Nokia successful field trial of single-carrier, 50.8 terabit-per-second on Etisalat’s WDM fiber optic network

Nokia and Etisalat (UAE) report the completion of a multi-terabit-per-second, single-carrier data transmission over an operator-deployed fiber network in a field trial.  Nokia said in a press release that a terabit-per-second is enough bandwidth to download the entire “Game of Thrones” video series in HD in under two seconds.

Using Etisalat’s wavelength division multiplexing network, the companies were able to reach a transmission speed of 50.8 terabits per second over 93 kilometers of optical fiber.

Nokia said the trial successfully transmitted a record 50.8 terabits per second using multiple wavelengths, each with a net information rate of 1.3 terabits per second, over a 93-kilometer fiber route of Etisalat’s wavelength division multiplexing (WDM) network.

The Nokia field trial showed that Etisalat’s existing network could support the higher optical wavelength bit rates that will be required to support high-bandwidth services such as 5G extreme mobile broadband, fiber-to-the-home (FTTH) and data center interconnect (DCI) cloud services.

Here are the key points:

  • Trial is the world’s first terabit-per-second, single-carrier data transmission over an operator deployed fiber network.
  • New transmission capacity record comes as Etisalat invests in core network infrastructure in anticipation of a new generation of high-bandwidth services.
  • Results move Nokia Bell Labs’ experimental lab records of terabit-per-second single-carrier transmission to a deployed operator network.

In addition to the speeds, higher bit rates per wavelength enable power and space savings, improved network simplicity, as well as increased spectral efficiency and capacity. It also enables reduced cost per bit compared to optical networks composed of lower rate channels, according to Nokia.

Using a single optical carrier operating at 100 Gigabaud, the terabit wavelengths tapped into Nokia Bell Labs’ probabilistic constellation shaping (PCS) to intelligently shape the signal to achieve maximum capacity for the specific fiber route. Nokia said its Photonic Service Engine 3 was the first coherent digital signal processor to implement PCS.

Esmaeel Alhammadi, Senior Vice President, Network Development at Etisalat, said:

“We are pleased to have partnered with Nokia Bell Labs to demonstrate that our optical network is capable of transporting a terabit per second over a single wavelength, and a total per-fibre capacity of over 50 terabits-per-second.  Increasing network capacity helps us to provide bandwidth-hungry services such as 5G extreme mobile broadband, fibre-to-the-home and DCI for enterprises.”

Sam Bucci, Head of Optical Networking at Nokia, said:

“The introduction of 5G will require a network that can support dramatic increases in bandwidth in a dynamic fashion. This ground-breaking trial with Etisalat is testimony to Nokia’s commitment to continue to invest in coherent and optical component technologies required to meet the 5G networking challenge at the lowest total cost of ownership for our customers.”

Nokia has a long history of advancing the frontiers of optical transmission. It was the first to demonstrate single-carrier 100G transmission in a deployed production network in 2007, and the first to commercialize single-carrier 100G and 200G wavelengths in 2010 and 2013, respectively. More recently, the Nokia Bell Labs optical research team published the world’s first terabit-per-second transmission lab trials in 2015 and 2017.  By extending these records to a deployed operator network, Nokia Bell Labs is bringing the age of terabit wavelength networks a big step closer to reality.

Details of the Nokia trial with Etisalat were published in a post-deadline co-authored paper at the European Conference on Optical Communication (ECOC), held last week in Dublin, Ireland:

1.3-tb/s Single-Channel and 50.8-tb/s WDM Transmission Over Field-Deployed Fiber

Authors: Fred Buchali 1, Karsten Schuh 1, Roman Dischler 1, Mathieu Chagnon 1, Vahid Aref 1, Henning Buelow 1, Qian Hu 1, Florian Pulka 1, Massimo Frascolla 2, Esmaeel Alhammadi 3, Adel Samhan 3, Islam Younis 4, Mohamed El-Zonkoli 4, Peter Winzer 1

Affiliations: Nokia Bell Labs 1, Nokia 2, Etisalat UAR 3, Nokia UAR 4

References:
………………………………………………………………………………………………………………..
Additional Resources from Nokia:

Verizon CEO: 5G will require fiber optic expansion, mobile edge computing and continue to use mmWave spectrum

Verizon 5G Overview:

Verizon’s 5G network strategy is centered on three deliverables with fiber optics for backhaul playing a huge role in all of them:

  1.  5G mobile for businesses and consumers,
  2.  5G home broadband (see Note 1. below) —delivering home internet over the air—and
  3.  Mobile edge computing, which is essentially miniature data centers distributed throughout the network so they’re closer to the 5G endpoints.

The company’s CEO Hans Vestberg said that a total of 30 5G mobile cities will be launched by Verizon this year. He also plans to restart Verizon’s fixed wireless 5G Home service [1] later this year. 5G Home currently is in four U.S. markets.

Note 1.  There is no standard for 5G fixed wireless and none is even being worked on.  It is not an IMT 2020 use case within ITU.

………………………………………………………………………………………………………………………………………………………………………..

Fiber and Mobile Edge Computing:

The U.S.’s #1 wireless carrier by subscribers will continue to install fiber at a rate of 1,400 miles per month in support of its 5G network builds for between two and three years.  Verizon will begin to provide mobile edge computing [aka Multi-access edge computing (MEC)] during the upcoming quarter, Vestberg said at a Goldman Sachs Communacopia investor conference on Thursday, September 19th.  Verizon fiber deployments are critical to supporting a mixture of services, Vestberg said.

As part of its Fiber One project, two years ago Verizon signed a $1.1 billion, three-year fiber and hardware purchase agreement with Corning to build a next-generation fiber platform to support 4G LTE, 5G, and gigabit backhaul for 5G networks and fiber-to-the premise deployments to residential and business customers. Also in 2017, Verizon also announced a $300 million fiber deal with Prsymian Group to provide additional fiber for its wireline and wireless services.

“The whole Intelligent Edge Network was basically all of the way from the data center to the access point we have one unique network for redundancy. And then, of course, in between fiber to the access point and then you decide if its 5G, 4G, or fiber to the home or fiber to curb, or fiber to the enterprise,” Vestberg said. “In that, the fiber deployment for us was extremely important.”

“One part of the whole intelligent edge network was that . . . all the way from the data center to the access point you have one unique network with a lot of redundancy and, in between, a lot of fiber to the access point and then you decide if it’s 3G, 5G, 4G or fiber to the home or fiber to the curb or fiber to the enterprise,” he explained.

Vestberg said: “You have one unique network with a lot of redundancy and, in between, a lot of fiber to the access point,” he said of edge computing, which has become a priority for many wireless and wireline network operators.

………………………………………………………………………………………………………………………………………………………….

mmWave for 5G:

Verizon will continue to deploy millimeter wave (mmWave) for its 5G network for the foreseeable future, Vestberg told the investor conference audience.  High frequency band mmWave has great download speeds but its range is very limited, which requires many more small cells.

“Maybe you have 50 to 70 megabits per second on a 4G network today, when you get 1 gig [on 5G] it’s a totally different experience and what you can do with it,” Vestberg said. “What we saw in the 4G era was enormous innovation coming with that [greater] coverage and that speed [over 3G]. It’s going to be the same with 5G for sure,” he added.

“Now we have 2 gigs [gigabits per second] on the phones,” Vestberg said. The range, however, can veer from 2,000 feet to 500 feet and the network can’t deliver flashy streaming videos — or, in fact, any kind of service — indoors.  Verizon is the only US carrier solely dedicated to the highband (28GHz) approach to 5G for now. AT&T and T-Mobile plan to launch low and mid band 5G networks next year, along with limited mmWave deployments. Sprint has mid band 5G launched so far.

“We can launch nationwide with millimeter wave,” the Verizon CEO insisted.  “Any spectrum will have 5G in the future,” Vestberg noted. Verizon will also offer dynamic spectrum sharing (DSS) in the future. DSS will allow operators to share spectrum instantaneously and simultaneously between 4G and 5G networks. But not for mmWave, since that doesn’t share spectrum with any 4G networks.

Vestberg said Verizon has all the spectrum it needs now to do a nationwide network on mmWave, and that adding more antennas in a given area or making software adjustments are also options for increasing capacity on existing spectrum bands.

Vestberg insisted that the mmWave-based service will be “self-install.” This would be more economical than the “white glove” — a.k.a. professional — installation model that 5G Home started with in October 2018.

……………………………………………………………………………………………………………………………………………………………………………………

Verizon’s mobile network:

A growing percentage of Verizon’s mobile subscribers are on unlimited data plans, with about half today.  “This is a way for us to continue to see that our customers have a great journey from metered plan to Unlimited (data) plans and then they can move up…to 5G,” Vestberg said.

“We think that we are best equipped to leverage the best network and continue to partner with [media companies] rather than us managing it.  Others might have better qualities for doing that but we don’t, Vestberg said.

………………………………………………………………………………………………………………………………………………………………………………….

References:

Verizon to speak at Goldman Sachs Communacopia Conference September 19
https://www.verizon.com/about/investors/goldman-sachs-28th-annual-communacopia-conference

https://event.webcasts.com/starthere.jsp?ei=1260712&tp_key=eae790b458

https://www.barrons.com/articles/verizon-ceo-hans-vestberg-stock-5g-wireless-competition-51568906382

https://www.lightreading.com/mobile/5g/verizons-vestberg-sticks-with-mmwave-for-5g-/d/d-id/754248

https://www.telecompetitor.com/verizon-ceo-ongoing-fiber-investments-paying-dividends-including-mec/

Page 12 of 12
1 10 11 12