or shared spectrum using CBRS (including regional variants)

Note 1.  A variant of LTE-Unlicensed is Licensed Assisted Access (LAA) and has been standardized by the 3GPP in Rel-13. LAA adheres to the requirements of the LBT protocol, which is mandated in Europe and Japan. It promises to provide a unified global framework that complies with the regulatory requirements in the different regions of the world.

  • 3GPP Rel-13 defines LAA only for the downlink (DL).
  • 3GPP Rel-14 defines enhanced-Licensed Assisted Access (eLAA), which includes uplink (UL) operation in the unlicensed channel.
  • 3GPP Rel-15 The technology continued to be developed in 3GPP’s release 15 under the title Further Enhanced LAA (feLAA).

LTE Fast Facts are taken from the GSA report “LTE in Unlicensed Spectrum: Trials, Deployments and Devices April 2019”available from www.gsacom.com.

GSA reports are compiled from data stored in the GSA Analyser for Mobile Broadband Devices/Data (GAMBoD) database.

Recent Posts