Qualcomm Introduces 3rd Generation 5G Modem-RF System for 5G endpoints

Qualcomm has announced its third-generation 5G modem-to-antenna silicon system – the Snapdragon X60 5G Modem-RF System. The company said the device is the world’s first 5G modem to support spectrum aggregation across all key 5G bands and combinations, including mmWave and sub-6 GHz using FDD and TDD. This will enable speeds of up to 7.5 Gbps down and 3 Gbps up.

The modem features the new Qualcomm QTM535 mmWave antenna module and QTM535, the company’s third-generation 5G mmWave module for mobile, as well as a more compact design than the previous generation, allowing for thinner, sleeker smartphones.

Image result for pic of Snapdragon X60 5G Modem-RF System

Qualcomm said the modem will up performance for operators and increase 5G speeds in mobile devices. It added that the Snapdragon X60 is engineered to accelerate network transition to 5G standalone mode through support for any key spectrum band, mode or combination, along with 5G Voice-over-NR (VoNR) capabilities.

The company said the Snapdragon X60 is the world’s first to support mmWave-sub6GHz aggregation, allowing operators to maximize their spectrum resources to combine capacity and coverage. Additionally, the Snapdragon X60 contains the world’s first 5G FDD-TDD sub-6 carrier aggregation solution, in addition to supporting 5G FDD-FDD and TDD-TDD carrier aggregation, along with dynamic spectrum sharing (DSS), allowing operators a wide range of deployment options – including the ability to repurpose LTE spectrum for 5G – to effectively deliver higher average network speeds and accelerate 5G expansion. This 5G modem-to-antenna solution can deliver up to 7.5 gigabits per second (Gbps) download speeds and 3 Gbps upload speeds, and the aggregation of sub-6 GHz spectrum in standalone mode allows the doubling of peak data rates in 5G standalone mode compared to solutions with no carrier aggregation support. VoNR support in Snapdragon X60 will be an important step in the global mobile industry’s transition from non-standalone to stand-alone mode, as it will allow mobile operators to provide high-quality voice services on 5G NR.

“Qualcomm Technologies is at the heart of 5G launches globally with mobile operators and OEMs introducing 5G services and mobile devices at record pace. As 5G standalone networks are introduced in 2020, our third-generation 5G modem-RF platform brings extensive spectrum aggregation capabilities and options to fuel the rapid expansion of 5G rollouts while enhancing coverage, power efficiency and performance for mobile devices. We are excited about the fast adoption of 5G across geographies and the positive impact 5G is having on the user experience,” said Cristiano Amon, president, Qualcomm Incorporated.

Qualcomm previously said its second-generation 5G modem, the X55, was being used by over 30 device manufacturers.

For more information, visit the Snapdragon X60 Modem-RF System product page.

Or watch the Snapdragon X60 video.

Reference:

https://www.qualcomm.com/news/releases/2020/02/18/qualcomm-introduces-third-generation-5g-modem-rf-system-enhance-5g

 

Point-Counterpoint: 5G is the future, but deployments are slowing!

Disclosure:

This author believes 5G is headed for the greatest “train wreck” in modern tech history.  Over-hyped, rushed to market, incomplete standards, lack of vendor interoperability, no real business case or killer apps (not until ultra low latency and ultra high reliability are standardized and implemented), operators have no serious plan to monetize 5G and recover their build-out costs, small cell permit and placement objections/ NIMBY (Not In My Back Yard), power issues, massive fiber deployments needed in urban areas for mmWave small cell backhaul, and many other caveats.

Image result for image of 5G being a failure

……………………………………………………………………………………………………………

What does the future of Qualcomm look like?

Steve Mollenkopf, CEO of Qualcomm interview in Sunday’s NY Times:

It’s basically 5G. Think of it like when electricity replaced steam. Who’s going to win, who’s going to lose? The reason that you see so much international competition for the leadership of 5G is because it is so important to the fundamental way in which economy works.

The first 5G wave will be a handset wave, which is very good for us, and will continue for a long time. But there’s a second wave — with artificial intelligence, the cloud and all that data. That second wave makes me think, “Wow, we are on the cusp for something very big.”

…………………………………………………………………………………….

WSJ: 5G Rollouts Hit Slow Patch, Equipment Suppliers Say:

The rollout of new 5G wireless networks is showing signs of slowing, denting near-term sales prospects for some networking equipment makers and potentially delaying access for some consumers to the lightning-fast data speeds the technology promises.

Industry officials say there is no common cause for the slowdown seen across multiple markets, with various countries affected by different dynamics. In some cases, the equipment makers say, telecom providers want certainty that the investments made will reap returns before plowing more money into further infrastructure.

Investments required to deploy fifth-generation cellular networks are significant, in part because of how the systems operate. To blanket a city, 5G requires more base stations and local relay points than traditional communications infrastructure to connect devices to the network.

Research firm Gartner Inc. estimates companies spent more than $2 billion on 5G wireless infrastructure last year, more than triple the level in 2018. But spending growth is expected to slow somewhat this year, reaching about $4 billion.

Quinn Bolton, an analyst at Needham & Co., said delays in the build-out of 5G infrastructure in Asia and the U.S. were causing the slowdown.

South Korea was a trailblazer in 5G adoption, and operators that invested heavily in the first half of 2019 have since eased up, he said. Samsung Electronics Co., a major gear manufacturer for South Korean 5G networks, said last month its domestic 5G business would decline this year though grow elsewhere.

The 5G rollout in the U.S. is somewhat slower than expected because some cities and towns oppose the massive number of antennas needed to deliver ultrafast 5G data speeds to consumers, industry executives say. Some have banned antennas in residential areas, and a group of cities is suing the Federal Communications Commission over its requirement that cities make decisions on approval of 5G antennas within 60 or 90 days.

The protracted antitrust battle over T-Mobile US’s merger with  Sprint also affected the pace of 5G spending. The two agreed to combine nearly two years ago, but it was only this week that a federal judge gave the go-ahead, siding with the companies over states that had raised antitrust concerns. The companies have yet to formally close the deal.

As the companies were awaiting the merger outcome, T-Mobile told contractors in a letter last fall that new work orders were postponed, according to people familiar with the matter. Michael Sievert, T-Mobile’s chief operating officer, earlier this month told The Wall Street Journal that engineers overshot their budget at the end of 2019 but the company would ramp up investment again early this year.

Pierre Ferragu, an analyst at New Street Research, said the T-Mobile–Sprint combination would speed 5G development in the U.S., calling it “positive for equipment vendors.”

Some makers of networking equipment that pipes data to and from new 5G antennas are still largely awaiting the anticipated spending spree. Juniper Networks Inc. Chief Financial Officer Ken Miller said this week that reaping the 5G opportunity would have to wait until 2021 or 2022.

“I think it’s going to be a little slower and a little longer spending cycle than maybe people predicted a year or two ago,” he said. Juniper makes hardware that manages internet traffic, which network operators will need more of to handle fast-moving 5G data.

For companies more directly involved in the 5G deployment, such as Cree Inc., an electronics provider in Durham, N.C., the impact has been more concrete. “We’ve seen some near-term delays in the 5G rollout,” Chief Executive Gregg Lowe said last month.

Xilinx Inc., a San Jose, Calif., chip maker, also cut its sales growth outlook and announced it was reducing its workforce by 7% because of U.S. restrictions on some trade with China and a slower 5G outlook. CEO Victor Peng said many telecom operators that spent heavily to put the initial 5G networks in place now are waiting to see if the spending generates anticipated returns before plowing more money into the infrastructure.

Overseas, Sweden’s Ericsson AB—one of the largest telecom equipment manufacturers—said it has encountered higher 5G-related costs and seen a slowdown in North America sales that it attributes partly to Sprint–T-Mobile merger delays.

Ericsson CEO Börje Ekholm said concerns around the use of Huawei Technologies Co. equipment also have affected deployments. The U.S. has been pressing allies not to use Huawei’s 5G gear because of cybersecurity concerns about the Chinese manufacturer—concerns Huawei has rejected.

Several countries have been reviewing what role Huawei equipment should have in their systems because of U.S. concerns. The U.K., after months of debate, recently said it would allow some use of Huawei equipment in its 5G infrastructure. Huawei late last year struck a 5G deal in Germany.

Some industry analysts expected the U.S. campaign to stem the use of Huawei equipment or to boost other vendors, such as Ericsson. Mr. Ekholm said, “This whole notion that this was a win for Ericsson and Nokia so far has not materialized.”

Some rollouts in Europe also have been delayed because governments haven’t completed the spectrum allocation to operate such systems, industry officials said.

Despite the recent slowdown in equipment purchases, executives remain bullish on longer-term 5G prospects. Handset makers are ramping up plans for new devices: Gartner forecasts 221 million 5G smartphones will be sold this year.

Samsung, the world’s largest smartphone maker, this week unveiled three Galaxy S phones with 5G capability.

“There appears to be a significant bifurcation in demand trends currently between the 5G infrastructure and smartphone segments,” Mr. Bolton, the Needham analyst, said.

Not every network operator is taking a pause, either. AT&T Inc. CEO Randall Stephenson last month said the company’s 5G network covered 50 million people and was expected to reach the entire U.S. in the second quarter. “We’re not slowing down,” he said.

Verizon Communications Inc. Chief Executive Hans Vestberg last month projected fast growth of the company’s 5G network, though he said it would be more pronounced next year.

In China, a key market for 5G handset sales, network rollout plans remain broadly on track, according to analysts. Bernstein Research telecom analyst Chris Lane said Chinese operators were building hundreds of thousands of cell towers and weren’t going to slow down, barring any effects of the coronavirus outbreak.

……………………………………………………………………………………………………

WSJ: 5G Sends a Confusing Signal –Marketing hype remains hot for next-gen wireless technology, but network expansion seems to have slowed:

Part of the problem is that services marketed under the 5G label can vary widely in terms of speed and availability. Some aren’t much faster than existing 4G networks. And the fastest—including those using millimeter wave technology—currently are available only in certain dense urban areas due to their signal limitations.

Meanwhile, 5G devices remain expensive. Samsung’s new 5G phones range in price from $999 to $1,399. The lowest of those would be the cheapest price seen in the U.S. for a 5G phone so far, but still a bundle for a product offering an unclear benefit. Samsung itself noted previously that smartphone prices creeping above the $1,000 range were “driving market resistance.”

5G will see its biggest test this fall, when Apple Inc. is widely expected to launch its first 5G iPhones. Many assume this will spur adoption of the technology: Apple’s share price has nearly doubled in the past 12 months in part based on hope for a 5G-driven “supercycle.” But Apple’s phones won’t be cheap either given the cost of 5G chips and Apple’s famous focus on maintaining industry-leading margins.

The onus will remain on carriers to get 5G services built out enough to attract consumers to invest in the phones. VerizonAT&T and T-Mobile all have broadcast aggressive plans in this vein for the year. Like its predecessors, 5G will one day be the default standard for all wireless devices. A growing number of companies and investors are counting on it happening sooner than later. That looks risky.

References:

https://www.wsj.com/articles/superfast-5g-rollout-hits-slow-patch-some-equipment-suppliers-say-11581676202  (on line subscription required)

https://www.wsj.com/articles/5g-sends-a-confusing-signal-11581681603 (on line subscription required)

https://slate.com/technology/2019/01/5g-mobile-wireless-network-hype-consumers-fcc.html

https://www.techdirt.com/articles/20190513/08370142198/consensus-quietly-builds-that-5g-was-overhyped-rushed-to-market.shtml

https://www.vice.com/en_us/article/59xnw8/5g-may-never-live-up-to-the-hype

Posted in Uncategorized Tagged

ITU-R Report: Terrestrial IMT for remote sparsely populated areas providing high data rate coverage

ITU-R WP 5D is progressing a preliminary draft new Report ITU-R M.[IMT TERRESTRIAL BROADBAND REMOTE COVERAGE] which we offer highlights of in this IEEE Techblog post.  Co-authors of this draft 5D document are: Huawei Technologies Co. Ltd, Nokia Corporation, Telefon AB – LM Ericsson, Qualcomm Inc. and ZTE Corporation.

This post is an update and replacement of an earlier version, which can be read here.  The scope has been broadened to include all types of IMT, not just IMT 2020 (5G).

Introduction:

On a global basis, the total number of mobile subscriptions was around 8 billion in Q3 2019, with 61 million subscriptions added during the quarter, the mobile subscription penetration is at 104 percent. There are 5.9 billion unique mobile subscribers using mobile networks, while 1.8 billion people remain unconnected. In year 2025 it is forecasted to be 2.6 billion 5G subscriptions and 8.6 billion mobile subscriptions globally at a penetration level of about 110 percent[1].

In 2025 the forecast is for 6.8 billion unique mobile subscribers using mobile networks, while 1.5 billion people remain unconnected, many of whom are below the age of nine.

The prospect of providing mobile and home broadband services for most of the 1.5 billion unconnected people, living in such underserved rural areas, is largely related to techno-economic circumstances.

This Report provides details on scenarios associated with the provisioning of enhanced mobile broadband services to remote sparsely populated and underserved areas with a discussion on enhancements of user and network equipment.

Background:

Deploying networks in remote areas is normally more expensive, and at the same time, expected revenues are lower in comparison with deployments in populated areas. A further reason for not being incentivized to deploy new IMT broadband (e.g. IMT-2020/5G) Base Stations (BS) in these areas is the expected number of new BS sites. Therefore, the total economic incentives to deploy traditional networks in sparsely populated areas are consequently narrowed.

[1] Ericsson Mobility Report, November 2019, mobile broadband includes radio access technologies HSPA (3G), LTE (4G), 5G, CDMA2000 EV-DO, TD-SCDMA and Mobile WiMAX.

……………………………………………………………………………………………………………………

The competition model, applying to densely populated areas, is normally not providing rural coverage expansion at a speed that society wish. Connectivity in underserved remote areas is important to national policy makers facing needs of consumers, to service providers for reasons of branding, and to satisfy regulatory conditions in countries.

When expanding coverage in remote areas, it may imply an undesirable local monopoly, suggesting that only one service provider would expand in to such a remote area due to a low consumer base.

Rural coverage might in the future be driven by the need for national security and public safety connectivity, intelligent traffic systems, internet of things, industry automation and end users need for home broadband services as an alternative to fiber connections.  In order to fulfill the needs of rural coverage, it is a matter of urgency to identify viable solutions for mobile and home broadband services.

Related ITU-R Recommendations and Reports:

ITU-R Recommendations

M.819        “International Mobile Telecommunications-2000 (IMT-2000) for developing countries”.

ITU-R Reports

M.1155      “Adaptation of mobile radiocommunication technology to the needs of developing countries”

Solutions that support remote sparsely populated areas providing high data rate coverage:

Possible technical solutions to achieve both extended coverage as well as high capacity in remote areas could be to use dual frequency bands at the same time, one lower band for the uplink (UL) and one higher band for the downlink (DL), in aggregated configurations.

Combining spectrum bands in the mid-band range and the low-band range on an existing grid can provide extended capacity compared to a network only using the low-band range.

An alternative technical solution to provide extended coverage in a remote area using a reduced number of terrestrial BS sites, aiming to bringing cost down, requires careful selection of proper locations and technical characteristics compared to configurations of suburban networks. Realizing such extended network configuration for coverage, several considerations need to be taken into account, both at a BS site and at customer premises. Considerations of accommodating BSs on high towers in sparsely populated areas could be further studied. Such opportunities rest with traditionally high tower used for analogue or digital television with an average inter-site distance (ISD) of the order of 60 km to 80 km designed to provide blanket coverage of national terrestrial television services.

With potential enhancements of base station (BS), user equipment (UE), and customer premises home broadband configurations, it is deemed feasible to deploy a standalone network in the range 3.5 GHz providing high capacity and coverage over tens of kilometers in rural areas. This could potentially be a promising solution for bringing IMT broadband (e.g. IMT-2020/5G) to underserved regions.

Combining spectrum bands in the mid-band range 3.5 GHz and the low-band range, e.g. 600 MHz, 700 MHz or 800 MHz, on an existing grid can provide extended capacity compared to a network only using the low-band range. The reason being that the mid-band range offer access to more spectrum bandwidth, and the low-band range combined, can provide the coverage for cell edge users in a unified manner.

Generally, at a BS site, the antenna height and the radio frequency (RF) output power have a profound impact on the coverage and capacity performance. Effective performance solutions are also represented by a high level of antenna sectorization, high antenna beamforming gain, and the use of MIMO antennas, as well as the use of carrier-aggregation. Furthermore, additional spectrum bands and bandwidth, and usage of redundant signaling protocol will improve performance. As the UL performance is the limiting factor, enhancing the UE transmission performance is key to enable extended coverage. For a home broadband deployment in a “wireless fiber” configuration using an outdoor directional antenna mounted line-of-sight to the BS antenna site extend the coverage range significantly by avoiding building penetration losses.

Underserved sparsely populated areas are every so often characterized by limited internet access and basic mobile service provide by a 2G network designed for voice connectivity. Therefore, one of the key aspects providing coverage in a remote area, aiming to bringing cost down, is possible to use such existing 2G network grid by means of conventional spectrum bands in 600 MHz, 700 MHz, 800 MHz, 850 MHz or 900 MHz for UL connectivity in combination with the band 3.5 GHz for the DL system installed in a high tower used for analogue or digital terrestrial television with an average ISD of the order of 60 km to 80 km designed to provide blanket coverage of national terrestrial television services.

It is assumed that a conventional 2G or 4G antenna arrangement is used for the UL system. For the IMT-2020/5G 3.5 GHz DL system, an antenna array is assumed to have 64 dual-polarized antenna elements installed in a television towers at a height of about 250 m. The considered ISD is regarded to be representative for a conventional 2G network grid. The maximum supported coupling loss for 2G is approximately 137 – 144 dB to support acceptable control channel signaling, and here assuming a maximum of 140 dB coupling loss is needed for basic coverage. The propagation losses are similar for IMT-Advanced/4G at 600 MHz, 700 MHz, 800 MHz, 850 MHz and at 900 MHz, here searching for an ISD that results in 140 dB coupling loss at the cell-edge for 4G at 800 MHz. From experience it is estimated that at 140 dB coupling loss occurs at an ISD of about 4 km. In terms of IMT-2020/5G, a beamformed coupling loss of approximately 143 dB should be supported.

The DL and UL user throughput can be estimated in a deployment scenario using the parameters above. For DL, over 20 times capacity gain can be achieved by utilizing an additional IMT-2020/5G connectivity link in the band 3.5 GHz compared to an IMT-Advanced/4G connectivity link only in the band 800 MHz. This is in recognition of the wider bandwidth of the band 3.5 GHz together with the advanced BS antenna array deployed. For users located at the cell edge, data rates of over 100 Mbit/s can be reached in the DL direction using conventional 5G UE terminals.

Due to the limited UE transmit power of 23 dBm together with the propagation conditions in the band 3.5 GHz, a standalone network has limited possibilities to provide adequate coverage in the UL direction for users located at the cell edge.

Adding the new band 3.5 GHz for mobile and home broadband connectivity, networks can clearly deliver on the promise to increase on the coverage requirements for IMT-2020/5G services, but only adequately in the DL direction. For such a communication circumstances, a IMT-2000/2G or IMT-Advanced/4G grid is indispensable to combine to provide adequate UL coverage.

Analyzing configurations for an IMT broadband network operating only in the band 3.5 GHz:

For the circumstances in underserved remote areas the DL capacity performance can be significantly improved by using the band 3.5 GHz whilst the UL coverage is representing the bottleneck in attempts of satisfying needs for coverage. With potential upgrades of BS and consumer premises UE configurations, the feasibility of providing improved remote area coverage is considered by using only the band 3.5 GHz.

Addressing firstly the UL coverage issue for a standalone network using only the band 3.5 GHz, a potential network upgrade can include increased BS antenna height. Obviously, increased RF power only would not resolve the issues involved. In addition, improved configuration, such as usage of high gain directional UE antenna deployed at the consumer premises for home broadband systems may need to be incorporated into the network design for improved remote coverage and for the reciprocity between DL and UL performance.

This assumption for IMT-2020/5G macro sites is considering the use of television towers at a height of about 250 m, applying ISDs of the order of 60 km to 80 km which is considered to reflect realistic distances for current terrestrial television networks.

In addition, a conventional RF power of 23 dBm is considered for UE at the consumer premises using home broadband services configured for rooftop installation using a high-gain antenna of 20 dBi at about 10 m height can reach 5 Mbit/s at cell edge at reasonably low traffic loads for the UL, and 120 Mbit/s for DL.

With omni-directional UE antennas, the ISD will need to be reduced to 40 km to achieve similar performance at cell edge.

Annex 1. List of acronyms and abbreviations: 

BS Base Station
DL Downlink
ISD Inter-Site Distance
MIMO Multiple Input Multiple Output
RF Radio Frequency
UE User Equipment
UL Uplink

 

References:

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

https://www.itu.int/dms_pub/itu-d/opb/stg/D-STG-SG02.10.1-2006-PDF-E.pdf

https://spectrum.ieee.org/news-from-around-ieee/the-institute/ieee-member-news/a-model-for-data-connectivity-in-remote-areas-of-the-world

https://www.reuters.com/article/us-usa-wireless/fcc-chair-to-propose-9-billion-in-funding-for-rural-wireless-coverage-over-10-years-idUSKBN1Y82OW?feedType=RSS&feedName=internetNews

 

 

Business Research Company: Double Digit Growth Forecast for China’s Telecom Market

Overview:

China’s telecom market grew from $289.6 billion in 2014 to $418.8 billion in 2018 at a compound annual growth rate (CAGR) of 9.7%. The market is expected to grow from $418.8 billion in 2018 to $649.3 billion in 2022 at a CAGR of 11.6% according to The Business Research Company (TBRC’s) Global Market Model.

[Switzerland is expected to be the fastest growing country within the telecom market at a CAGR of 16.5% followed by Denmark at 14.5% and Iraq at 13.2% respectively.]

China was the second largest country in the global telecom market.  It was worth $418.8 billion in 2018, accounting for 15.6% of the global telecom market, followed by Japan at 8.3% and India at 3 % respectively. China’s telecom market accounts for 42.5 % of the Asia Pacific’s telecom market in 2018.

Major telecom companies in China include: China Mobile, China  TelecomChina Unicom,  China Netcom,   Companhia de Telecomunicações de Macau (Macau was previously a Portuguese colony now owned by China), and UTStarcom.

Editor’s Note: The first three companies listed (China Mobile, China  TelecomChina Unicom) are all state owned and are by far the largest telecom companies in China.  We have no idea why neither Huawei or ZTE are listed as major telecom infrastructure companies like UTStarcom.

…………………………………………………………………………………………………………………………

Market Definition:

The telecoms market consists of sales of telecommunications goods and services by entities (organizations, sole traders and partnerships) that apply communication hardware equipment and software for the transmission and switching of voice, data, text and video. This market includes segments such as wired telecommunications carriers, wireless telecommunications carriers and communications hardware. The telecoms market also includes sales of goods such as GPS equipment, cellular telephones, switching equipment.

………………………………………………………………………………………………………………………………………………..

Discussion:

The satellite and telecommunication resellers was the fastest growing segment within China’s  telecom  market at a CAGR of 14.6% followed by wired telecommunication carriers at 11.2% and wireless telecommunication carriers at 10.4% from 2014 to 2018. The satellite and telecommunication resellers is expected to be the fastest growing segment during the forecast period from 2018 to 2022 at a CAGR of 16.2% followed by wired telecommunication carriers at 12.8% and wireless telecommunication carriers at 11.9%.

The telecom market is segmented in to wireless telecommunication carriers, wired telecommunication carriers, communications hardware, and satellite and telecommunication resellers. The wireless telecommunication carriers market mainly consists of sub segments such as cellular/mobile telephone services, and wireless internet services. the wired telecommunication carriers market consists of sub segments such as broadband internet services, fixed telephony services, and direct-to-home(DTH) services. The communications hardware market includes sub segments such as general communication equipment, broadcast communications equipment, and telecom infrastructure equipment. The satellite and telecommunication resellers market has satellite telecommunications, telecommunication resellers, and others – satellite and telecommunication resellers as its sub segments.

China’s Telecom Accounts For More Than 3% Of The Country’s GDP in 2018:

The table below shows telecom market size as a proportion of China’s GDP during 2014 – 2022.

Year              2014  2015  2016  2017  2018  2019  2020  2021  2022  HCAGR FCAGR
Percentage of GDP 2.74% 2.96% 3.00% 3.04% 3.08% 3.13% 3.18% 3.23% 3.28% 2.98% 1.58%

China’s telecom market grew at a CAGR of 9.7% from 2014 to 2018, while China’s GDP grew at a CAGR of 6.49% during the same period. China’s telecom percentage share in China’s GDP increased from 2.74% to 3.08% during the same period. China’s telecom share of China’s GDP is expected to reach to 3.28% in 2022.

China’s Per Capita Expenditure On Telecom Was Less Than That Of Global Expenditure In 2018

The table below shows China’s per capita expenditure on telecom during 2014 – 2022.

Year                       2014   2015   2016   2017    2018   2019   2020    2021   2022   HCAGR FCAGR
Per capita Expenditure ($) 211.73 241.26 248.03 271.63  301.28 334.74 373.84  415.20 461.29 9.22% 11.24%

China’s telecom market grew at a CAGR of 9.7% from 2014 to 2018, while China’s population grew at a CAGR of 0.41% during the same period. China’s per capita expenditure on telecom increased from $211.73 to $301.28 from 2014 to 2018 and expected to reach to $461.29 in 2022.

…………………………………………………………………………………………………………………

Major Trends Shaping The Telecom Market Include:

1.  Over-The-Top Services Are Becoming Popular

OTT services are becoming popular as this technology enables customers to access audio and video content through internet. Over-the-Top (OTT) services refers to accessing film or TV content via Internet without subscribing to cable or paytv services. It delivers messaging, voice and video content directly to the consumers over the internet.

2.  Investments In Cyber Security

Telecommunication providers are investing in cyber security solutions to protect telecom infrastructure and datafrom cyberattacks. Cybersecurity refers to the set of techniques used to protect the network integrity and data from unauthorized access. Telecom operators are investing more into cybersecurity solutions to manage cyber security. For Instance, leading telecommunication companies like Telefonica, Softbank, Etisalat and SingTel have signed an agreement to create the first global cyber security partnership

3.  Software Defined Wide Area Networking

Software defined wide area networking (SD-WAN) application is widely used in enterprise networking to reduce the network traffic. Software defined wide area networking (SD-WAN) is a specific application of software-defined networking (SDN) technology applied in WAN connections which connects enterprise networks over large distances. It improves connectivity and security in a cloud environment due to its scalability across numerous locations. It also provides encrypted data across the connectivity points, firewalls and application-based security.i For Instance, some of the major companies providing this technology include Silver Peak, Cisco, VMware, Riverbed and Citrix.

4.  Green Wireless Network

A rapid increase in energy consumption in wireless networks has been recognized as a major threat for environmental protection and sustainable development. Due to access to the high-speed internet provided by the next generation wireless networks and increased smartphone usage, the requirement for global access to data has risen sharply, triggering a dramatic expansion of network infrastructures and escalating energy demand. To meet these challenges green evolution has become an urgent priority for wireless network service providers.

5.  Voice over IP (VoIP) services:

VoIP is the transmission of voice and multimedia content over Internet Protocol (IP) networks. VoIP services are becoming popular as the audio quality is superior than traditional wired networks. With more networks investing to upgrade to 5G, there has been a substantial improvement in the quality of VoIP. 5G will eliminate common troubleshooting issues like call jitter, echoes and packet loss. AI is also beginning to be an integral part of system restoration. With the latest advancements in AI, identifying and adjusting poor quality calls even before answering them has become much easier. AI helps in restoring call quality quickly and efficiently without the need for human intervention.

…………………………………………………………………………………………………………………………………………

IDC on China’s Telecom Market:

In 2018, the capital expenditure of China’s three major operators (China Mobile, China  TelecomChina Unicom) was US$4.34 billion and China was the second-largest operator expenditure market. In addition, in 2018, Chinese mobile subscribers reached 1.57 billion, which is the largest single mobile communication market in the world. On June 6, 2019, China formally issued 5G licenses, and the construction of 5G will accelerate.

With the business transformation and network transformation of operators, the impact of telecommunications industry on traditional infrastructure is also growing. SDN/NFV, cloud, and edge computing are becoming the new mainstream technology, and the operator market has great potential for IT vendors.

…………………………………………………………………………………………………………………………………………

Image result for images of china telecom

………………………………………………………………………………………………………………………………………….

The Business Research Company’s reports are based on the methodology below:

Our data sets are created using a wide range of proprietary and public sources including leading government bodies, associations, trade journals, market intelligence reports and trade magazines. Data is modeled based on hard data, extrapolation, regression analysis based on known macro data inputs, interpolation between hard figures, comparisons with other geographies and markets, price estimations, and qualitative inputs. Data is triangulated within our unique market data model covering an exhaustive list of 600+ markets across 48 countries and 7 regions. Comparable data is used for sanity check and trend analysis. For example, our global market value data is compared to unit sales and price data for the relevant market as well as relevant macro-economic data sets in order to establish validity.

Market value is defined as the revenues earned by organizations for products and services within the specified market. The break down by geography is revenue generated within the specific industry by organizations in the specified geography, irrespective of where they are produced.

Market value and forecasts used in market share calculation and potential gain of the company is sourced from TBRC’s Global Market Model (more below).

…………………………………………………………………………………………………………………………………………….

The Global Market Model is a comprehensive database of integrated market information which covers historic, current and forecast market information. This database helps in drawing multiple conclusions, exploring market opportunities and taking effective business decisions.

Global Market Model’s methodology ensures that the data is of the highest quality. It starts with high standard data sources and correlation based modelling techniques. This is supported by TBRC’s market expertise and thousands of expert interviews conducted each year to verify the data.

The data sets on the global market model are created using a wide range of proprietary and public sources including leading government bodies, associations, trade journals, market intelligence reports and trade magazines. Data is modeled based on hard data, extrapolation, regression analysis based on known macro data inputs, interpolation between hard figures, comparisons with other geographies and markets, price estimations, and qualitative inputs. Data is triangulated within our unique market data model covering an exhaustive list of 600+ markets across 48 countries and 7 regions. Comparable data is used for sanity check and trend analysis. For example, our global market value data is compared to unit sales and price data for the relevant market as well as relevant macro-economic datasets in order to establish validity.

Analysis is drawn from our Consultants’ wide range of industry and research experience as well as public and proprietary sources. Consultants are trained in research techniques and ethics by the Market Research Society.

Every year The Business Research Company carries out thousands of interviews with senior executives and industry experts across hundreds of markets. Through these interviews we develop our internal understanding of markets and geographies and cross reference our understanding of global markets with expert feedback utilizing ‘Delphic’ research methodologies.

The Business Research Company prides itself on the quality and validity of its data and analysis. Our unique ‘end noted’ referencing approach allows the user to trace our market numbers and analysis back to the specific data sources they were derived from.

Note:  All currency conversions are done on the basis of 2018 exchange rates.

………………………………………………………………………………………………………………………………

References:

TBRC Business Research Pvt Ltd-Document BRCOMM0020200213eg2d0000f

https://en.wikipedia.org/wiki/Telecommunications_industry_in_China

Verizon to double 5G mmWave cities and use DSS by end of 2020

Verizon plans to double the number of cities covered by its mmWave based 5G wireless network by the end of the year.  The company also said it will expand its mmWave 5G coverage areas in the 31 cities where it already offers the service, according to a Fortune article citing comments from Verizon CEO Hans Vestberg. 
……………………………………………………………………………………………………………………………………………..
CEO Vestberg also said that Verizon would expand its 5G Home fixed wireless Internet service to a total of ten cities during 2020, up from the five it currently covers. That’s noteworthy considering Verizon recently overhauled the offering to include a do-it-yourself installation component coupled with new, 3GPP-Release 15 5G NR compatible network equipment.”
Verizon did not name the additional cities it will expand 5G Home and mmWave 5G services.
“We have the opportunity to continue our journey to be the leader on 5G,” Verizon CEO Hans Vestberg said at a meeting with investors in New York on Thursday. “We’re not only expanding markets, we’re also expanding coverage in all the markets.”
Verizon’s announcements essentially counter worries that the company is shrinking from the daunting task of deploying commercial mobile services in mmWave spectrum bands. Due to the physics governing transmissions in such bands, signals in mmWave spectrum can only travel a few thousand feet at the most, and often cannot travel through obstacles like buildings, trees and glass.
……………………………………………………………………………………………………………………………………………..
As a result, Verizon and other operators building mmWave networks have been forced to construct more “small cell” transmission sites – Verizon said it expects to build five times more small cell sites in 2020 than it did last year, according to the Fortune article. However, Verizon did not provide a specific number for its small cell ambitions.Importantly, Verizon’s Vestberg said the operator’s 5G actions are designed in part to encourage customers to upgrade to one of the company’s 5G service plans. Verizon currently charges an extra $10 per month for 5G access on its cheapest unlimited plan, and has promised to impose that fee on its more expensive unlimited plans sometime in the future.
Image result for verizon 5G imagesBut Verizon’s 5G efforts aren’t exclusive to its mmWave spectrum. Vestberg reiterated Verizon’s promise to expand 5G to other spectrum bands sometime this year.  The U.S. #1 wireless carrier plans to use Dynamic Spectrum Sharing (DSS)  which will let it share lower frequencies for use with 4G and 5G endpoint devices at the same time from one cell site. That would let it cover far more territory, though with slower download speeds.[Note  that T-Mobile has reported difficulties with at least one vendor in deploying DSS.]

Rivals have said the gear isn’t ready yet, but Vestberg pushed back on Thursday. “This year we will launch nationwide 5G based on dynamic spectrum sharing,” he said. “We’re going to launch that when we think it’s commercially right, when we see enough handsets out in the market.”

In other Verizon news, the company said it plans to expand its edge computing agreement with Amazon AWS, first announced late last year. The companies hope to operate a total of 11 edge computing sites by the end of 2020, up from one site when the pact was first announced.

Verizon’s announcements today reflect continued momentum by the operator in the realm of 5G. Unlike its rival AT&T, which is in the midst of building out a streaming video operation via its acquisition of Time Warner, Verizon has bet much of its corporate future on 5G. Thus, given the operator’s size and scope, it can be viewed as a bit of a 5G bellwether.

It’s difficult to gauge the details of Verizon’s 5G progress considering the company does not disclose important metrics like the number of 5G handsets it has sold, the number of 5G customers it counts, the number of 5G transmission sites it operates and the specific revenues it expects to derive from 5G.

……………………………………………………………………………………………………………………………………………..

References:

https://fortune.com/2020/02/13/verizon-5g-mobile-network-double-number-of-cities/

https://www.lightreading.com/5g/verizon-doubles-down-on-mmwave-5g-with-new-60-city-deployment-goal/d/d-id/757490?

 

NEC and Mavenir collaborate to deliver 5G Open vRAN platform

NEC Corp. and Mavenir entered a collaboration agreement to deliver a 5G Open virtualized RAN (vRAN) platform to the Japanese enterprise market. This move will open up Local/Private 5G Network opportunities for enterprises, regional authorities and other organizations, according to the companies.

Under this collaboration, NEC and Mavenir said they will jointly work on 5G Open vRAN and Local 5G business developments and create a simple and cost-efficient ecosystem in the market. The collaboration will bring together NEC’s expertise in IT, network and system integration and Mavenir’s cloud-native network technology.

Editor’s Note:

Moving to a virtual RAN (vRAN) may offer operators important benefits, including a reduced capital expenditure (CAPEX) and operational expenditure (OPEX) over time. Additionally, RAN transformation can be boosted by network functions virtualization (NFV) technology, which changes the typical network architecture from hardware-based to software-defined infrastructure and decouples the baseband functions from the underlying hardware. In turn, the architecture is more flexible, agile, and easier to maintain, allowing operators to launch new services to market faster than ever before.

Cisco created and announced Open vRAN at Mobile World Congress 2018. Conversations with key network operator customers, as well as our partners, made it apparent that something needed to change and they thought we could help. Since then, it’s been a whirlwind ride – working with customers to better define this future and the key elements, building solutions with our partnersinnovating in the market to explore new service designs, and contributing to the process of defining industry specifications.

On that last topic, sometimes there is a little confusion between Open vRAN and O-RAN due to the similar names and similar principles. The naming similarity was coincidental, but not surprising, given both are fairly descriptive of the opportunity. O-RAN (Open RAN Alliance) describes themselves well on their website: The O-RAN Alliance was founded by operators to clearly define requirements and help build a supply chain eco-system to realize its objectives.”  They have extensive details available on their website and in their whitepaper.

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Mavenir delivers an Open vRAN platform that provides strategic differentiation by enabling multi-source Remote Radio Units (RRUs) to interwork with the virtualized, containerized, Cloud Base Band software over Ethernet Fronthaul (FH), using the O-RAN open interface, overcoming the traditional constraints of the proprietary walled garden specifications used by the other traditional equipment vendors.

“We are excited to collaborate with NEC, as we move together toward open, virtualized networks,” said Pardeep Kohli, Mavenir’s President and CEO. “Mavenir’s vRAN and NEC’s radio naturally come together to quickly and easily bring new and innovative solutions to the Japanese Enterprise Market.”

NEC actively promotes an open, virtualized infrastructure model in support of the 5G era, using IT, orchestration and network expertise. Moreover, the NEC ecosystem contributes to vRAN via inter-operability testing between multiple vendors’ equipment that is compliant with O-RAN fronthaul specifications.

“The combination of advanced assets and expertise from Mavenir and NEC will enable us to offer end-to-end one-stop 5G Open vRAN and Local/Private 5G solutions, including an advanced 5G network solution for the ecosystem, and vertical solutions that meet the needs of a great variety of Enterprise customers.” said Nozomu Watanabe, senior vice president at NEC.

This joint collaboration will continue to provide value-added products for customers worldwide.  An overview of this collaboration will be introduced during MWC Barcelona 2020  (assuming the event is not cancelled as is rumored now) at the NEC booth, Hall 3, 3M30.

……………………………………………………………………………………………………………………………………………………….

About Mavenir:

Mavenir is the industry’s only end-to-end, cloud-native Network Software Provider focused on accelerating software network transformation and redefining network economics for Communications Service Providers (CSPs) by offering a comprehensive end-to-end product portfolio across every layer of the network infrastructure stack. From 5G application/service layers to packet core and RAN, Mavenir leads the way in evolved, cloud-native networking solutions enabling innovative and secure experiences for end users. Leveraging industry-leading firsts in VoLTEVoWiFiAdvanced Messaging (RCS)Multi-IDvEPC and OpenRAN vRAN, Mavenir accelerates network transformation for more than 250+ CSP customers in over 140 countries, which serve over 50% of the world’s subscribers.

We embrace disruptive, innovative technology architectures and business models that drive service agility, flexibility, and velocity. With solutions that propel NFV evolution to achieve webscale economics, Mavenir offers solutions to help CSPs with revenue generationcost reduction, and revenue protection. Learn more at www.mavenir.com

 

References:

https://mavenir.com/press-releases/nec-and-mavenir-deliver-5g-open-vran-solution/

https://www.telecompaper.com/news/nec-mavenir-collaborate-to-deliver-5g-open-vran-platform–1326379

https://blogs.cisco.com/sp/the-open-vran-wave-is-building

 

Point Topic: Fixed Broadband Tariff Report for Q4 2019

Point Topic has published the analysis of more than 5,000 fixed broadband tariffs from over 300 operators in more than 90 countries. The new research, which looks at broadband prices and speeds in Q4 2019, reveals:

  • Globally, the overall average monthly charge for residential broadband services increased by 2% from the previous quarter to reach $93 PPP.
  • The average bandwidth provided to residential subscribers increased by 5% compared to Q3 2019. The boost was caused by the increase in bandwidth provided over cable and fibre networks.
  • At the end of Q4 2019, the average combined cost per Mbps for business broadband packages dropped by 4% and stood at $1.06. In comparison with Q3 2019, copper connections became considerably more expensive – their cost per Mbps went up 20%.
  • In Q4 2019, the lowest priced business tariffs were offered in Western Europe and North America. While being the fourth most expensive market, Asia-Pacific offered the highest average download speeds

 

The complete tariff report is available by clicking on the link below – no subscription or registration is required:

Fixed broadband tariffs – key trends in Q4 2019

As always, we have ranked 84 countries by median, entry-level and average broadband tariff.

U.S. District Judge approves T-Mobile- Sprint merger; New T-Mo will be #2 wireless carrier in U.S.

A federal judge has ruled in favor of T-Mobile USA’s merger with Sprint, despite evidence presented that showed the deal will likely erode competition, raise U.S. wireless data prices, and result in significant layoffs as redundant jobs are eliminated.  U.S. District Judge Victor Marrero concluded the T-Mobile USA merger with Sprint, worth $26 billion when it was struck two years ago, wasn’t likely to substantially lessen competition, and rejected the main arguments by a group of states seeking to block the deal as anti-competitive.  The judge praised T-Mobile in his ruling, calling it “a maverick that has spurred the two largest players in its industry to make numerous pro-consumer changes” and describing its business strategy as “undeniably successful.

Judge Marrero wrote:

“While Sprint has made valiant attempts to stay competitive in a rapidly developing and capital-intensive market, the overwhelming view both within Sprint and in the wider industry is that Sprint is falling farther and farther short of the targets it must hit to remain relevant as a significant competitor.”

“Finally, the FCC and DOJ have closely scrutinized this transaction and expended considerable energy and resources to arrange the entry of Dish as a fourth nationwide competitor, based on its successful history in other consumer industries and its vast holdings of spectrum, the most critical resource needed to compete in the RMWTS markets.”

“Dish’s statements at trial persuade the court that the new firm will take advantage of this opportunity, aggressively competing in the RMWTS markets to the benefit of price-conscious consumers and opening for consumer use a broad range of spectrum that had heretofore remained fallow.”

The two companies said they would move forward to finalize their long-delayed merger. The deal’s current terms offer Sprint shareholders new stock equal to 0.10256 of one T-Mobile share.

“Today was a huge victory for this merger… and now we are FINALLY able to focus on the last steps to get this merger done!” cheered T-Mobile CEO John Legere (pictured below) in a press release.

The states might decide to appeal the ruling and another U.S. district judge in Washington must approve the existing Justice Department arrangement. Letitia James, New York’s attorney general, said the states disagreed with the decision and would review their options. “There is no doubt that reducing the mobile market from four to three will be bad for consumers, bad for workers and bad for innovation,” Ms. James said.

The two companies also need clearance from California’s Public Utilities Commission and face a private antitrust suit challenging the merger. A judge in the Northern District of California ruled in January 2020 that the case could proceed if the carriers overcame the state-led challenge.

T-Mobile and Sprint hope to close the merger by April 1st. The two telcos have spent more than seven years pursuing a combination in some form. They abandoned previous attempts in 2013 and 2017 before their boards struck an agreement in early 2018 that would allow T-Mobile to take over its smaller rival, creating a company closer in size to Verizon and AT&T.

The new T-Mobile would be a formidable rival to Verizon and AT&T, the two largest wireless carriers in the country.  In fact, the total number of “New T-Mobile” wireless subscribers will be more than AT&T currently has.

The “New T-Mobile” will be strengthened by a massive stockpile of wireless radio licenses held by Sprint. Those spectrum holdings allow the new company to serve more customers with high-speed internet service on the go, putting pressure on AT&T and Verizon to match them as carriers upgrade to faster 5G mobile networks.

The court victory also benefits T-Mobile parent Deutsche Telekom AG and Japan’s SoftBank Group Corp., Sprint’s majority owner. SoftBank Chairman Masayoshi Son, a billionaire investor who upended the telecom business in Japan, had been seeking a way to rescue an investment that proved less successful in the U.S.

Tuesday’s court verdict will test the idea that three big players will compete as effectively as four did. Dish enters the market with fewer customers than Sprint, making it a distant No. 4 in the consumer-cellular business.

Dish Chairman Charlie Ergen testified during the trial that his Englewood, Colo., company was better equipped to compete than Sprint. His new wireless service will ride over T-Mobile’s network at first, though customers will eventually use a new cellphone system Dish is required to build over seven years.

Quotes from opponents of the deal:

“We are profoundly disappointed that the judge approved a merger that will harm communities of color and low-income communities across California,” said Greenlining Institute Technology Equity Director Paul Goodman, in a statement.

“While the court may think it unlikely for a newly entrenched trio of enormous wireless carriers to collude rather than compete, the history of broken and abandoned merger promises from these companies – to say nothing of the mountains of evidence and expert analysis in this trial – say otherwise,” said Free Press Vice President of Policy and General Counsel Matt Wood, in a statement.

“The Rural Wireless Association disagrees with Judge Marrero’s decision to approve this deal, which has been consistently and drastically altered from what was originally proposed in early 2018, and now includes Dish, a company that has zero experience operating as a facilities-based mobile wireless carrier network as the savior for wireless competition,” the association said in a statement.

Quotes from supporters of the deal:

“I’m pleased with the district court’s decision. The T-Mobile-Sprint merger will help close the digital divide and secure United States leadership in 5G,” said FCC Chairman Ajit Pai in a statement.

“We appreciate Judge Marrero’s thorough evaluation of this merger. The ruling, in addition to the DOJ and FCC approvals, accelerates our ability to deploy the nation’s first virtualized, standalone 5G network and bring 5G to America,” said Dish Network’s Charlie Ergen in a statement. “We are eager to begin serving Boost customers while aggressively growing the business as a new competitor, bringing lower prices, greater choice and more innovation to consumers. We look forward to the Boost employees and dealers joining the Dish family.

Analyst Opinions:

“This is clearly a big win for T-Mobile, which will now how [sic] a superior spectrum position which it can use to launch 5G and handle even higher growth,” wrote the Wall Street research analysts at Lightshed in a post. “We also see this as a big win for Dish based on what we have learned about its MVNO terms. It’s not great news for Verizon, given that it removes Sprint and Dish’s spectrum as an alternative, created a new competitor in Dish and has empowered T-Mobile with the tools to deliver a superior network experience to consumers.”

“We view a deal as initially negative to AT&T/Verizon despite our view that consolidation should help to further rationalize the competitive/pricing environment long term considering T-Mobile is likely to be aggressive at least early on to help validate the premise of the deal which is it will result in more favorable pricing for consumers,” wrote the Wall Street analysts at Cowen in a note to investors.

“Dish will need to execute on a myriad of levels including building a cloud-native nationwide network followed by the operational challenges that come with competing against three very well entrenched wireless players,” the Cowen analysts added.

“The wireless industry is going to get tougher. Cable would have had a much easier time sucking subscribers out of Verizon and AT&T in a four-carrier market with a capacity constrained T-Mobile. Now they are going to have to fight T-Mobile for every one of those subs, and industry pricing is likely headed lower,” wrote the Wall Street analysts at New Street Research in a note to investors.

However, the New Street analysts pointed out that cable companies may also see some silver lining in the merger of Sprint and T-Mobile, if it is ultimately approved. “Cable will have one more company competing for its MVNO business. We have been surprised the companies haven’t announced new MVNO terms with Verizon or AT&T; negotiations were in full force in October / November last year. Perhaps they have been waiting to see what T-Mobile might offer them if the deal went through. Altice will be the most immediate winner; their MVNO with Sprint now moves to a much better network.”

…………………………………………………………………………………………

Addendum from  Robin Hood Snacks:

Here’s the history of this complex courtship:

  • June 2018: T-Mobile’s CEO announces that his company has agreed to merge with Sprint. The combo company – valued at $146B – would be split between 3 owners: Deutsche Telekom (T-Mobile’s parent), SoftBank (which owns most of Sprint), and retail investors like you and us who own remaining shares.
  • November 2019: The Department of Justice and the Federal Communications Commission approve the merger under certain conditions… But 13 states plus DC sued to block the deal, saying it would hurt competition and lead to pricier phone bills.

Sprint has been lagging rivals for a while… so the judge doesn’t think this deal will substantially hurt competition. Plus, regulators will make sure that Dish Network enters the game as a viable new service provider. Sprint will have to sell Dish 9M customers, but that’ll still be a distant competitor to the Big 3.

THE TAKEAWAY

We have a three-opoly on our hands… Here’s the pecking order now: Verizon #1, New T-Mobile #2, and AT&T #3. And a three-opoly could affect your bill:

  • Interpretation A: Competition has been reduced, now that we’ve gone from 4 major players to 3. When there’s less competition, companies tend to charge higher prices.
  • Interpretation B: Actually, this merger increases competition, because Sprint was never a real player and T-Mobile wasn’t big enough to compete over future 5G networks. Now T-Mobile + Sprint can effectively challenge AT&T and Verizon.

 

 

Verizon enters 5G market in Europe with London tech lab to open this April

Verizon Communications plans to advance its 5G efforts by opening a 5G tech lab in London this April as a way of displaying the services the company can offer. The production studio and showroom, Verizon’s first outside the U.S., is also aimed at attracting partners for 5G-related projects.  The new Verizon  lab will showcase services enabled by 5G wireless broadband and invites partners to collaborate on developing new ways to use it.  The studio will use 5G to speed up data-intensive content production like motion-capture for entertainment and marketing. It’s all part of the company’s bet on the new tech.

  • New facility offers first Verizon 5G-enabled development and collaboration space outside the United States
  • Showcases existing 5G use cases and experiences & offers co-creation space for 5G-enabled application development
  • 5G-enabled production studio brings next-generation content experiences to Verizon Media customers
  • European investment enables Verizon to more easily share 5G leadership and expertise with companies based outside the U.S.
  • Co-located Verizon Business & Media expertise offers unique, holistic approach to both 5G infrastructure & content

“Verizon has proven expertise in delivering 5G in the U.S.,” said Tami Erwin, Group CEO, Verizon Business. “One of the best ways of unleashing the true possibilities of 5G is getting it into the hands of innovators and visionaries. Our London facility enables our international customers to benefit from this expertise as they look to deploy 5G-enabled applications and experiences.”

“We’ve pretty much bet the company on this — it’s not like we’re dabbling,” said Toby Redshaw, vice president of innovation at Verizon’s business unit.

BC-Verizon-Muscles-Into-Europe’s-5G-Race-With-UK-Outpost 

Carriers banking on a revenue surge from 5G aren’t likely to get it immediately from consumers, who are unlikely to pay extra for faster smartphones. They are instead pinning their hopes for sales growth on deals in industries such as logistics, automotive and manufacturing, a market that could ultimately be worth $4.3 trillion according to consultancy KPMG LLP.

The outlook is still early, uncertain and competitive for these 5G services. And European carriers will have significant home field advantages: they already have relationships with the continent’s biggest businesses, local cultural and regulatory know-how, and own more local network assets.

But Redshaw says Verizon’s advantages include a head start from testing 5G in the field for years back in the U.S., and its larger scale. He was visiting London for the lab’s opening and to woo prospective clients, and said he’s had recent conversations with a Formula One team and other businesses. The company said the fresh London investment is “significant” but declined to give a number.

Examples of tech on display include cybersecurity visualization software, which lets a user fly around a virtual 3D landscape that represents their company’s network to spot potential anomalies. A service called BriefCam can instantly crunch reams of video and apply searches for a range of objects, such as all the red cars in a day’s worth of traffic footage, something a police force could find useful.

 

References:

https://www.verizon.com/about/news/verizon-expands-international-5g-ecosystem

https://www.bnnbloomberg.ca/verizon-muscles-into-europe-s-5g-race-with-u-k-outpost-1.1387674

https://www.bloomberg.com/amp/news/articles/2020-02-10/verizon-opens-u-k-5g-outpost-eyeing-europe-s-enterprise-market

 

Importance of FCC C Band Auction for 5G in the U.S.

FCC Chairman Ajit Pai has described the commission’s plan for its auction of a portion of the C-band — the 4Ghz to 8GHz radio frequencies used mostly for consumer satellite transmissions, but in the future for 5G mobile broadband.

The FCC wants to auction off the bottom 280MHz (the 3.7 – 4.2Ghz range) of the C-band and reserve 20Mhz of the band above that threshold for further needs. Both the FCC and current satellite operators say this will still leave enough spectrum for the operators to provide the same level of service that we have today.

The C-band is a valuable block of very underutilized spectrum. Portions of it are also a great addition to mobile operators who want to roll out 5G using the mid-band spectrum.

The 3.7 to 4.2Ghz range of the C band would offer a great balance of range and capacity which is important when carriers want to offer any real nationwide 5G service. A combination of low-band, mid-band, and upper millimeter-wave bands would offer carriers plenty of spectrum to maintain existing networks and add 5G expansion from coast to coast, and that’s what carriers and the current FCC wants to see happen.

Executives from Verizon, AT&T and T-Mobile stated their support for Federal Communications Commission (FCC) Chairman Ajit Pai’s proposal to get C-band spectrum cleared and available for a public auction, a plan that immediately saw backlash from some senators and public interest groups.

The network operators’ support isn’t surprising given they’ve been pressing for more mid-band spectrum for 5G and lobbying for quick action on C-band spectrum specifically, but they’re all coming at it from different places.

Currently, four satellite operators provide the majority of C-band satellite service in the U.S. — Intelsat, SES, Eutelsat, and Telesat. These are the companies that provide the actual satellite broadcast that you might be paying another company for and reach well over 100 million homes.

The satellites and ground equipment need to be changed so that they use the upper 200MHz of the C-band to transmit at the same level of service we’re all used to. The cost of this relocation is expected to be in the $3 billion to $5 billion range and will be covered by the auction winners.

The FCC would like this relocation, which is expected to be finished by September 2025, to be expedited. It proposes what chairman Pai calls “accelerated relocation payments.” These would also be paid by the winning bidders, but only if the satellite operators meet a specific schedule: free the lowest 100MHz of the spectrum by September 2021 and the remaining 180MHz by September 2023.  Should this occur, the fees would include these expedition bonuses and rise to $9.7 billion.

Chairman Pai says that this is almost necessary if the U.S. wants to be competitive with the rest of the world when it comes to 5G:

“It is in the public interest to make available frequency in the C-band as quickly as possible as part of a national priority to promote American leadership in 5G. To get the job done quickly, we need to align the private interest of satellite companies with the public interest.”

Pai also notes that these are simply FCC proposals and that Congress can overrule any or all of them.

While acknowledging that Congress can have the final say, Pai also stated the regulations that allow the FCC to make these decisions.

…………………………………………………………………………………………………….

Section 316 of the Federal Communications Act grants authority to modify any licenses granted to current holders of C-band spectrum, section 309 allows the FCC to auction the lower 280MHz of the spectrum for “flexible” use, section 303 allows the FCC to set new rules and regulations for the technical usage of the C-band, and Title 3 allows the FCC to require the auction winners to pay any and all relocations fees.

Pai also suggested that he hopes Congress will make a small override to the proposed FCC recommendations and offer 10% of the proceeds to rural broadband initiatives. This is a promise Pai has made and championed for since placed as FCC chair, yet so far we’ve seen no movement from carriers or to regulations.

If there is to be any real nationwide 5G network that’s reliable and stand-alone, we’ll have to see plenty of spectrum reallocation. Some, like this news, will be authorization for new use cases and others will be carriers repurposing existing holdings. It will take a lot of work before any country has a full 5G nationwide network.

References:

https://www.fiercewireless.com/regulatory/verizon-at-t-t-mobile-support-pai-s-c-band-plan-as-backlash-commences

https://www.bloomberg.com/news/articles/2020-01-06/c-band-analyst-says-spectrum-sale-may-net-50-billion-in-revenue

https://www.multichannel.com/news/c-band-auction-timetable-plan-faces-challenges

 

Page 192 of 217
1 190 191 192 193 194 217