Apple is new smartphone king, but market declined 5% in 4Q 2020

Apple sold the most smartphones in the fourth quarter of 2020, shipping 80 million, according to the latest study from Gartner.  It was the first since the same quarter of 2016 that Apple was the top smartphone vendor (it’s phones are made by Foxconn).
For the full year, Apple passed Huawei to take second place after Samsung.  Apple’s strong holiday quarter and the new Gartner estimates suggest the company’s family of iPhone 12 devices, with 5G capability and a new external design, is a hit in the marketplace. Those new devices weren’t even on sale for the entire period.  The numbers also indicate Apple has weathered the coronavirus pandemic better than its competitors.A competing report from IDC released last month showed Apple shipped 90.1 million phones in the quarter. In terms of smartphone shipments, that’s the single best quarter for any company, IDC’s report said.

Apple doesn’t report unit sales for its devices. However, the company said revenue from iPhones grew by 17% in the fourth quarter of calendar 2020 on a year-over-year basis to $65.6 billion. Apple’s business is seasonal, and the quarter ending in December is usually the company’s biggest in terms of sales.

Smartphone sales fell in Q4 2020 by 5.4 percent year-on-year to 384.6 million.  For 2020, they decreased 12.5 percent to 1.347 billion. Declines in Q4 were tempered by the sale of more 5G smartphones and lower-to-mid-tier smartphones, even as people remained cautious about spending amid the coronavirus pandemic.
The biggest shipments decline was from Huawei, which saw unit sales drop by 24.1% in 2020, as the Chinese smartphone maker struggles with U.S. sanctions that have hampered its handset business. Samsung doesn’t face the same challenge but still saw shipments fall 14.6% last year, according to Gartner.

“The sales of more 5G smartphones and lower-to-mid-tier smartphones minimized the market decline in the fourth quarter of 2020,” said Anshul Gupta, senior research director at Gartner. “Even as consumers remained cautious in their spending and held off on some discretionary purchases, 5G smartphones and pro-camera features encouraged some end users to purchase new smartphones or upgrade their current smartphones in the quarter.”

Table 1. Worldwide Top 5 Smartphone Sales to End Users by Vendor in 4Q20 (Thousands of Units)

Vendor 4Q20

Sales

4Q20 Market Share (%) 4Q19

Sales

4Q19 Market Share (%) 4Q20-4Q19 Growth (%)
Apple 79,942.7 20.8 69,550.6 17.1 14.9
Samsung 62,117.0 16.2 70,404.4 17.3 -11.8
Xiaomi 43,430.3 11.3 32,446.9 8.0 33.9
OPPO 34,373.7 8.9 30,452.5 7.5 12.9
Huawei 34,315.7 8.9 58,301.6 14.3 -41.1
Others 130,442.8 33.9 145,482.1 35.8 -10.3
Total 384,622.3 100.0 406,638.1 100.0 -5.4

Due to rounding, some figures may not add up precisely to the totals shown.

Source: Gartner (February 2021)

Full Year 2020 Results:

Samsung experienced a year-on-year decline of 14.6% in 2020, but this did not prevent it from retaining its No. 1 global smartphone vendor position in full year results. It faced tough competition from regional smartphone vendors such as Xiaomi, OPPO and Vivo as these brands grew more aggressive in global markets. In 2020, Apple and Xiaomi were the only two smartphone vendors of the top five ranking to experience growth.

Huawei recorded the highest decline among the top five smartphone vendors which made it lose the No. 2 position to Apple in 2020 (see Table 2). The impact of the ban on use of Google applications on Huawei’s smartphones was detrimental to Huawei’s performance in the year and negatively affected sales.

Table 2. Worldwide Top 5 Smartphone Sales to End Users by Vendor in 2020 (Thousands of Units)

Vendor 2020

Sales

2020

Market Share (%)

2019

Sales

2019

Market Share (%)

2020-2019

Growth (%)

Samsung 253,025.0 18.8 296,194.0 19.2 -14.6
Apple 199,847.3 14.8 193,475.1 12.6 3.3
Huawei 182,610.2 13.5 240,615.5 15.6 -24.1
Xiaomi 145,802.7 10.8 126,049.2 8.2 15.7
OPPO 111,785.2 8.3 118,693.2 7.7 -5.8
Others 454,799.4 33.7 565,630.0 36.7 -19.6
Total 1,347,869.8 100.0 1,540,657.0 100.0 -12.5

Due to rounding, some figures may not add up precisely to the totals shown.

Source: Gartner (February 2021)

“In 2021, the availability of lower end 5G smartphones and innovative features will be deciding factors for end users to upgrade their existing smartphones,” said Mr. Gupta. “The rising demand for affordable 5G smartphones outside China will  boost smartphone sales in 2021.

References:

Deutsche Telekom tests 5G SA network via “Telekom cloud infrastructure”

Deutsche Telekom has started testing the “standalone” (SA) version of 5G, setting up its first 5G SA antenna site in the town of Garching, near Munich.  The site will be the first in Germany with 5G core network technology, which has yet to be standardized.

The antenna site will soon be connected to a 5G Standalone core network. The core network will be implemented via a Telekom cloud infrastructure. The hallmark of 5G Standalone is that the infrastructure in the core network will also be fully upgraded to a new, cloud-based 5G architecture. This is the next evolution of 5G and also a prerequisite for new deployment options.

Deutsche Telekom has already achieved 68% coverage of the German population with non-standalone (NSA) version of 5G, which uses the existing 4G-LTE network as an anchor for all non radio aspects.

“It is important for us to be at the forefront of the further innovation steps of 5G,” says Claudia Nemat, Board Member for Technology and Innovation at Telekom. “To ensure that our customers can take advantage of technologies such as network slicing or edge computing in the future, we continue to actively drive the development of 5G and its features.”

With 5G Standalone, the network structure and architecture is changing. The 5G technology currently deployed in Germany is based on the 5G Non-Standalone (5G NSA) network architecture. This means that today’s 5G offerings are still technically dependent on a simultaneously available 4G network (LTE) and virtually “piggyback” on this network, i.e., they do not yet function completely independently.

“5G standalone is one of the goals for us with 5G,” said Walter Goldenits, head of technology at Telekom Deutschland. “The network innovation in Garching is initially the first step for us into the 5G SA live network. It helps us to gain necessary and important experience with 5G SA. A rollout in the area will then also depend on the requirements of our customers. Technology and the market will play a joint role in further development.”

There are currently no terminals for customers that support 5G standalone. Telekom is therefore conducting the first tests with special development software on commercially available devices. The goal is to test various connections and applications that function completely standalone and without the support of 4G in the coming weeks.

“The further roll-out of 5G is the preparation of our network for the next steps in 5G development. We will use every opportunity to make 5G even faster and develop it further,” says Walter Goldenits.

 

Image courtesy of Samsung

…………………………………………………………………………

Last month, Samsung and Deutsche Telekom conducted their first 5G SA trial in Pilsen, the Czech Republic, verifying performance of 5G SA multi-user, multiple-input, multiple-output (MU-MIMO) technologies.

The trial used Samsung’s latest end-to-end 5G SA solutions. In the SA trial, the two companies achieved outstanding results with the MU-MIMO technology using Samsung’s 3.5GHz Massive MIMO radio. The spectrum efficiency was tripled in comparison to that of LTE under realistic conditions and the throughput was increased by about 2.5 times of SU-MIMO (Single-User MIMO).

“We are pleased to collaborate with Samsung to verify the performance of its 5G SA solution,” said Alex Choi, SVP Strategy & Technology Innovation, Deutsche Telekom. “Together with strong partners we are consistently introducing advanced technical capabilities into our network, and we are very excited about the potential of 5G SA networks to further accelerate the 5G evolution.”

Samsung also said:  “5G SA architecture enables mobile operators to have more efficient and simple network operations, while empowering 5G networks to deliver immersive user experiences and new business models for enterprises.”

References:

https://www.telekom.com/en/media/media-information/archive/telekom-tests-5g-standalone-619118

https://www.samsung.com/global/business/networks/insights/press-release/0125_samsung-and-deutsche-telekom-complete-first-5g-sa-trial-in-czech-republic/

https://www.samsung.com/global/business/networks/products/core/cloud-core/

https://en.yna.co.kr/view/AEN20210128009500320

 

 

Dell’Oro Group: RAN market revenues at new record high

According to a recently published report from Dell’Oro Group, preliminary estimates suggest that the 2G-5G radio access network (RAN) market ended the year 2020 on a high note, with the full year 2020 revenues marking a new record since we started tracking the program in the year 2000.

“While we correctly identified the overall trajectory of the market going into the year and maintained the positive outlook even as the pandemic intensified and economists adjusted their GDP projections sharply downward,” said Stefan Pongratz, Vice President and analyst with the Dell’Oro Group. “We also need to recognize that we completely underestimated the magnitude and the breadth of the ascent in the fourth quarter and for the full year 2020, reflecting stronger than expected results in multiple regions,” Pongratz added.

Additional highlights from the 4Q 2020 RAN report:

  • Initial estimates suggest that vendor rankings remained stable between 2019 and 2020, while revenue shares were impacted to some degree by the state of the 5G rollouts in China and North America.
  • Ericsson and Nokia maintained their No. 1 and No. 2 RAN revenues rankings excluding China. Both suppliers improved their RAN revenue shares outside of China, accounting for 35 percent to 40 percent and 25 percent to 30 percent of the overall RAN market, respectively.
  • Huawei maintained its No. 1 ranking for the global RAN market, reflecting share gains in China.

About the Report

Dell’Oro Group’s RAN Quarterly Report offers a complete overview of the RAN industry, with tables covering manufacturers’ revenue, transceivers or RF carrier shipments, macro cell and small cell BTS shipments for 5G NR Millimeter Wave, 5G NR Sub 6 GHz, and LTE. The report tracks the RAN market by region and includes market data for Massive MIMO. The report also includes a four-quarter outlook. To purchase this report, please contact us by email at [email protected].

https://www.prnewswire.com/news-releases/ran-market-reach-new-record-levels-according-to-delloro-group-301231500.html

In December 2020, Dell’Oro forecast the overall RAN market to advance for a fourth consecutive year in 2021. In North America, low-band activity is expected to remain elevated while mid-band activity is projected to improve.  However, the timing of the C-band availability remains uncertain (especially since there was no FCC requirement for C-band spectrum bidders to actually build and deploy cellular networks).

 

5G core capex should grow at a faster pace than 5G NR (RAN/RIT) revenues.  Dell’Oro believes that the 5G Core/5G RAN revenue ratio will trend below historical core/RAN averages in the initial 5G wave and then gradually improve as operators start embracing 5G SA.

Small Cells to Account for 10% to 20% of Total RAN

The global growth outlook for small cells – including sub 6 GHz and mmWave – remains favorable, underpinning projections the technology will play an increasingly important role supporting the overall RAN network as operators and enterprises navigate new technologies, spectrum bands, and use cases.

Small Cell Share of Total RAN chart

Small cell RAN revenues are projected to approach 10% to 20% of the overall RAN market in 2021. Within the small cell mix, Sub 6 GHz capex is expected to characterize the lion share of the investments, driven partly by the reduced gap between macro and small cell radios associated with upper mid-band deployments.

Open RAN to Account for 1% to 2% of Total RAN Market in 2021

Open RAN and Virtual RAN continues to gain momentum, bolstered by Ericsson now formalizing its support with its Cloud-RAN announcement. The uptake remains mixed between the various Open RAN segments, as noted with Dell’Oro’s 3Q20 Open RAN update. These trends are expected to extend into 2021, with adoption accelerating in some RAN settings while the uptake remains weak in other RAN segments.

Predictions 2021—Radio Access Network (RAN) Market

Huawei: 5G Technology Illuminates the Future + Huawei analysis

On the eve of  MWC Shanghai 2021Ryan Ding, CEO and President of Huawei’s Carrier Business Group, talked about “5G technology lights up the future.”

“2020 has been a difficult year. During that period, Huawei worked closely with our customers,” said Ding.

In 2020, Huawei supported the stable operations of more than 300 networks in more than 170 countries and helped operators offer online services and minimize the impact of the pandemic on their businesses. In collaboration with Huawei, the operators attracted 22 million new residential wireless broadband users around the world. Thanks to this, people can easily access telemedicine services and work from home.

“5G developed faster than we expected.”  More than 140 commercial 5G networks have been implemented in 59 countries.

According to Ding, more than 50% of these networks were built by Huawei. The ecosystem is also developing. In China , more than 68% of the smartphones distributed in 2020 were 5G phones. More than 200 industrial 5G modules and devices are currently available, supporting 5G applications in a wide range of industries.

Huawei’s Ryan Deng talking up 5G

According to reports prepared in 2020 by market research firms such as IHS, P3, OpenSignal and Meqyas, the best 5G networks in Seoul, Amsterdam, Madrid, Zurich, Hong Kong and Riyadh were the ones that Huawei built.

Ding highlighted that a good experience on the web is the foundation of commercial success and that these six cities are only the tip of the iceberg of its purpose of collaborative innovation with the operators.

For example, by implementing Huawei’s AAU 64T64R and market-leading multi-antenna algorithms, LG u + achieved greater spectrum efficiency and a network experience more than 25% better than other carriers. With Huawei’s Blade AAU, which can operate in the Sub3G and C bands, Sunrise reduced site acquisition time from 24 months to just 6 months and was the only operator with 5 consecutive outstanding ratings in Switzerland.

5G is becoming part of the core production processes of industries.  Looking ahead, Ding was optimistic about the prospect of a large-scale deployment of 5G industrial applications in 2021.

5G applications have been incorporated in more than 20 industries including manufacturing, healthcare, education and logistics. The manager pointed to examples of sectors in China where industrial 5G applications are already proving their value, such as in coal mining and steel fabrication and production, where the adoption of 5G technology has made production safer, smarter and more efficient. He also stressed: “5G is no longer exclusive to pioneer users, but aims to improve our daily lives. 2021 will be the 1st year with large-scale industrial 5G applications.

Operators will need new capabilities in planning areas network operations, implementation, maintenance, optimization and operations to achieve zero-to-one progress and replicate one-to-many success.

At the next MWC Shanghai, Huawei will hold in-depth exhibitions and discussions on these topics with stakeholders. of the sector, both online and through means that do not require connection. We will continue to innovate to help our customers develop the best 5G networks and achieve greater business success.”

SOURCE: Huawei

………………………………………………………………………………………………….

Analysis by Iain Morris of Light Reading:

Of today’s 140 “live” 5G networks, Huawei built more than half, said Ryan Ding, the head of Huawei’s networks division, during the company’s traditional briefing before the annual MWC Shanghai show (normally scheduled for June, it switched places with the bigger Barcelona show this year due to coronavirus).

Huawei can rely on a domestic market that has awarded almost 90% of all mobile infrastructure business to Chinese vendors. When the number of 5G base stations in a country hits 700,000, as it did last year in China, any pain elsewhere becomes tolerable.  Several hundred thousand more are planned in 2021. Contrast that with Europe, where the entire region in 2019 hosted fewer than half a million mobile sites, according to Ernst & Young.

Even in Europe, Huawei’s networks business has not suffered as badly as it might have done. Several big countries have resisted political pressure to copy the UK and exclude Huawei from the future 5G market. They include Germany, where Huawei last year accounted for more than half the country’s mobile infrastructure. Its government undoubtedly fears the ramifications of a ban for exports of cars and machine tools to China.


Huawei’s massive fixed-line business has also been allowed to chug on outside the UK, which is now weighing a final decision. Smaller than the radio access networks business, broadband products still generated more than $8.4 billion in global revenues last year, according to Omdia, a sister company to Light Reading. Some 43% of that went to Huawei. In France, where authorities have indicated they will not renew licenses for Huawei’s mobile equipment, Orange counts Huawei as one of its two main broadband vendors (the other being Nokia).

…………………………………………………………………………………………….

Several European operators, including Deutsche Telekom, Orange and Spain’s Telefónica, have previously bought Huawei equipment for the cloud services they offer to their business customers. “Huawei provides standards servers (with the so-called x86 architecture) for the Open Telekom Cloud,” said a Deutsche Telekom spokesperson, in an email to Light Reading, when asked if that equipment remained in use.

Reference:

https://www.lightreading.com/5g/huawei-is-proving-as-hard-to-stop-as-movie-supervillain

 

Posted in Uncategorized Tagged ,

ITU-R Future Report: high altitude platform stations as IMT base stations (HIBS)

Introduction:

A High Altitude Platform Station (HAPS) is a wireless network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks.

High-altitude platform station (HAPS) systems can potentially be used to provide both fixed broadband connectivity for end users and transmission links between the mobile and core networks for backhauling traffic. Both types of HAPS applications would enable wireless broadband deployment in remote areas, including in mountainous, coastal and desert areas.

In some situations, HAPS may be rapidly deployed for disaster recovery communications, particularly because the use of inter-HAPS links allows the provision of services with minimal ground network infrastructure.

ITU Radio Regulations (RR) define HAPS as radio stations located on an object at an altitude of 20-50 kilometres and at a specified, nominal, fixed point relative to the Earth.

………………………………………………………………………………………….

An ITU-R “work in progress” report will describe spectrum needs, usage and deployment scenarios, and technical and operational characteristics for the use of high altitude platform stations as IMT base stations (HIBS) for mobile service in certain frequency bands below 2.7 GHz already identified for IMT (International Mobile Telecommunications).  In particular, the report will explain the technical and operational characteristics of HIBS in the bands 694‑960 MHz, 1710-1885 MHz, 1885-1980 MHz, 2010-2025 MHz, 2110-2170 MHz and 2500-2690 MHz to be used in sharing and compatibility studies under WRC-23 agenda item 1.4.

HAPSMobile’s Sunglider can cover 200 km at a distance of 20 km above the Earth in the stratosphere.

Image courtesy of HAPSMobile

……………………………………………………………………………………………………

IMT systems have evolved significantly in terms of spectrum identification, network deployment, and radio access technology, with the standardization of IMT-Advanced (4G) and IMT-2020 (5G).

At the same time, recent advances in battery and solar-panel technologies could enable HIBS to provide low latency mobile broadband connectivity to underserved communities, and in rural and remote areas, over a large geographic footprint.

These technological advances could enable HIBS, using the same frequency bands as ground-based IMT base stations, to be used as a part of, and complement terrestrial IMT networks. Existing user equipment (UE), which already supports a variety of frequency bands identified for IMT, could be served by both HIBS and ground-based IMT base stations. HIBS will therefore require new identifications to use certain frequency bands below 2.7 GHz already identified for IMT, considering potential HIBS deployment scenarios and its technical and operational characteristics, while taking into account sharing and compatibility with existing applications and services under WRC-23 Agenda 1.4.

Recognizing this, WRC-19 adopted Resolution 247 to consider “the use of HIBS in the mobile service in certain frequency bands below 2.7 GHz already identified for IMT, on a global or regional level.”

Basic concepts of HIBS applications:

HIBS (high altitude platform station as IMT base station) is defined in No. 1.66A as a “A station located on an object at an altitude of 20 to 50 km and at a specified, nominal, fixed point relative to the Earth.”

It’s important to recognize that HIBS can provide low latency mobile connectivity to unserved areas, including rural and remote areas, over a large footprint ( around 31,500 km2).

HIBS can enhance terrestrial IMT networks with so-called “super macro cells” that complement the existing ground-based deployment methods (e.g. macro cell, micro cell).

HIBS are intended to be used as a part of, and complement to, terrestrial IMT networks, using the same frequency bands as ground-based IMT base stations. In this sense, the UE to be served, whether by HIBS or ground-based IMT base stations, are the same. HIBS applications could provide flexibility and broaden the use of the existing IMT bands to complement coverage and support different use cases, while taking into account sharing and compatibility with existing applications and services.

Such use of spectrum by HIBS would require new identifications for HAPS as IMT base stations are required similar to those in RR no. 5.388A established at WRC-2000. Modifications to the IMT identification under RR No. 5.286AA, 5.317A, 5.341A, 5.341B, 5.341C, 5.346, 5.346A, 5.384A and 5.388 are outside the scope of WRC-23 Agenda Item 1.4.

The amount of spectrum needed in a given deployment scenario would depend on a number of factors and in the following section, examples of spectrum needs for HIBS applications is provided under specific system characteristics and deployment scenarios.

Usage and deployment scenarios:

The aim of HIBS is to provide internet access and services to the UE in remote area cases with quick deployment and less transmission loss.

Some HIBS applications communication usages foreseen are:

Natural disaster relief missions, where communication for coordination and situation awareness across help and humanitarian aid organizations is needed.

Fire detection, monitoring and firefighting missions to ensure communication between actors.

Exploration missions with communication needs between exploration teams and regional home base.

Possible deployment scenarios:

HIBS would be deployed to provide connectivity to areas unserved and/or underserved by ground-based IMT base stations, such as:

Areas where it is difficult to provide mobile connectivity using ground-based IMT base stations due to economic challenges (e.g. very small population covered, lack of backhaul connectivity and power supply, etc.).

Areas covered by ground-based IMT base stations, but disruption to power supply and/or backhaul have resulted in a temporary lack of mobile connectivity.

Unpopulated areas not covered by ground-based IMT base stations.

Mobile connectivity is becoming widespread, connecting objects (IoT: Internet of things, IoE: Internet of everything), as well as people.

Sensor networks which combine different types of sensors and IoT technology based on IMT systems (eMTC: enhanced Machine-Type Communication, NB-IoT: Narrowband IoT) are likely to be widely used in both populated and unpopulated areas. These areas are currently unserved and/or underserved.

Safety and security:

HIBS can help provide ubiquitous mobile coverage in unpopulated areas, thereby allowing users to get mobile connectivity regardless of time, place or circumstances. Thus, users will be able to make an emergency call wherever they are, in the case of a sudden car breakdown, getting lost or another problem.

In the aftermath of a natural disaster, communication networks can be restored quickly by using HIBS to cover these areas.

As they can connect to ordinary mobile phones that people carry all the time, HIBS are well suited for safety and security applications.

Internet of Things:

ICT is now widely used to help maintain and manage public infrastructure, such as roads, pavements, bridges and dams. Using a combination of IMT-based IoT technology and HIBS connectivity, infrastructure in both urban areas and rural/unpopulated areas can be managed on the same sensor network. The same approach can also be used to monitor natural processes, which are difficult for people to get close to, such as an active volcano.

Connected sensor networks can also support large-scale agriculture and livestock farming. The data they collect can be used for automation and the streamlining of processes, and can lead to innovation in this sector.

In this way, HIBS will be able to expand the reach of IoT services to support efficient management and maintenance of both public infrastructure and natural objects, while contributing to the development of the farming industry.

Event services:

HIBS can also be deployed above a venue, such as a stadium, a theme park, a resort, a tourist spot or exhibition place to provide more capacity to accommodate a temporary increase in demand. The rapid deployment of HIBS can augment the terrestrial network infrastructure to satisfy unusually high capacity requirements over short periods of time.

Frequency Bands:

HIBS will need additional and separate identification to use certain frequency bands below 2.7 GHz already identified for IMT taking into account sharing and compatibility with existing applications and services. Modifications to the identifications to IMT (5.286AA, 5.317A, 5.341A, 5.341B, 5.341C, 5.346, 5.346A, 5.384A and 5.388) in the Radio Regulations are outside the scope of WRC-23 Agenda Item 1.4. It may be possible for HIBS to employ the same band plans (see ITU-R Recommendation M.1036) as used by ground based IMT networks.

References:

https://www.itu.int/en/mediacentre/backgrounders/Pages/High-altitude-platform-systems.aspx

https://arxiv.org/pdf/2007.15088.pdf

https://eepower.com/news/hapsmobile-and-apb-collaborate-to-develop-high-energy-density-batteries/#

https://www.engineering.com/story/haps-alliance-is-putting-5g-in-the-stratosphere

 

 

Report Linker: 5G Security Market to experience rapid growth through 2026

Report Linker forecasts that the global 5G security market will grow from USD 580 million in 2020 to USD 5,226 million by 2026, at a Compound Annual Growth Rate (CAGR) of 44.3% during the forecast period.

The 5G security market is gaining traction due to rising security concerns in the 5G networks, increasing ransomware attacks on IoT devices, rising attacks on critical infrastructure, and increasing IoT connections paved way for mMTC with enhanced security requirement. However, high cost of 5G security solutions will restrain the adoption by SMEs.

The implied negative flipside for operators and enterprises, of course, is that more money will have to be spent on tackling 5G vulnerabilities. The report pointedly notes that the high cost of 5G security solutions will limit adoption by SMEs.

Based on solution type, the DDoS protection solution segment is expected to grow with the fastest growth rate during the forecast period
The DDoS protection segment is projected to grow with the most rapid growth rate in 2020 to 2026.Enterprises use DDoS protection and mitigation solutions and services for adaptive defense against DDoS attacks.

These attacks further affect the confidentiality, integrity, and availability of resources, which may result in billion-dollar losses for enterprises.

Enterprises segment to grow at the highest CAGR during the forecast period
Enterprises are undergoing digital transformation across different industries. Businesses are in various stages of implementing new technologies to develop new solutions, improve service delivery, increase operational efficiency, reduce cost, gain competitive advantage, and meet rising customer expectations. 5G will soon make it into the list of technologies enterprise will consider, with standalone 5G solutions that will enable various new industrial applications, such as robotics, big data analytics, IIoT and AR/VR in engineering and design, as well as new ways to provide remote support and training. As a result, enterprises will need 5G security mechanism to secure the entire network, applications, and devices.

 

Asia Pacific (APAC) region to record the highest growth and also account for largest markety share in the 5G security market
APAC region is set to dominate 5G, edge computing, blockchain, and 5G security technology, due to its size, diversity, and the strategic lead taken by countries, including Singapore, South Korea, China, Australia, and Japan.These countries have always supported and promoted industrial and technological growth.

Also, they possess a developed technological infrastructure, which is promoting the adoption of 5G security solutions across all industry verticals.  Moreover, the region has become the center of attraction for major investments and business expansion opportunities.

While Reportlinker.com praises APAC for leading in 5G security, Europe is way behind if a recent report according to a report from the European Court of Auditors (ECA).

A year-long ECA probe into how European Union (EU) member states are dealing with 5G security found that while “member states have started to develop and implement necessary security measures to mitigate risks, they seem to be progressing at a different pace.”

More worryingly, Annemie Turtelboom, the ECA member leading the audit, indicated that some EU countries were bypassing supplier security checks in order to speed up 5G rollout.

………………………………………………………………………………………..

Companies such as ZTE (China), Samsung (South Korea), and Huawei (China) are heavily investing in the upcoming 5G technology and are initiating field trials together with some of the leading mobile service carriers, such as China Telecom (China), KT (South Korea), SK Telecom (South Korea), China Mobile (China), SoftBank (Japan), and China Unicom (China).

• By Company Type: Tier 1 – 62%, Tier 2 – 23%, and Tier 3 – 15%
• By Designation: C-level – 38%, Directors – 30%, and Others – 32%
• By Region: North America – 40%, Europe – 15%, APAC – 35%, and Rest of the World (RoW)– 10%

This research study outlines the market potential, market dynamics, and major vendors operating in the 5G security market. Key and innovative vendors in the 5G security market include A10 Networks (US), Akamai (US), Allot (Israel), AT&T (US), Avast (Czech Republic), Check Point (US), Cisco (US), Clavister (Sweden), Colt Technology (UK), Ericsson (Sweden), F5 Networks (US), ForgeRock (US), Fortinet (US), G+D Mobile Security (Germany), Huawei (China), Juniper Networks (US), Mobileum (US), Nokia (Finland), Palo Alto Networks (US), Positive Technologies (UK), Radware (Israel), Riscure (The Netherlands), Spirent (US), Trend Micro (Japan), and ZTE (China).

Research coverage
The market study covers the 5G security market across different segments.  It aims at estimating the market size and the growth potential of this market across different segments based on component (solutions and services), network component security, architecture, end user, deployment type, vertical, and region.

The study also includes an in-depth competitive analysis of the key market players, along with their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.

References:

https://www.reportlinker.com/p06025259/5G-Security-Market-by-Component-Network-Component-Security-Architecture-Deployment-Type-End-User-Vertical-And-Region-Global-Forecast-to.html

https://www.lightreading.com/security/5g-security-market-set-to-boom-report/d/d-id/767415?

Telefonica in 800 Gbps trial and network slicing pilot test

Telefonica and its network suppliers Nokia and Huawei have reached data transmission speeds of up to 800 Gbps in two pilot tests of photonic mesh technology. This trial reached speeds of 400 Gbps between Madrid and Barcelona (a distance of 830 kilometres), rising to 800 Gbps in a trial over shorter distances (47 kilometres) in the Madrid metropolitan area.
In a statement, Telefonica said the photonic mesh layer uses WDM (Wavelength Division Multiplexing) technology to achieve higher capacity, reduced latency and far lower energy consumption compared with traditional optical network transmission.
The high-speed trial used Huawei’s OSN 9800 optical equipment and Nokia’s 1830 Photonic Service Switch and 7950 XRS IP router.
…………………………………………………………………………………………………..
Separately, Telefonica is coordinating a 5G Network Slicing pilot test with Cisco and the University of Vigo.  The objective is to demonstrate how flexible 5G networks can devote specific capacities to different services and customers.This project consists of implementing a demonstrator on laboratory infrastructure at the facilities of the University of Vigo, where three slices will be deployed in order to offer distinctive services: low latency, high bandwidth and emergencies. This will enable, for example, customers to make use of the 5G network and enjoy ultra high-definition content while guaranteeing the resources of the mobile network in the event of an emergency in the area.

With this initiative the intention is also to begin building services for customers to be marketed via Telefónica’s 5G network. The project will thus enable Telefónica to obtain key results that will serve to drive the ecosystem and promote the interoperability and standardisation of this technology with a view to its marketing towards the end customer. Some of the sectors that can benefit the most from Network Slicing are the State Security Corps and Forces, media and communication, cars, industry and hotels.

5G Network Coverage Increases in Saudi Arabia; STC Selects Ericsson as Managed Service Provider

Saudi Arabia’s Communications and Information Technology Commission (CITC) has announced that seven additional cities and provinces were covered by 5G services in Q4 2020, bringing the total to 51 cities and provinces in various regions of Saudi Arabia.

CITC’s quarterly ‘Meqyas’ report highlighted that Zain led  in terms of 5G footprint in the Kingdom, covering 44 cities and provinces, followed by the Saudi Telecom Company (STC) with 22 and Mobily with 21 cities and provinces.

STC recorded the highest average 5G download speed of up to 342.35Mbps, followed by Zain (338.12MB) and Mobily (220.86Mbps). The Meqyas report also revealed that Zain has deployed 5G services in all regions of the Kingdom except Makkah, in which Mobily recorded the best performance during Q4 2020.

Separately, STC announced the deployment of its 5G network in 47 cities around the country.  It’s part of its plan to strengthen its leadership in reliable mobile coverage and deploy the largest 5G network in the Middle East. According to STC, phase 2 of the plan will increase 5G network coverage in Saudi Arabia to over 71 cities across the country.

As part of its infrastructure enhancement, the FTTH fiber optic network is also going to be expanded. This will enable higher broadband speeds and services to home and business users.  In addition, STC has also confirmed that it has been expanding its global Internet Gateway, progressively growing the capacity of the network.

Eng. Haithem Al Faraj, SVP, technology and operations, STC, said: “STC will continue to pursue an aggressive 5G expansion, together with growth in its advanced 4G network.”

Saudi Arabia 5G network industrial illustration, large cellular tower or mast on modern background with the flag - 3D Illustration Stock Illustration - 118596051

References:

https://www.commsupdate.com/articles/2021/02/12/citc-51-cities-in-saudi-arabia-covered-by-5g/

https://www.itp.net/94380-stc-to-deploy-phase-2-of-5g-in-71-saudi-arabia-cities#:~:text=STC

https://www.telecompaper.com/news/stc-deploys-5g-network-in-over-47-cities–1372282

http://www.saudiarabiapr.com/pr.asp?pr=8911773

 

Posted in Uncategorized Tagged

LightCounting: AT&T relinquishes leadership in network virtualization

AT&T made a lot of noise about its six-year push to virtualize 75% of its network functions, a goal it claims it reached in September 2020. The debt plagued network operator earned praise for being so outspoken about its software defined network (SDN) effort earlier than its competitors.

However, something changed in the last few months, and signs suggest AT&T has relinquished its leadership role, according to LightCounting.

In a recent blog post, LightCounting suggests AT&T has relinquished its leadership role. First, John Donovan left AT&T in October 2019.  Former CTO Chris Rice, who played a key role in AT&T’s SDN, virtualization and cloud efforts, left in August 2020. During that period, there were job losses at AT&T, but what wasn’t reported were cutbacks in research and some of the open networking projects that AT&T had initiated. And its active blog detailing its latest network transformation developments is largely about open networking developments it is involved in with other companies, rather than its own initiatives.

Could it be that AT&T set too fast a pace and the industry pack caught it up? Or is greater financial pragmatism needed to tackle its debt following its two huge media company acquisitions in recent years?

Many leading CSPs are pursuing network transformation, in addition to AT&T, but the industry has a few visionaries and AT&T until recently served this valuable role.  It remains to be seen if that will continue.

“If any one operator has sort of driven the whole vision of disaggregated, that software-defined networking, virtualization, white boxes, this is something that AT&T has pushed more than any other operator, and they put it into effect as well,” Roy Rubenstein, consultant at LightCounting, told SDxCentral in a phone interview.

“Its contributions, the various open source projects they then contributed to these open source organizations has been significant,” he said, adding that AT&T was, at least until late last year, “a real trailblazer.”

Grant Lenahan, partner and principal analyst at Appledore Research, has a less complimentary view of AT&T’s stature and success on virtualization. “It’s not clear how far ahead AT&T ever were,” he wrote in response to questions.

………………………………………………………………………………………………

This author’s checks with AT&T employees (in 2019 and 2020) indicated that vendor proprietary boxes were still in AT&T Central Offices and Data Centers.  They had NOT been replaced by network virtualization software running on compute servers!  The big exception was AT&T’s deployment of “dis-aggregated core routers” running Israeli unicorn DriveNets network OS and Network Cloud solution software.  The DriveNets software then connects into AT&T’s centralized SDN controller that optimizes the routing of traffic across the core.

“We chose DriveNets, a disruptive supplier, to provide the Network Operating System (NOS) software for this core use case,” AT&T said in a  September 28, 2020 story on its website.

“We are thrilled about this opportunity to work with AT&T on the development of their next gen, software-based core network,” said Ido Susan, CEO of DriveNets. “AT&T has a rigorous certification process that challenged my engineers to their limits, and we are delighted to take the project to the next level with deployment into the production network.”

…………………………………………………………………………………………….

“There’s definitely been a change in terms of AT&T’s own vocality and in a sense the industry has lost an important evangelist of this,” Rubenstein said.

While AT&T’s 75% milestone suggests it still has another 25% to go, that math doesn’t really add up, according to Rubenstein. The operator has effectively virtualized everything it intends to operate with software in the core of its network and the remaining 25% represents network functions or services that will just be operated to the end of their life and then decommissioned, he said.

AT&T’s decision to frame its virtualization journey on a percentage basis was also an over simplification of the work involved and objectives it achieved, Lenahan explained, adding that most operators use this framework to make their results appear more flattering.

“It’s very unclear and early announcements were unlikely or unrealistic,” he added “Solid, well understood metrics would be really useful” to gain a better understanding of what exactly has been virtualized.

The biggest bottleneck on virtualization is the service life of equipment, and that’s why Appledore Research believes the virtualization journey will span roughly two decades throughout the industry, according to Lenahan. “It’s also worth pointing out that the entire idea of virtualization flies in the face of decades of [99.999% reliability] thinking and deep, precise control of all assets, and therefore is a cultural shift,” he said.

While AT&T’s 75% milestone suggests it still has another 25% to go, that math doesn’t really add up, according to Rubenstein. The operator has effectively virtualized everything it intends to operate with software in the core of its network and the remaining 25% represents network functions or services that will just be operated to the end of their life and then decommissioned, he said.

AT&T’s decision to frame its virtualization journey on a percentage basis was also an over simplification of the work involved and objectives it achieved, Lenahan explained, adding that most operators use this framework to make their results appear more flattering.

“It’s very unclear and early announcements were unlikely or unrealistic,” he added “Solid, well understood metrics would be really useful” to gain a better understanding of what exactly has been virtualized.

The biggest bottleneck on virtualization is the service life of equipment, and that’s why Appledore Research believes the virtualization journey will span roughly two decades throughout the industry, according to Lenahan. “It’s also worth pointing out that the entire idea of virtualization flies in the face of decades of [99.999% reliability] thinking and deep, precise control of all assets, and therefore is a cultural shift,” he said.

……………………………………………………………………………………

LightCounting argues that CSPs have just completed phase one of network transformation. The next phase extends the cloud to the network edge and embraces cloud-native software practices for network functions.  Telcos are now moving from Network Transformation phase 1.0 to 2.0 as per this figure:

5G is the catalyst for Phase 2.0. 5G has code-based network functions and SDN built in, and it brings capabilities that will enable new services and applications, so its rollout is a natural point to introduce new technologies. The opening up of the radio access network–Open RAN–which includes 5G, embraces all the techniques associated with network transformation.

 

More information on the report is available at:

https://www.lightcounting.com/products/January2021_NetworkTransformation/

 

Resources:

https://www.sdxcentral.com/articles/news/att-relinquishes-trailblazer-status-on-network-virtualization/2021/02/

https://www.lightcounting.com/light-trends/telecom-service-providers-embark-phase-2-network-transformation-many-challenges-remain/

https://about.att.com/story/2020/open_disaggregated_core_router.html

 

U.S. Government Multi-Cloud Competition; Telus selects Google Cloud

Amazon, Microsoft, and Google are competing to win a part of the U.S. federal government’s $7 billion cloud spending.  The Biden administration’s IT push is going to create opportunity for the major cloud providers.

AWS still has the lead, but Microsoft is so popular one analyst called it an ‘agency’ of the Pentagon. Google is also ramping up its cloud management tool Anthos and betting on AI for defense contracts.

The federal government has been investing in cloud computing for years — starting with Obama’s Cloud First policy in 2010 all the way to Trump’s Cloud Smart strategy in 2018. But as the pandemic has accelerated the pace of technological adoption and change, the need for cloud has become even more acute, especially for federal agencies that don’t yet have it. Biden’s proposed $1.9 trillion stimulus package included $10 billion for tech initiatives — underscoring their importance to the nation’s recovery — and signaling to government contractors that more federal dollars may be going their way. (Though the latest version of the package had much of that funding cut, lawmakers are actively seeking to add it back to future bills.)

Analysts estimate the federal government spent $6.6 billion on cloud in the 2020 fiscal year, an increase from $6.1 billion the previous year, and that number will grow.

Shawn McCarthy, research director for IDC government insights, told Insider he expected the federal government’s cloud spend to increase by 7.1% from fiscal year 2020 to 2021. Marquee contracts like the Department of Defense’s $10 billion deal with Microsoft to build the Joint Enterprise Defense Infrastructure (JEDI) cloud have drawn even more attention to the federal cloud market, which analysts say is an opportunity for Amazon, Microsoft, and Google to flex their strength.

The government needs their expertise in cloud computing and, increasingly, their support for emerging technologies like artificial intelligence and 5G.

Of the major cloud providers, analysts said that Amazon Web Services is considered the leader in the overall cloud market, and the same holds true in the public sector. But Microsoft has caught up in the federal market, especially with wins like the JEDI cloud contract, meanwhile Google is taking a different tack — betting on multi-cloud management and AI. Here’s a closer look at how the three big clouds stack up in the federal sector. Amazon has a huge head start, but it can’t be complacent Andy Jassy AWS CEO Andy Jassy, who is set to become Amazon CEO, helped oversee the cloud unit’s rise.

Mike Blake/Reuters Analysts agreed that Amazon is the one to beat in the public sector cloud market, just as it is within the larger industry. “AWS had the biggest lead out of the gate,” McCarthy said, and it has “an extremely deep bench of third-party providers that are available via their dedicated government solutions marketplace.” Amazon landed its first major deal with the government in 2013, when it won a $600 million contract to build a custom cloud for the CIA. At the time, cloud computing was considered less secure than local servers — yet the Amazon deal set a precedent, showing that Silicon Valley’s cloud innovation could fit the federal government’s needs, and led AWS to become the first commercial cloud authorized to house all levels of classified government data. But in 2019, the CIA issued a new cloud contract worth billions, and jointly awarded the deal to AWS, Microsoft, Google, Oracle, and IBM — signaling a shift away from its previous single-cloud approach, and ending intelligence agencies’ reliance on a sole Silicon Valley cloud giant.

In a sign of things to come, Amazon lost the JEDI cloud contract to Microsoft the same year. Though JEDI’s future remains in flux because of Amazon’s ongoing legal protest, analysts said it proved Microsoft’s ascendance in the sector. Read more: As Pentagon warns it could abandon its $10 billion JEDI cloud with Microsoft, analysts say AWS could benefit.

“I think last year was kind of characterized by Microsoft catching up to Amazon,” said Chris Cornillie, a federal market analyst at Bloomberg Government.

Microsoft caught up to AWS, thanks to its cloud software Scott Guthrie Scott Guthrie, Microsoft’s executive vice president of cloud and AI, oversees Azure and was once described by an analyst as a “cloud visionary.” Stephen Lam/Getty Images Analysts also agreed that Microsoft isn’t catching up to Amazon anymore — they’re nearly neck-and-neck in the federal market now. McCarthy said Microsoft succeeded “thanks to the popularity of Microsoft 365 and Microsoft Azure.” Microsoft 365 includes Office 365, the company’s line of productivity software, while Azure is its cloud computing service that more directly competes with AWS. Amazon doesn’t have a direct competitor to Microsoft 365, and focuses instead on its core infrastructure cloud platform. Cornillie told Insider Microsoft had done a good job of “leveling the playing field” with its JEDI win and a number of smart investments: working with OpenAI, linking up with Oracle for data interoperability, and a partnership with AT&T to facilitate 5G.

Last year, it launched new Azure Government cloud capabilities and announced it had achieved the highest authorization for handling sensitive government data, finally matching AWS. Within the Pentagon, which has the largest IT budget of any federal agency, one analyst said Microsoft is so entrenched that it has “basically become an agency of the Department of Defense.”

Microsoft 365 was chosen as the department’s sole software suite in a $4.4 billion deal called the Defense Enterprise Office Solutions (DEOS) contract, first awarded in 2019 and recently fast-tracked because of the pandemic. “Microsoft has really benefited in a lot of ways from the COVID-19 pandemic response effort,” Cornillie said, citing that it was also picked for a separate Pentagon initiative which rapidly deployed Microsoft Teams in the department’s Commercial Virtual Remote environment.

Microsoft 365 offers the company a convenient way to sell Azure cloud, plus other services like consulting and maintenance as a bundle, he said. And although the scope of Microsoft’s entanglement in the aftermath of the SolarWinds cyberattacks is still unfolding, analysts said it likely won’t suffer much reputational damage within the federal government.

Alex Rossino, a senior principal research analyst at government contracting research firm Deltek, told Insider that as the government increasingly pushes its security burden onto vendors, big cloud players will actually benefit. “The large cloud providers especially have the deep pockets to be able to make sure they provide the best kind of upgraded security,” he said.

“So I think that’s a selling point for them when it comes to the federal government; they can actually use the SolarWinds example as a way to say, ‘Well, look, we can make sure that doesn’t happen.'” Google is banking on AI and multi-cloud Google Cloud CEO Thomas Kurian at Google Cloud Next 2019 Google Cloud CEO Thomas Kurian has been credited with shoring up its enterprise business, and could help its play for government contracts. Insider Intelligence Though Google is still catching up to Amazon and Microsoft, and only recently spun up a large-scale dedicated government cloud, they are “a known entity and should become competitive,” said McCarthy.

Analysts also said Google is leveraging its strength in AI, a field the government is very interested in, and pushing Anthos, its tool for managing multiple clouds, to break into the federal market. Some big hires are evidence of this play: Cornillie said Google Cloud CEO Thomas Kurian, who has been running the unit with strategies inspired by his former employer Oracle, would help build up its enterprise business, while Joshua Marcuse, who heads the global public sector team and was recruited from the Defense Innovation Board (the Pentagon advisory board that was led by former Google CEO Eric Schmidt) would help with its AI push. Marcuse previously led development of the Pentagon’s ethics AI principles, though that approach has since been criticized by the AI community and former Google AI researcher Meredith Whittaker for lacking accountability. Google’s renewed interest in working with the Defense Department comes after it dropped out of bidding for the JEDI contract in 2018, following employee protests over a controversial AI project called Project Maven. Google is hoping for a fresh start under Biden, and the Pentagon is too.

Cornillie said Google now views its AI prowess as helping open the door to new cloud contracts — taking a “if you want AI capabilities out of the box, it works best in our cloud” approach. However, its ambitions are limited by the fact that it doesn’t hold all security certifications required by the sector, he said.

Bringing in Todd Schroeder from Salesforce to lead global public sector digital strategy was another “smart move,” Cornillie said. Schroeder has emphasized multi-cloud, open platforms, and AI as the future for federal cloud, which play to Google’s strengths. In 2019, Google introduced its Anthos product, which lets customers build and manage their applications across Google Cloud, AWS, and Microsoft Azure.

Banking on multi-cloud as the future (a reasonable bet, as the Department of Homeland Security just issued a $3.4 billion multi-cloud contract), Google is hoping its cloud management tool will become indispensable.

A new $3.4 billion DHS cloud contract could kick off a fierce battle between cloud giants like Amazon and Microsoft, analysts say. There are signs its product is sticking: Google has already done some pilots with Customs and Border Protection to optimize workloads across Azure, AWS, and Salesforce, Cornillie said, and the agency is now competing a large cloud migration contract that has Anthos’s multi-cloud management function explicitly written in.

IBM, Oracle, and smaller players are not to be discounted are IBM and Oracle, analysts said. They’ve also been steadily making progress, but “for reasons of security certifications and for reasons of the maturity of their tech, they’re still looking for niche components or niche contracts,” Cornillie said. “They haven’t been able to land any really big fish yet.”

Both companies bid for the JEDI contract, and both lodged formal protests after being eliminated from the running. But they haven’t given up on the market: Oracle made its Cloud Marketplace available for government customers to run software in its cloud in January, while IBM acquired open-source cloud provider Red Hat for $34 billion in 2018 — a move analysts at the time were excited by, saying IBM could make inroads as a hybrid cloud provider.

Rossino said smaller cloud players could enter the U.S. federal government’s cloud market by providing cloud management services:

“If they have capabilities that allow for the automation of cloud management, that’s really important too,” he said. But still, it’s a strategy borne of necessity rather than creativity. “The Microsoft’s, Amazon’s, they’ve already locked up the infrastructure market. There’s almost excess capacity out there,” he added.

………………………………………………………………………………………………………..

Telus Selects Google Cloud in 10 year Deal:

Google Cloud on Tuesday announced a new, 10-year strategic partnership with Telus, the Canadian telecommunications company. The two companies plan on collaborating on new services and products for a handful of key industries, including healthcare, agriculture, security and connected home. Telus also plans to modernize its own IT and network with the help of the Google Cloud Platform.

It’s the latest deal to showcase Google’s efforts to cultivate more cloud business within the telecom sector. Last year, Google outlined a multi-pronged pitch to the telecommunications industry that includes industry-specific solutions like Anthos for Telecom.

Together, Google and Telus plan to develop services and products that use AI to better leverage data within specific verticals. For instance, a couple areas of focus include new collaboration solutions for healthcare providers, as well as supply chain traceability tools for the food and agriculture sector.

Meanwhile, Telus’ own wireless and wireline services will get an upgrade as part of the deal. Leveraging Anthos, Google Cloud’s managed application platform, Google will partner with Telus to deliver 5G services and Multi-Access Edge Computing (MEC). Telus also plans on using Google Cloud Contact Center AI to upgrade its customer service.

“Our strategic partnership with Google will propel our digital leadership across the communications technology, healthcare and agriculture sectors, whilst amplifying our Customers First priority, redefining how service is delivered in Canada and globally,” Telus CEO and President Darren Entwistle said in a statement.

References:

https://www.businessinsider.com/amazon-microsoft-google-public-cloud-government-2021-2  (paywall)

https://cloud.cio.gov/strategy/

https://www.zdnet.com/article/canadian-telco-telus-signs-10-year-deal-with-google-cloud/

 

Page 153 of 210
1 151 152 153 154 155 210