India: Low mobile tariffs end; Big 3 Telcos increase rates by 40-50%

by CanIndia New Wire Service (edited for accuracy and clarity by Alan J Weissberger)

The long honeymoon for India telecom subscribers has come to an end as all the three private wireless telecom network providers — Vodafone Idea, Bharti Airtel and Jio — on Sunday announced pre-paid tariff plans with 40-50 per cent higher rates.  The hike comes after three years and amid the acute financial stress the sector is going through after a Supreme Court ruling on adjusted gross revenue. The hikes, however, come with enhanced data and other benefits.

Editor’s Note:

India is currently the world’s second-largest telecommunications market (China is number 1) with a subscriber base of 1.20 billion and has registered strong growth in the past decade and half. The Indian mobile economy is growing rapidly and will contribute substantially to India’s Gross Domestic Product (GDP), according to report prepared by GSM Association (GSMA) in collaboration with the Boston Consulting Group (BCG). As of January 2019, India has experienced a 165 per cent growth in app downloads in the past two years.

Image result for images: telecom in India

…………………………………………………………………………………………………………………………………………………………………………………………………………………..

Reliance Jio, the last one to announce a revised rates on Sunday, said it would raise tariffs by up to 40 per cent. “Jio will be introducing new ‘all-in-one’ plans with unlimited voice and data. These plans will have a fair usage policy for calls to other mobile networks. The new plans will be effective from December 6,” Jio said.

“The new ‘all-in-one’ plans will be priced up to 40 per cent higher, staying true to its promise of being ‘customer-first’, Jio customers will get up to 300 per cent more benefits,” it said.

Airtel’s new rates will be effective from December 3. After December 3, the Rs 129 pack for 28 days with unlimited calling, 300 SMS, and 2GB data would cost Rs 148, it said.

A major hike is witnessed in Airtel’s Rs 998 plan with 336-day validity, unlimited calling, 3,600 SMSs and 12GB data. It would be replaced by a Rs 1,498 plan, marking 50 per cent rise, with 24GB data and 365-day validity.  The users of Rs 1,699 plan would have to pay Rs 2,398, which is an increase of 41 per cent. It would continue to offer unlimited calling, 100 SMS and 1.5GB data per day.  Airtel had merged Rs 169 and Rs 199 plans for 28 days to offer a Rs 248 plan with same benefits — unlimited calling, 100 SMS and 1.5GB data a day.

The Rs 249 plan, which offered unlimited calls, 100 SMS and 2GB data a day, would now cost Rs 298. The Rs 448 and 499 plans for 82 days would now cost Rs 598 and Rs 698 for 84 days.

“Airtel’s new plans represent tariff increases in the range of 50 paise a day to Rs 2.85 a day and offer generous data and calling benefits. Airtel also provides exclusive benefits as part of the Airtel Thanks platform, which enables access to premium content from Airtel Xstream (10,000 movies, exclusive shows and 400 TV channels), Wynk Music, device protection, anti-virus protection and much more,” it said.

The revised Vodafone Idea tariffs too would come into effect from December 3. It has launched ‘First Recharge Packs’ where the four first recharge packs will cost Rs 97 with Rs 45 talk time, 100MB data and voice calls charged at 1 paisa per second along with 28 days validity. Other plans include Rs 197, Rs 297 and Rs 647. They offer up to 1.5GB data a day and unlimited ‘on-net’ calling for 84 days.

Vodafone Idea announced that the ‘on-net’ voice calls would be billed at 6 paise per minute. The ‘on-net’ voice calls after the provided FUP limit will be charged 6 paise per minute, similar to Reliance Jio. It is also providing bundled ‘on-net’ minutes, whereas Jio will be charging customers for IUC ‘top-up’ vouchers.

In unlimited packs with 28-day validity are — Rs 149 plan with unlimited voice (FUP of 1,000 minutes for off-net calls), 2GB data, 300 SMS; Rs 249 plan with unlimited voice (FUP of 1,000 minutes for off-net calls), 1.5GB data, 100 SMS per day.

The company has removed the All Rounder packs and introduced two Combo Vouchers of Rs 49 and Rs 79 with 28-day validity. It has announced new prepaid plans with 2 days, 28 days, 84 days, 365 days validity, and broadly compared with existing plans of similar nature. However, new plans are costlier up to 42 per cent.

Vodafone Idea had earlier said it would increase tariff in December. The announcement has come in the backdrop of its highest quarterly loss of Rs 50,922 crore.

It’s now expected that the state-run BSNL could also hike tariffs. The government and the Telecom Regulatory Authority of India (TRAI) have made it clear that there will be no floor rate for voice or data and the telcos would have to thrash out pricing among themselves to cover up losses.

………………………………………………………………………………………………………………………………………………………………………………………………………………….

References:

The original (unedited) article was first published at:

Low tariff regime over, telcos up rates by 40-50% (Roundup)

Also see:

Mobile call, internet to become costlier in India by up to 50% from Dec 3rd

https://telecom.economictimes.indiatimes.com/news/biggest-telecom-tariff-hike-to-bring-40-higher-bills/72324808

India’s Airtel, Vodafone Idea preparing for commercial NB-IoT after pilots

Danish Khan  |  ET Telecom (editd and corrected by Alan J Weissberger)

Bharti Airtel and Vodafone Idea Limited are now preparing to launch commercial narrow-band IoT (NB-IoT) service in India in the coming months having brought various partners on board to develop a complete device and sensor ecosystem. Both Indian telcos are in currently in various stages of pilot runs in different circles.

Airtel is now deploying around 20,000 sites in Karnataka and Chennai to conduct NB-IoT trials. “We’ll be going with a pilot in a denser way rather than just a few trial sites..in a couple of months, we will be commercially rolling out,” Ajay Chitkara, Director and CEO, Airtel Business, told ET.

Vodafone Idea Limited, on the other hand, has already conducted commercial pilots in eight cities in India, and is now hoping to win its first commercial NB-IoT deployment deal in the coming weeks.

“We’re looking at winning our first commercial deployments over the next six weeks. So commercially we’re also seeing customers now, wanting to buy that. Once we contract them will go and deploy,” Nick Gliddon, chief enterprise business officer separately told ET.

Gliddon said that all eight pilots were conducted in cities like Kochi, Jaipur, Bengaluru, and Chennai and involved smart meters. “We’ve run a long-term trial with those guys to understand how the network and services work.

Airtel’s Chitkara said that the telco’s IoT services are already growing in the country and NB-IoT technology will help it address the demand. “We have around five and a half million subscribers on our IoT side and the way growth is happening, we need to eventually get into NB-IoT.”

Chitkara added that NB-IoT will offer scale as compared to traditional IoT technologies. “130 million devices need to be connected on meter and that is the reason people say that you can’t run on the existing ecosystem.”

Vodafone is also aiming to expand its NB-IoT in India in the next 12 months to tap specific opportunities in the smart city space along with other applications.

NB-IoT is a new 3GPP spec which will likely be included in IMT 2020. It is designed to broaden the future of IoT connectivity, providing significantly improved and deeper network coverage for communication between machines while lowering power consumption by devices.

Both telcos are taking a partner-led approach building a complete ecosystem including sensors, devices and to bring the overall cost down for devices.

Chitkara said that building applications is a challenge, thereby Airtel is bringing partners on board. “…another issue is with all the sensors and other things there is a cost involved so it’s a chicken and egg story…the cost of those 2G sensors still is cheaper so we are making sure at least this whole ecosystem is build up so that we can bring from some more sites,” he added.

Vodafone Idea has already brought over 25 partners on-board and is working towards doubling this number soon to build new use cases around the new technology. These partners are mainly startups and small and medium enterprises that will bring in hardware and software capabilities to enable new NB-IoT use cases.

Rival Reliance Jio Infocomm had last year launched an NB-IoT network with a commercial network available in Mumbai. It is preparing to foray into enterprise services and may expand its IoT services accordingly.

Jio recently claimed that it is the only telco in India to have the capability and network footprint for a nationwide launch of NB-IoT services. Airtel, however, countered the claim by saying that the company’s pan-India 4G network is also ready to support the technology, along with LTE-M.

Within the enterprise business, IoT is expected to be the growth area going forward, given that the consumer retail business continues to face competitive headwinds. India’s IoT market size is expected to increase to $9 billion by 2020 from $1.3 billion in 2016, according to consultancy firm Deloitte.

https://telecom.economictimes.indiatimes.com/news/airtel-vodafone-idea-preparing-for-commercial-nbiot-services-expand-pilots-in-india/71875177

 

UBS: 5G capex at $30 billion for India telcos; 5G spectrum auction by January 2020?

UBS analysts say that India’s top three telecom operators will have to spend a little over $30 billion on 5G base stations and fiber infrastructure. According to UBS, the need for a dense site footprint and fiber backhaul for 5G access networks will likely shift the balance of power towards larger and integrated operators with strong balance sheets.

Bharti Airtel and Vodafone Idea would need $10 billion capex each over the next five years.

“Bharti has solidly defended its market share and has narrowed the gap with Jio on 4G network reach, with improving 4G net adds. The company recently revamped its digital offering and launched converged digital proposition ‘Airtel Xstream’ offering digital content across TV, PC and mobile devices along with IoT solutions for connected homes. Further, Jio’s recently announced fixed broadband plans starting at Rs 699 are not as aggressive as we (and the market) feared and, therefore, do not pose significant pricing pressure on Bharti’s broadband average revenue per user,” UBS said in a research note to clients.

Reliance Jio’s incremental 5G capex is estimated somewhat lower at around $8 billion.  That’s because Jio already has more 5G-ready fiberised towers than the incumbents, having already spent around $2 billion on tower fiberization.

Analysts were skeptical about Vodafone Idea’s ability to sustain such big-ticket capex spends given its continuing market share losses and weak financials, which they said could limit its 5G deployment ambitions.

They also said the need for a dense site footprint and fibre backhaul in 5G would shift the balance of power towards larger and integrated operators with strong balance sheets like Jio and Airtel, while those with high gearing levels are at risk given the sustained high capex needs.

“Airtel and Vodafone Idea will each need to spend $2 billion annually on 5G radio and fiber capex spread across 5 years,” UBS said in a report, implying 65% and 85% of Airtel’s and Vodafone Idea’s current annual India capex run rates respectively.

By contrast, Jio’s 5G capex, “would be lower due to its larger tower footprint and higher proportion of towers on fibre backhaul compared with Airtel and Vodafone Idea.”  The brokerage firm also expects Jio to transition to 5G in a “time-efficient manner,” given its in-house data centres and investments in a content distribution network (CDN).

“Vodafone Idea’s stretched balance sheet will limit its participation in the 5G opportunity, and the company will require a significant improvement in network quality to arrest market share loss and revert to revenue growth,” UBS said.

Credit Suisse backed the view, saying, “Vodafone Idea will lose the most market share, and will need additional equity capital by FY2021, given our expectation of no price increase”.

UBS estimates that Airtel’s India mobile revenue will grow 5-6% in this financial year and the next even if interconnect usage charges – a source of revenue for incumbents – get scrapped from January 2020.

According to analysts, the India telecom sector can reduce overall estimated $30.5 billion 5G capex spends by 15-20% if Airtel, Vodafone Idea and Jio share towers and fiber resources.  However, there is currently no progress on that front.

“We estimate the sector can reduce overall capex by 15-20 per cent if the three Indian telcos share towers and fiber (either commercially or driven by the regulator) – third-party tenancy poses upside risks to our estimates,” UBS said in its report.

……………………………………………………………………………………………………………

India’s Department of Telecommunications wants to hold a 5G spectrum sale by January 2020 at the latest, according to referenced sources.

Credit Suisse doesn’t expect that 5G spectrum sale to attract much interest.  That’s due to a mix of “high reserve prices, telcos’ focus on monetising 4G investments, stretched balance sheets, a nascent 5G ecosystem and lack of significant 5G use cases for mass consumption.”

Rajiv Sharma, co-head of research at SBICap Securities, said that Vodafone Idea is unlikely to bid for 5G spectrum at current base prices “as the telco doesn’t have an existing pan-India 4G network that is essential for any telco planning to spend top dollars on 5G,” according to the report.

Analysts believe that Reliance Jio will probably take part in the process, as it is the only profit-making telco in the Indian market.

The Department of Telecommunications (DoT) had recently asked the Trai to lower the starting prices, which the regulator refused.  “There was a chance for the Trai to reduce 5G prices. Let’s see what the DoT does now. But at current rates, Airtel won’t buy,” Airtel’s executive reportedly said.

Vodafone Idea CEO Balesh Sharma has previously said that the prices recommended by the regulator were ‘exorbitant.’ The telco said it will participate in the next auction but did not confirm if it would buy 5G spectrum.

Hemant Joshi, partner at Deloitte India, said it would be “prudent to defer the 5G auction till 2020 at least since at Trai’s recommended base prices, the industry response may be very lukewarm.” He also said that the reserve prices need to be lowered, taking into account the experiences in countries where 5G spectrum was recently auctioned.

……………………………………………………………………………………………

Analysts said there are three things that India’s Centre for Telecom Excellence (within the DoT) must do immediately to hasten the adoption of 5G:

First, lay down a clear roadmap of spectrum availability and specify frequency bands aligned with global standards (IMT 2020 from ITU-R). Given that 5G services will be supporting massive data applications, operators will need adequate spectrum.

Editor’s Note:  India’s TSDSI has proposed a candidate IMT 2020 RIT based on Low Mobility Large Cell (LMLC), but it hasn’t yet been accepted by ITU-R WP 5D.  TSDSI posted a revised and more comprehensive proposal on 10 September 2019, which will be evaluated at the next ITU-R WP 5D meeting in December.

………………………………………………………………………………………………….

Second, there is a need to move away from the existing mechanism of pricing spectrum on a per MHz basis. 5G services require at least 80-100 Mhz of contiguous spectrum per operator. If the Centre were to fix the floor price based on the per Mhz price realised in the last auction then no operator would be able to afford buying 5G spectrum. The pricing, therefore, will have to be worked out anew, keeping in mind the financial stress in the telecom sector and affordability of services.

Finally, the Centre must rapidly complete the national fiber optic network rollout as 5G high speed services will require huge back-haul support for which existing microwave platforms will not be sufficient.

References:

India’s TSDSI candidate IMT 2020 RIT with Low Mobility Large Cell (LMLC) for rural coverage of 5G services

India’s telecom standards organization TSDSI has submitted its candidate IMT-2020 Radio Interface Technology (RIT) to the IMT-2020 evaluation at the ITU-R WP 5D meeting #32 being held in Buzios, Brazil from 9 July 2019 to 17 July 2019.  TSDSI’s IMT 2020 submission is one of five candidate RIT proposals- see NOTE at bottom of this article for more information.

TSDSI’s RIT is described in document ITU-R WP5D-AR Contribution 770.  This RIT has been developed to address the rural requirements by enabling the implementation of  Low Mobility Large Cell (LMLC), particularly with emphasis on low-cost rural coverage of 5G wireless network services.  TSDSI believes that this RIT will also help to meet the rural requirements of other developing countries This author agrees!

TSDSI proposal on Low Mobility Large Cell (LMLC) configuration has been included as a mandatory test configuration under the Rural eMBB (enhanced Mobile BroadBand) test environment in IMT 2020 Technical Performance Requirements (TPR) in ITU-R with an enhanced Inter Sire Distance (ISD) of 6 km. Incorporation of LMLC in IMT2020 will help address the requirements of typical Indian rural settings and will be a key enabler for bridging the rural-urban divide with 5G rollouts.

–>The Indian administration (ITU member country) extends its support to the RIT of TSDSI and solicits the support of ITU Member States to support this proposal.

Indian wireless network operators, including Reliance Jio Infocomm Ltd, have expressed interest in LMLC.

About TSDSI:

*TSDSI is a Standards development organization similar to ETSI, SRIB, ATIS, CCSA, TTA, TTC, etc.
*TSDSI is an Organisational Partner of 3GPP and oneM2M, an Associate member of ITU-R and ITU-T and a member of GSC.
*TSDSI delegations have been actively participating and contributing in Standards development Working Groups in all these forums.
*TSDSI has formal affiliations (MoUs/Agreements) with – ETSI, 5GIA, ATSC, BIF, CCICI, GCF, IEEE-SA, TIA, TAICs, TTA, WWRF, ARIB, ATIS, CCSA, TTC
*TSDSI conducts several joint activities – projects, workshops, conferences etc. with its affiliates
*TSDSI’s operating procedures have been derived based on best practices being followed by similar Global SDOs.
*TSDSI Rules & Regulations, Working Procedures and IPR Policy are all transparent and available on our website – http://www.tsdsi.in. A brief perusal will show the similarity with the processes and policies followed by other SDOs.
*TSDSI strictly follows the Rules and Procedures. It provides an open, transparent and collaborative platform for its members to participate and contribute in the development of Standards with a special focus on India Specific Requirements and Indian Innovations. The governance model is also very inclusive, open and transparent with fresh elections being conducted for all positions every 2 years.

Submitted by: Chair TSDSI , Vice Chair TSDSI and DG TSDSI
http://www.tsdsi.in

………………………………………………………………………………………………………………………………………….

Kiran Kumar Kuchi, a professor at IIT Hyderabad is building a 5G testbed there.  The system will exceed IMT 2020 5G performance requirements including Low Mobility Large Cell.

IIT Hyderabad 5G Testbed.   Photo courtesy of IIT Hyderabad.

……………………………………………………………………………………………………………………………………………………………………………………………………………

TSDSI’s baseline RIT (initial description template) is documented in ITU-R WP 5D Document 5D/980: Revision 2 to Document IMT-2020/7-E, submitted on 14 February 2019.  Several updates to TSDSI RIT included the updated characteristics template, initial link budget template, etc.  They are in Document 5D/1138: Attachment Part 1: 5D/1138!P1; Attachment Part 2: 5D/1138!P2; Attachment Part 3: 5D/1138!P3; Attachment Part 4: 5D/1138!P4)

Here are a few key excerpts from the TSDSI baseline RIT:

Describe details of the radio interface architecture and protocol stack such as: – Logical channels – Control channels – Traffic channels Transport channels and/or physical channels.

RAN/Radio Architectures: This RIT contains NR standalone architecture. The following paragraphs provide a high-level summary of radio interface protocols and channels.

Radio Protocols: The protocol stack for the user plane includes the following: SDAP, PDCP, RLC, MAC, and PHY sublayers (terminated in UE and gNB). On the Control plane, the following protocols are defined: – RRC, PDCP, RLC, MAC and PHY sublayers (terminated in UE and gNB); – NAS protocol (terminated in UE and AMF) For details on protocol services and functions, please refer to 3GPP specifications (e.g. [38.300]).

Radio Channels (Physical, Transport and Logical Channels):

  • The physical layer offers service to the MAC sublayer transport channels. The MAC sublayer offers service to the RLC sublayer logical channels.
  • The RLC sublayer offers service to the PDCP sublayer RLC channels.
  • The PDCP sublayer offers service to the SDAP and RRC sublayer radio bearers: data radio bearers (DRB) for user plane data and signalling radio bearers (SRB) for control plane data.
  • The SDAP sublayer offers 5GC QoS flows and DRBs mapping function.

The physical channels defined in the downlink are: – the Physical Downlink Shared Channel (PDSCH), – the Physical Downlink Control Channel (PDCCH), – the Physical Broadcast Channel (PBCH).

The physical channels defined in the uplink are: – the Physical Random Access Channel (PRACH), – the Physical Uplink Shared Channel (PUSCH), – and the Physical Uplink Control Channel (PUCCH). In addition to the physical channels above, PHY layer signals are defined, which can be reference signals, primary and secondary synchronization signals.

The following transport channels, and their mapping to PHY channels, are defined:

Uplink: – Uplink Shared Channel (UL-SCH), mapped to PUSCH – Random Access Channel (RACH), mapped to PRACH

Downlink: – Downlink Shared Channel (DL-SCH), mapped to PDSCH – Broadcast channel (BCH), mapped to PBCH – Paging channel (PCH), mapped to (TBD)

Logical channels are classified into two groups: Control Channels and Traffic Channels.

Control channels: – Broadcast Control Channel (BCCH): a downlink channel for broadcasting system control information. – Paging Control Channel (PCCH): a downlink channel that transfers paging information and system information change notifications. – Common Control Channel (CCCH): channel for transmitting control information between UEs and network. – Dedicated Control Channel (DCCH): a point-to-point bi-directional channel that transmits dedicated control information between a UE and the network.

Traffic channels: Dedicated Traffic Channel (DTCH), which can exist in both UL and DL. In Downlink, the following connections between logical channels and transport channels exist: – BCCH can be mapped to BCH, or DL-SCH; – PCCH can be mapped to PCH; – CCCH, DCCH, DTCH can be mapped to DL-SCH;

In Uplink, the following connections between logical channels and transport channels exist: – CCCH, DCCH, DTCH can be mapped to UL-SCH.

Enhancements:

1. Method to improve broadcast and paging control channel efficiency over access elements.

2. Reduce the impact of congestion in the data path and control path to improve overall efficiency in the network.

3. Other aspects

NR QoS architecture The QoS architecture in NG-RAN (connected to 5GC), can be summarized as follows: For each UE, 5GC establishes one or more PDU Sessions. For each UE, the NG-RAN establishes one or more Data Radio Bearers (DRB) per PDU Session. The NG-RAN maps packets belonging to different PDU sessions to different DRBs. Hence, the NG-RAN establishes at least one default DRB for each PDU Session. NAS level packet filters in the UE and in the 5GC associate UL and DL packets with QoS Flows. AS-level mapping rules in the UE and in the NG-RAN associate UL and DL QoS Flows with DRBs

– Carrier Aggregation (CA) In case of CA, the multi-carrier nature of the physical layer is only exposed to the MAC layer for which one HARQ entity is required per serving cell.

– Dual Connectivity (DC) In DC, the radio protocol architecture that a radio bearer uses depends on how the radio bearer is setup.

…………………………………………………………………………………………………………..

Four bearer types (information carrying channels) exist: MCG bearer, MCG split bearer, SCG bearer and SCG split bearer.

The following terminology/definitions apply:

– Master gNB: in dual connectivity, the gNB which terminates at least NG-C.

– Secondary gNB: in dual connectivity, the gNB that is providing additional radio resources for the UE but is not the Master node.

– Master Cell Group (MCG): in dual connectivity, a group of serving cells associated with the MgNB

– Secondary Cell Group (SCG): in dual connectivity, a group of serving cells associated with the SgNB

– MCG bearer: in dual connectivity, a bearer whose radio protocols are only located in the MCG.

– MCG split bearer: in dual connectivity, a bearer whose radio protocols are split at the MgNB and belong to both MCG and SCG.

– SCG bearer: in dual connectivity, a bearer whose radio protocols are only located in the SCG.

– SCG split bearer: in dual connectivity, a bearer whose radio protocols are split at the SgNB and belong to both SCG and MCG.

In case of DC, the UE is configured with two MAC entities: one MAC entity for the MCG and one MAC entity for the SCG. For a split bearer, UE is configured over which link (or both) the UE transmits UL PDCP PDUs. On the link which is not responsible for UL PDCP PDUs transmission, the RLC layer only transmits corresponding ARQ feedback for the downlink data.

What is the bit rate required for transmitting feedback information? The information will be provided in later update.

……………………………………………………………………………………………………………………

LMLC Detailed Description – Characteristics template for TSDSI RIT:

The description template provides the characteristics description of the TSDSI RIT.

For this characteristic template, it has chosen to address the characteristics that are viewed to be very crucial to assist in evaluation activities for independent evaluation groups, as well as to facilitate the understanding of the RIT.

Channel access: Describe in detail how RIT/SRIT accomplishes initial channel access, (e.g. contention or non-contention based).

Initial channel access is typically accomplished via the “random access procedure” (assuming no dedicated/scheduled resources are allocated). The random access procedure can be contention based (e.g. at initial connection from idle mode) or non-contention based (e.g. during Handover to a new cell). Random access resources and parameters are configured by the network and signaled to the UE (via broadcast or dedicated signaling). Contention based random access procedure encompasses the transmission of a random access preamble by the UE (subject to possible contention with other UEs), followed by a random access response (RAR) in DL (including allocating specific radio resources for the uplink transmission). Afterwards, the UE transmits the initial UL message (e.g. RRC connection Request) using the allocated resources, and wait for a contention resolution message in DL (to confirming access to that UE). The UE could perform multiple attempts until it is successful in accessing the channel or until a timer (supervising the procedure) elapses. Non-contention based random access procedure foresees the assignment of a dedicated random access resource/preamble to a UE (e.g. part of an HO command). This avoids the contention resolution phase, i.e. only the random access preamble and random access response messages are needed to get channel access.

From a PHY perspective, a random access preamble is transmitted (UL) in a PRACH, random access response (DL) in a PDSCH, UL transmission in a PUSCH, and contention resolution message (DL) in a PDSCH.

……………………………………………………………………………………………………………………

Radio interface functional aspects:
Multiple access schemes

Which access scheme(s) does the proposal use? Describe in detail the multiple access schemes employed with their main parameters.

–        Downlink and Uplink:

The multiple access is a combination of

●      OFDMA: Synchronous/scheduling-based; the transmission to/from different UEs uses mutually orthogonal frequency assignments. Granularity in frequency assignment: One resource block consisting of 12 subcarriers. Multiple sub-carrier spacings are supported including 15kHz, 30kHz, 60kHz and 120kHz for data (see Item 5.2.3.2.7 and reference therein).

1.         CP-OFDM is applied for downlink. DFT-spread OFDM and CP-OFDM are available for uplink.

2.           Spectral confinement technique(s) (e.g. filtering, windowing, etc.) for a waveform at the transmitter is transparent to the receiver. When such confinement techniques are used, the spectral utilization ratio can be enhanced.

●      TDMA: Transmission to/from different UEs with separation in time. Granularity: One slot consists of 14 OFDM symbols and the physical length of one slot ranges from 0.125ms to 1ms depending on the sub-carrier spacing (for more details on the frame structure, see Item 5.2.3.2.7 and the references therein).

●      SDMA: Possibility to transmit to/from multiple users using the same time/frequency resource (SDMA a.k.a. “multi-user MIMO”) as part of the advanced-antenna capabilities (for more details on the advanced-antenna capabilities, see Item 5.2.3.2.9 and the reference therein)

At least an UL transmission scheme without scheduling grant is supported for initial access. 

Inter-cell interference suppressed by processing gain of channel coding allowing for a frequency reuse of one (for more details on channel-coding, see Item 5.2.3.2.2.3 and the reference therein).                                                                                                         

(Note: Synchronous means that timing offset between UEs is within cyclic prefix by e.g. timing alignment.) 

For NB-IoT, the multiple access is a combination of OFDMA, TDMA, where OFDMA and TDMA are as follows

·       OFDMA:

n     UL: DFT-spread OFDM. Granularity in frequency domain: A single sub-carrier with either 3.75 kHz or 15 kHz sub-carrier spacing, or 3, 6, or 12 sub-carriers with a sub-carrier spacing of 15 kHz. A resource block consists of 12 sub-carriers with 15 kHz sub-carrier spacing, or 48 sub-carriers with 3.75 kHz sub-carrier spacing 180 kHz.

n     DL: Granularity in frequency domain: one resource block consisting of 6 or 12 subcarriers with 15 kHz sub-carrier spacing90 or 180 kHz

·       TDMA: Transmission to/from different UEs with separation in time

n     UL: Granularity: One resource unit of 1 ms, 2 ms, 4 ms, 8 ms, with 15 kHz sub-carrier spacing, depending on allocated number of sub-carrier(s); or 32 ms with 3.75 kHz sub-carrier spacing (for more details on the frame structure, see Item 5.2.3.2.7 and the references therein)

n     DL: Granularity: One resource unit (subframe) of length 1 ms.

    Repetition of a transmission is supported

Modulation scheme
What is the baseband modulation scheme? If both data modulation and spreading modulation are required, describe in detail.

Describe the modulation scheme employed for data and control information.

What is the symbol rate after modulation?

–        Downlink:

●      For both data and higher-layer control information: QPSK, 16QAM, 64QAM and 256QAM (see [T3.9038.211] sub-clause 7.3.1.2).

●      L1/L2 control: QPSK (see [T3.9038.211] sub-clause 7.3.2.4).

●      Symbol rate: 1344ksymbols/s per 1440kHz resource block (equivalently 168ksymbols/s per 180kHz resource block)

–        Uplink:

●      For both data and higher-layer control information: π/2-BPSK with spectrum shaping, QPSK, 16QAM, 64QAM and 256QAM (see [T3.9038.211] sub-clause 6.3.1.2).

●      L1/L2 control: BPSK, π/2-BPSK with spectrum shaping, QPSK (see [T3.9038.211] sub-clause 6.3.2).

●      Symbol rate: 1344ksymbols/s per 1440kHz resource block (equivalently 168ksymbols/s per 180kHz resource block)

The above is at least applied to eMBB. 

For NB-IoT, the modulation scheme is as follows.

·    Data and higher-layer control: π/2-BPSK (uplink only), π/4-QPSK (uplink only), QPSK

·    L1/L2 control: π/2-BPSK (uplink), QPSK (uplink), QPSK (downlink)

Symbol rate: 168 ksymbols/s per 180 kHz resource block. For UL, less than one resource block may be allocated.

PAPR

What is the RF peak to average power ratio after baseband filtering (dB)? Describe the PAPR (peak-to-average power ratio) reduction algorithms if they are used in the proposed RIT/SRIT.

The PAPR depends on the waveform and the number of component carriers. The single component carrier transmission is assumed herein when providing the PAPR. For DFT-spread OFDM, PAPR would depend on modulation scheme as well. 

For uplink using DFT-spread OFDM, the cubic metric (CM) can also be used as one of the methods of predicting the power de-rating from signal modulation characteristics, if needed. 

–        Downlink:

The PAPR is 8.4dB (99.9%)

–        Uplink:

●      For CP-OFDM:

The PAPR is 8.4dB (99.9%)

●      For DFT-spread OFDM:

The PAPR is provided in the table below.

Modulation π/2 BPSK with Spectrum shaping using 1+D filter QPSK 16QAM 64QAM 256QAM
PAPR (99.9%) 1.75 dB 5.8 dB 6.5 dB 6.6 dB 6.7 dB
CM

(99.9%)

0.3 dB 1.2 dB 2.1 dB 2.3 dB 2.4 dB

 

 Any PAPR-reduction algorithm is transmitter-implementation specific for uplink and downlink. 

For NB-IoT,                       

–        Downlink:

The PAPR is 8.0dB (99.9%) on 180kHz resource.

–        Uplink:  

The PAPR is 0.23 – 5.6 dB (99.9 %) depending on sub-carriers allocated for available NB-IoT UL modulation. 

Error control coding scheme and interleaving
Provide details of error control coding scheme for both downlink and uplink.

For example,

–   FEC or other schemes?

The proponents can provide additional information on the decoding schemes.

–        Downlink and Uplink:

●      For data: Rate 1/3 or 1/5 Low density parity check (LDPC) coding, combined with rate matching based on puncturing/repetition to achieve a desired overall code rate (For more details, see [T3.9038.212] sub-clauses 5.3.2). LDPC channel coder facilitates low-latency and high-throughput decoder implementations.

●      For L1/L2 control: For DCI (Downlink Control Information)/UCI (Uplink Control Information) size larger than 11 bits, Polar coding, combined with rate matching based on puncturing/repetition to achieve a desired overall code rate (For more details, see [T3.9038.212] sub-clauses 5.3.1). Otherwise, repetition for 1-bit; simplex coding for 2-bit; reedmuller coding for 3~11-bit DCI/UCI size.

The above scheme is at least applied to eMBB.

Decoding mechanism is receiver-implementation specific

 For NB-IoT, the coding scheme is as follows:

·       For data: Rate 1/3 Turbo coding in UL, and rate-1/3 tail-biting convolutional coding in DL, each combined with rate matching based on puncturing/repetition to achieve a desired overall code rate; one transport block can be mapped to one or multiple resource units (for more details, see [T3.9036.212] sub-clause 6.2)

·       For L1/L2 control: For L1/L2 control: Rate-1/3 tail-biting convolutional coding. Special block codes for some L1/L2 control signaling (For more details, see [T3.9036.212] sub-clauses 5.1.3.1) 

Describe the bit interleaving scheme for both uplink and downlink.

–        Downlink:

●      For data: bit interleaver is performed for LDPC coding after rate-matching (For more details, see [T3.9038.212] sub-clauses 5.4.2.2)

●      For L1/L2 control: Bit interleaving is performed as part of the encoding process for Polar coding (For more details, see [T3.9038.212] sub-clauses 5.4.1.1)

–        Uplink:

●      For data: bit interleaver is performed for LDPC coding after rate-matching (For more details, see [T3.9038.212] sub-clauses 5.4.2.2)

●      For L1/L2 control: Bit interleaving is performed for Polar coding after rate-matching (For more details, see [T3.9038.212] sub-clauses 5.4.1.3)

The above scheme is at least applied to eMBB.

 NB-IOT 

Uplink

For Control (Format 2) : Bit interleaver is not applied

For Data (Format1): Bit interleaver is performed after rate matching only for multitone transmissions (3,6,12). For single tone transmissions it is not applicable.    

-Downlink

Bit interleaver is not applied

 

Describe channel tracking capabilities (e.g. channel tracking algorithm, pilot symbol configuration, etc.) to accommodate rapidly changing delay spread profile.

To support channel tracking, different types of reference signals can be transmitted on downlink and uplink respectively.

–        Downlink:

●        Primary and Secondary Synchronization signals (PSS and SSS) are transmitted periodically to the cell. The periodicity of these signals is network configurable. UEs can detect and maintain the cell timing based on these signals. If the gNB implements hybrid beamforming, then the PSS and SSS are transmitted separately to each analogue beam. Network can configure multiple PSS and SSS in frequency domain.

●        UE-specific Demodulation RS (DM-RS) for PDCCH can be used for downlink channel estimation for coherent demodulation of PDCCH (Physical Downlink Control Channel). DM-RS for PDCCH is transmitted together with the PDCCH.

●       UE-specific Demodulation RS (DM-RS) for PDSCH can be used for downlink channel estimation for coherent demodulation of PDSCH (Physical Downlink Shared Channel). DM-RS for PDSCH is transmitted together with the PDSCH.

●       UE-specific Phase Tracking RS (PT-RS) can be used in addition to the DM-RS for PDSCH for correcting common phase error between PDSCH symbols not containing DM-RS. It may also be used for Doppler and time varying channel tracking. PT-RS for PDSCH is transmitted together with the PDSCH upon need.

●       UE-specific Channel State Information RS (CSI-RS) can be used for estimation of channel-state information (CSI) to further prepare feedback reporting to gNB to assist in MCS selection, beamforming, MIMO rank selection and resource allocation. CSI-RS transmissions are transmitted periodically, aperiodically, and semi-persistently on a configurable rate by the gNB. CSI-RS also can be used for interference measurement and fine frequency/time tracking purposes.

–        Uplink:

●        UE-specific Demodulation RS (DM-RS) for PUCCH can be used for uplink channel estimation for coherent demodulation of PUCCH (Physical Uplink Control Channel). DM-RS for PUCCH is transmitted together with the PUCCH.

●        UE-specific Demodulation RS (DM-RS) for PUSCH can be used for uplink channel estimation for coherent demodulation of PUSCH (Physical Uplink Shared Channel). DM-RS for PUSCH is transmitted together with the PUSCH.

●        UE-specific Phase Tracking RS (PT-RS) can be used in addition to the DM-RS for PUSCH for correcting common phase error between PUSCH symbols not containing DM-RS. It may also be used for Doppler and time varying channel tracking. DM-RS for PUSCH is transmitted together with the PUSCH upon need.

●        UE-specific Sounding RS (SRS) can be used for estimation of uplink channel-state information to assist uplink scheduling, uplink power control, as well as assist the downlink transmission (e.g. the downlink beamforming in the scenario with UL/DL reciprocity). SRS transmissions are transmitted periodically aperiodically, and semi-persistently by the UE on a gNB configurable rate.

Details of channel-tracking/estimation algorithms are receiver-implementation specific, and not part of the specification.

Details of channel-tracking/estimation algorithms are receiver-implementation specific, e.g. MMSE-based channel estimation with appropriate interpolation in time and frequency domain could be used.

 NB-IOT

 NB-IoT is based on following signals transmitted in the downlink: the primary and secondary narrowband synchronization signals. The narrowband primary synchronization sequence is transmitted over 11 sub-carriers from the first subcarrier to the eleventh subcarrier in the sixth subframe of each frame, and the narrowband secondary synchronization sequence is transmitted over 12 sub-carriers in the NB-IoT carrier in the tenth subframe of every other frame.

 ●       Demodulation RS (DM-RS) for NPUSCH format 1&2 (used for Data and control respectively) can be used for uplink channel estimation for coherent demodulation of NPUSCH F1 & F2 (Narrowband Physical Uplink Shared Channel Format 1 and 2). DM-RS for NPUSCH F1& F2 is transmitted together with the NPUSCH F1 & F2. They are not UE specific, as they do not depend on RNTI. The reference sequence generation is different for single tone and multi tone. For more details refer to [T3.9036.211]

 For single-tone NPUSCH with UL-SCH demodulation, uplink demodulation reference signals are transmitted in the 4- th block of the slot for 15 kHz subcarrier spacing, and in the 5-th block of the slot for 3.75 kHz subcarrier spacing. For multi-tone NPUSCH with UL-SCH demodulation, uplink demodulation reference signals are transmitted in the 4-th block of the slot. The uplink demodulation reference signals sequence length is 16 for single-tone NPUSCH with ULSCH transmission, and equals the size (number of sub-carriers) of the assigned resource for multi-tone transmission. For single-tone NPUSCH with UL-SCH transmission, multiple narrow band reference signals can be created: – Based on different base sequences; – A common Gold sequence. For multi-tone NPUSCH with UL-SCH transmission, multiple narrow band reference signals are created: – Based on different base sequences; – Different cyclic shifts of the same sequence. For NPUSCH with ACK/NAK demodulation, uplink demodulation reference signals are transmitted in the 3-rd, 4-th and 5-th block of the slot for 15 kHz subcarrier spacing, and in the 1-st, 2-nd and 3-rd block of the slot for 3.75 kHz subcarrier spacing. Multiple narrow band reference signals can be created: – Based on different base sequences; – A common Gold sequence; – Different orthogonal sequences (OCC). 

Physical channel structure and multiplexing
What is the physical channel bit rate (M or Gbit/s) for supported bandwidths?

i.e., the product of the modulation symbol rate (in symbols per second), bits per modulation symbol, and the number of streams supported by the antenna system.

The physical channel bit rate depends on the modulation scheme, number of spatial-multiplexing layer, number of resource blocks in the channel bandwidth and the subcarrier spacing used. The physical channel bit rate per layer can be expressed as

Rlayer = Nmod x NRB x 2µ x 168 kbps

where                                                    

–     Nmod is the number of bits per modulation symbol for the applied modulation scheme (QPSK: 2, 16QAM: 4, 64QAM: 6, 256QAM: 8)

–     NRB is the number of resource blocks in the aggregated frequency domain which depends on the channel bandwidth.

–    µ depends on the subcarrier spacing, , given by

For example, a 400 MHz carrier with 264 resource blocks using 120 kHz subcarrier spacing, , and 256QAM modulation results in a physical channel bit rate of 2.8 Gbit/s per layer.

NB-IOT

The physical channel bit rate depends on the modulation scheme, number of tones used in the channel bandwidth in the resource block and the subcarrier spacing used. The physical channel bit rate per user can be expressed as :

Uplink

NPUSCH Format 1

R =  Nmod x Ntone  x 12 kbps for carrier spacing of 15kHz

where                                                    

–     Nmod is the number of bits per modulation symbol for the applied modulation scheme (QPSK: 2, BPSK:1)

–     Ntone  is the number of tones . This can be 1,3,6,12

R =  Nmod x 3 kbps for carrier spacing of 3.75kHz

Downlink

R =  Nmod x 12  x 12 kbps 

Layer 1 and Layer 2 overhead estimation.

Describe how the RIT/SRIT accounts for all layer 1 (PHY) and layer 2 (MAC) overhead and provide an accurate estimate that includes static and dynamic overheads.

–        Downlink

The downlink L1/L2 overhead includes:

1.       Different types of reference signals

a.       Demodulation reference signals for PDSCH (DMRS-PDSCH)

b.       Phase-tracking reference signals for PDSCH (PTRS-PDSCH)

c.        Demodulation reference signals for PDCCH

d.       Reference signals specifically targeting estimation of channel-state information (CSI-RS)

e.        Tracking reference signals (TRS)

2.       L1/L2 control signalling transmitted on the up to three first OFDM symbols of each slot

3.       Synchronization signals and physical broadcast control channel including demodulation reference signals included in the SS/PBCH block

4.       PDU headers in L2 sub-layers (MAC/RLC/PDCP)

The overhead due to different type of reference signals is given in the table below. Note that demodulation reference signals for PDCCH is included in the PDCCH overhead.

Reference signal type Example configurations Overhead for example configurations
DMRS-PDSCH As examples, DMRS can occupy 1/3, ½, or one full OFDM symbol. 1, 2, 3 or 4 symbols per slot can be configured to carry DMRS. 2.4 % to 29 %
PTRS- PDSCH 1 resource elements in frequency domain every second or fourth resource block. PTRS is mainly intended for FR2. 0.2% or 0.5 % when configured.
CSI-RS 1 resource element per resource block per antenna port per CSI-RS periodicity 0.25 % for 8 antenna ports transmitted every 20 ms with 15 kHz subcarrier spacing
TRS 2 slots with 1/2 symbol in each slot per transmission period 0.36 % or 0.18% respectively for 20 ms and 40ms periodicity

The overhead due to the L1/L2 control signalling is depending on the size and periodicity of the configured CORESET in the cell and includes the overhead from the PDCCH demodulation reference signals. If the CORESET is transmitted in every slot, maximum control channel overhead is 21% assuming three symbols and whole carrier bandwidth used for CORESET, while a more typical overhead is 7% when 1/3 of the time and frequency resources in the first three symbols of a slot is allocated to PDCCH.

The overhead due to the SS/PBCH block is given by the number of SS/PBCH blocks transmitted within the SS/PBCH block period, the SS/PBCH block periodicity and the subcarrier spacing. Assuming a 100 resource block wide carrier, the overhead for 20 ms periodicity is in the range of 0.6 % to 2.3 % if the maximum number of SS/PBCH blocks are transmitted.

–        Uplink

L1/L2 overhead includes:

1.       Different types of reference signals

a.       Demodulation reference signal for PUSCH

b.       Demodulation reference signal for PUCCH

c.        Phase-tracking reference signals

a.       Sounding reference signal (SRS) used for uplink channel-state estimation at the network side

2.       L1/L2 control signalling transmitted on a configurable amount of resources (see also Item 4.2.3.2.4.5)

3.       L2 control overhead due to e.g., random access, uplink time-alignment control, power headroom reports and buffer-status reports

4.       PDU headers in L2 layers (MAC/RLC/PDCP)

The overhead due to due to demodulation reference signal for PUSCH is the same as the overhead for demodulation reference signal for PDSCH, i.e.  4 % to 29 % depending on number of symbols configured. Also, the phase-tracking reference signal overhead is the same in UL as in DL.

The overhead due to periodic SRS is depending on the number of symbols configured subcarrier spacing and periodicity. For 20 ms periodicity, the overhead is in the range of 0.4% to 1.4% assuming15 kHz subcarrier spacing.

Amount of uplink resources reserved for random access depends on the configuration.

The relative overhead due to uplink time-alignment control depends on the configuration and the number of active UEs within a cell.

The amount of overhead for buffer status reports depends on the configuration.

The amount of overhead caused by 4 highly depends on the data packet size.

……………………………………………………………………………………………………………….. 

For NB-IoT, the overhead from Narrowband RS (NRS) is dependent on the number of cell-specific antenna ports N (1 or 2) and equals 8 x N / 168 %.

The overhead from NB-IoT downlink control signaling is dependent on the amount of data to be transmitted. For small infrequent data transmissions, the downlink transmissions are dominated by the L2 signaling during the connection setup. The overhead from L1 signaling is dependent on the configured scheduling cycle.

The overhead due to Narrowband synchronization signal and Narrowband system information broadcast messages is only applicable to the NB-IoT anchor carrier. The actual overhead depends on the broadcasted system information messages and their periodicity. The overhead can be estimated to be around 26.25%.

 

For NB-IoT UL, data and control are sharing the same resources and the overhead from L1/L2 control signaling depend on the scheduled traffic in the DL. The UL control signaling is dominated by RLC and HARQ positive or negative acknowledgments. A typical NB-IoT NPRACH overhead is in the order of 5 %.

Variable bit rate capabilities:

Describe how the proposal supports different applications and services with various bit rate requirements.

For a given combination of modulation scheme, code rate, and number of spatial-multiplexing layers, the data rate available to a user can be controlled by the scheduler by assigning different number of resource blocks for the transmission. In case of multiple services, the available/assigned resource, and thus the available data rate, is shared between the services.

Variable payload capabilities:

Describe how the RIT/SRIT supports IP-based application layer protocols/services (e.g., VoIP, video-streaming, interactive gaming, etc.) with variable-size payloads.

See also 5.2.3.2.4.3.

 

The transport-block size can vary between X bits and Y bits. The number of bits per transport block can be set with a fine granularity.

See [T3.9038.214] sub-clause 5.1.3.2 for details.

 

For NB-IoT, the maximum transport block size is 680 bits in the DL and 1000 bits in UL for the lowest UE category and 2536 bits for both DL and UL for the highest UE category.

See [T3.9036.213] sub-clause 16.4.1.5.1 for details.

Signalling transmission scheme:

Describe how transmission schemes are different for signalling/control from that of user data.

–        Downlink

L1/L2 control signalling is transmitted in assigned resources time and frequency multiplexed with data within the bandwidth part (BWP, see item 5.2.3.2.8.1). Control signalling is limited to QPSK modulation (QPSK, 16QAM, 64QAM and 256QAM for data). Control signalling error correcting codes are polar codes (LDPC codes for data).

–        Uplink                  

L1/L2 control signalling transmitted in assigned resources and can be time and frequency multiplexed with data within the BWP. L1/L2 control signalling can also be multiplexed with data on the PUSCH. Modulation schemes for L1/L2 control signalling is π/2-BPSK, BPSK and QPSK. Control signalling error correcting codes are block codes for small payload and polar codes for larger payloads (LDPC codes for data).

 

 

For both downlink and uplink, higher-layer signalling (e.g. MAC, RLC, PDCP headers and RRC signalling) is carried within transport blocks and thus transmitted using the same physical-layer transmitter processing as user data.

 

For NB-IoT the L1/L2 control signaling is confined to a configured set of resource blocks and can be time multiplexed with data and are transmitted in scheduled subframes

Small signalling overhead

Signalling overhead refers to the radio resource that is required by the signalling divided by the total radio resource which is used to complete a transmission of a packet. The signalling includes necessary messages exchanged in DL and UL directions during a signalling mechanism, and Layer 2 protocol header for the data packet.

Describe how the RIT/SRIT supports efficient mechanism to provide small signalling overhead in case of small packet transmissions.

There are multiple control channel formats that have included, and provide various levels of overhead. There is an overhead versus scheduling flexibility trade-off that can be used by the scheduler to reduce the signalling overhead.

 

NB-IOT: In case of small data packet transmission, the L1/L2 control signalling during the connection setup procedure is dominating the uplink and downlink transmissions. To minimize this overhead NB-IoT, allows a UE to resume of an earlier connection. As an alternative, the data can be transmitted over the control plane, which eliminates the need to setup the data plane connection.

NOTES:

1.    TSDSI’s RIT is one of five proposals for the IMT 2020 RIT/SRIT.

The other four are from: 3GPP,  South Korea, China, and ETSI/DECT Forum.  All but the latter are based on 3GPP “5G NR.”

  • The Candidate RIT/SRIT submission from China, as acknowledged in IMT-2020/5, is technically identical to the 5G NR RIT submitted from 3GPP as acknowledged in IMT-2020/3.
  • The candidate RIT/SRIT submission from South Korea, as acknowledged in IMT-2020/4, is technically identical to the 5G NR RIT submitted from 3GPP as acknowledged in IMT-2020/3.

……………………………………………………………………………………………………………………………………………………………………………………………………………

2.   3GPP release 16:

As we have stated numerous times, 3GPP’s final IMT 2020 RIT/SRIT submission to ITU-R  WP 5D will be largely based on 3GPP release 16 (with perhaps some elements of release 15 also included).  From the 3GPP website 

Release 16 will meet the ITU IMT-2020 submission requirements and the time-plan as outlined in RP-172101.

Some Background on 3GPP Release 16:

Here is the active status of 3GPP release 16 project.

The 3GPP release 16 completion date has been delayed by at least 3 months (1Q 2020) with no new completion date specified at this time.

3. DECT Forum/ETSI submission for IMT 2020 SRIT:

From a July 1, 2019 contribution to ITU-R WP5D Brazil meeting:

DECT Forum would like to announce its support and endorsement for the IMT-2020 contribution from ETSI for an SRIT candidate for inclusion in IMT-2020.   The proposed SRIT consists of two component RITs:
DECT-2020 NR RIT
3GPP 5G CANDIDATE FOR INCLUSION IN IMT-2020: SUBMISSION 2 FOR IMT-2020 (RIT)

DECT Forum confirms its continuation as a proponent of this IMT-2020 proposal.

……………………………………………………………………………………………………………………………………………………………………………………………………………

References:

India delays 5G trials; Advocates “the Indian Way” within ITU-R WP 5D for IMT 2020

ATIS endorses 3GPP IMT 2020 RIT submission to ITU-R WP 5D; sees no need for separate LMLC India national option

3GPP Workshop: IMT 2020 Submission to ITU-R WP5D and Timelines for 5G Standards Completion

TSDSI and the 5G IA signed a Memorandum of Understanding to foster collaboration on Research, Standards, Regulations and Policies

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

 

India’s 5G may lag due to low telecom infrastructure growth rate and insufficient fiber for backhaul

by Muntazir Abbas (edited by Alan J Weissberger) from Economic Times:

India’s 5G ambition may be thwarted as mobile infrastructure expansion is likely to remain low-paced following policy bottlenecks in the federal governance structure.  Add to that India’s weak fiberization, which is mandatory for high-speed wireless network backhaul.

The country’s existing telecom infrastructure catering to a billion active subscribers may require rapid expansion, but the absence of clarity on active network sharing, distributed right-of-way norms and thin fibre penetration, may not bring 2020 a true 5G year.

The Narendra Modi-led government is eyeing to make 5G services commercially available by next year after soon-to-start field trials which would be followed by a mega spectrum sale with 275 Mhz of airwaves earmarked for the newer technology.

Plagued with high debt, the telco incumbents  Vodafone Idea and Bharti Airtel, have not made much network investments over the past few years.  In a constrained scenario, sharing of active and passive networks assume much significance.

The Tower and Infrastructure Providers Association (Taipa) Director General Tilak Raj Dua says, “In order to make 5G a success story in India, it is essential to invest on network densification heavily through provisioning of fiber, small cells and mobile towers.”  Taipa represents telecom infrastructure companies in the country.

The India Department of Telecommunications (DoT), over the past few years, has apparently not been able to bring telecom tower companies to mainstream despite their ever-growing role in India’s digital service delivery.

The much-sought ‘infrastructure status’ accorded to the sector in 2012, has not materialised so far with firms seeking the Narendra Modi government to bring about radical reforms before the 5G make a debut.

Fiberization— A must do

Fibre-based backhaul is still in infancy in India. Industry’s assessment suggests that India’s robust 5G network would require 100 million fibre kilometres (m fkm) optic-fibre cable a year which has been growing at merely a rate of nearly 25 mfkm a year currently.

The government has recognized it as the strategic element for a high-speed data network, and has put a huge thrust and aims to increase fibre footprint to five fold or 7.5 million kilometres by 2022, from the current 1.5 million kilometers. In addition, the national policy aims to fiberise at least 60% of telecom towers by 2022, eventually accelerating migration to 5G.

“Achieving such speeds make fiber connectivity essential. India’s high population density also translates into deeper and denser fiber network,” ratings agency ICRA in its finding said, adding that the country has about 500,000 towers of which only 22% are fiberised as against 80% in China.

Earlier, telecom secretary Aruna Sundararajan said that that the department would want to benchmark how much fibre is being deployed every day to achieve 4G and 5G, and it has to become a national priority, and added that if the industry ever wants to take 5G to the villages without fibre, it would not happen, as fiberisation remains a key driver.

State-run Bharat Sanchar Nigam Limited (BSNL) that has the largest fibre base of up to 8 lakh kilometres is considering to lease out dark fibre to private players in a run up to 5G rollout that according to analysts would help operators cut Capex by leveraging state telco’s infrastructure as per need basis.

ICRA estimates the present market value of fiber assets owned by major private telecom operators stand at nearly Rs 1.25 lakh crore, with the extent of fiber rollout over the next few years would require investments of Rs 2.5 lakh crore to 3 lakh crore and sharing of fiber among multiple telcos would be the driver for a reasonable return on capital.

“5G rollout is the biggest driver for all major investment into fibre infrastructure in next five years. The next generation of technology’s performance will be dependent on the overflow of content to and from data centres,” Sandeep Aggarwal, Managing Director of Paramount Communications said, and added that the only medium capable of meeting these demands is fiber which will need to be available at every nook and corner of the country.

The government, in a recently-unveiled national policy also talked about setting up of a National Fibre Authority (NFA), but ironically there has been a dismal activity so far to take the ambitious vision forward.

The challenges, from the fibre standpoint, however, continue to remain making the 5G ride not so smooth with fibre companies together with telecom carriers seeking the Narendra Modi-led government to accelerate efforts and carve out an incentive regime.

Reliance Jio, a pure-play 4G operator that has up its ante in fibre deployment for the ambitious fibre-to-the-home (FTTH) offering dubbed as JioGigaFiber said that that to incentivise telcos, the department should draw out incentives so that operators are not challenged to deliver on fiber which is a critical element for India’s digital growth.

Earlier, Mumbai-based Jio chief Mathew Oommen said that, “service providers should use incentives for creating a deeper fiber with the redundancy of routes,” and believes that incentives should be in the form of “conducive policy to attract more investments in building fibre infrastructure” by telcos.

“5G is an interesting initiative. There is still a lag in fiber deployments in remote locations. We have learnt how to roll out fiber throughout the country, and modern technologies aligned to 5G is also one of the important factors,” R&M chairman Hans Hess told ETT.

“5G needs fiber highways and tower fiberisation is essential to be accelerated and the establishment of National Fiber Authority similar to the National Highway Authority or NHAI. These aim towards a significant portion to be invested in fibre roll out,” Sterlite Technologies Limited (STL) Group CEO Anand Agarwal told ETT.

Company’s top executive said that the national policy has accorded fibre the status of a public utility, and since fibre is essential for both wireline and wireless networks, a greater level of confidence in fibre investment was much needed.

R&M’s Hess seconded Agarwal’s views, adding that a robust fibre-based backbone would be a vital element for a network of next generation of networks.

“There would be an increase in consumption of data due to the Internet of Things (IoT) proliferation. In order to produce more data faster, a strong backbone is needed that can be built on fiber,” the Swiss company’s executive added.

“5G technology will also require a multi-fold increase in small cells deployment, with each small cell having backhaul on fibre. We are woefully inadequate in terms of optic-fibre cable density both in urban and rural areas and a special focus for its densification in a time bound manner is essential for 5G deployments,” Agarwal added.

India’s fiber coverage in kilometre per capita works out to 0.09, which is far behind 0.87 for China and more than 1.3 for the United States and Japan, according to ICRA.

The Gurugram-based firm believes that fiber density in India would have to increase at least four-fold, and that would also mean that it would evolve as a separate industry in some time, similar to the telecom tower segment in the past two decades.

Active network sharing— Do it now

The 5G, based on low latency technology, requires a dense network to seamlessly deliver Internet connectivity enabled through a telecom infrastructure such as in-building solutions, small cells, fiber and fiberised mobile towers.

In a view to ease out financially-stressed operators, the government, in the policy has envisaged active network sharing that would allow telcos to share their networks and thereby reducing their capital (Capex) as well as operational (Opex) investment. Currently, the contours of the new regime are under a discussion stage together with the department and industry, and is expected to bring much respite to 5G rollouts.

The national policy, however, talks about encouraging sharing of active infrastructure by enhancing the scope of Infrastructure Providers (IP) and promoting deployment with incentives for common sharable, passive as well as active infrastructure.

“This (active network sharing) should be done in a more structured manner. All telecom service providers should make active sharing as freely as possible that could also help them reduce Capex as well as Opex in a scenario where margins are thin,” BSNL Chairman Anupam Shrivastava said.

Shrivastava further said that it would be going to help all service providers, and added that BSNL was offering its network for sharing and the same was expected from other operators.

Sector watchdog Telecom Regulatory Authority of India (Trai), in one of its whitepaper estimates the savings on account of active infrastructure sharing to the extent of 25-35% in Opex and 33-35% in Capex.

Network sharing, according to industry analysts, can significantly bring down 5G networks rollout as well as maintenance cost. New York-based McKinsey & Company in its finding has estimated the cost reduction of up to 40% — with major savings in rollout of small cells.

Current telecom infrastructure growth rate may play spoilsport to India’s 5G party5G network, according to Taipa’s director general Dua, will enable a new set of applications such as the connected devices and cars which could become a reality only if the coverage becomes ubiquitous.

In order to have a pervasive 5G and for contiguous operations, there would have to be mushrooming of small cells over a city. Infrastructure providers can play a vital role in faster deployment of small cells that comes with a huge investment and thus support telcos to save on Capex and Opex,” he added.

Telecom carriers with 5G ambitions would be able to leverage 4G unified license (UL) coverage through dual connectivity or UL-sharing and would be able to cover larger areas with the same number of sites. 5G coverage compared to 4G coverage using 1800 MHz (megahertz) spectrum band would be about 60%.

A greenfield 5G operator, according to Taipa estimates, would need to deploy about 66% more sites to compensate for penetration losses.

Right-of-way— Not so right

The industry, demanding ease in Right-of-Way (RoW) rules, has been under continuous discussions with the regulator as well as policymakers for shaping up a comprehensive ‘dig-once’ common duct policy framework that according to the industry would help in the proliferation of 5G infrastructure across the country.

The next generation technologies are shaping the world economies and the smart cities would be built on a fibre-centric network for enabling ubiquitous and seamless connectivity. Trai is expected to come out with a policy enabling ‘common duct’ that would take telecom infrastructure to a next-level of growth.

In the last two years, post industry’s continuous rigorous follow-ups, only 13 states have to some extent aligned their policies with the Centre’s RoW rules notified in November 2016, according to Taipa.

“There is an urgent need for the states to align their telecom infrastructure policies with the Indian Telegraph Right of Way Rules to facilitate deployment of mobile infrastructure and connect the unconnected,” Dua added.

Deployment of small cells is significant for a proliferation 5G in India, the network rollout would have to be facilitated through enabling policies, which, according to the group, should include mandatory provisions for small cells at government lands and premises with new business models to excite municipal corporations and state governments.

The infrastructure providers such as Bharti Infratel, ATC Corporation and GTL Infrastructure demand a uniform RoW charges and single-window clearances nationwide to facilitate the telecom infrastructure for the digital delivery of services as envisaged by the Centre.

https://telecom.economictimes.indiatimes.com/news/current-telecom-infrastructure-growth-rate-may-play-spoilsport-to-indias-5g-party/69596900

 

 

Tech Mahindra: India Needs to Begin 5G Spectrum Auction Now!

Manish Vyas, President of Communications Business and Chief Executive Officer of Network Services, of Tech Mahindra said the India Department of Telecom needs to commence the auction of 5G spectrum now.  He noted that regulators in some countries have already formulated policies and initiated spectrum auctions for the 5G roll out in their respective nations.

Vyas said 4G is yet to touch all parts of India and that needs to happens on a massive scale.  Yet there are some “definite green-shoots” of 5G trials.

More than technology, the bigger impediment could be the India regulatory body’s policy on 5G spectrum. The experimental license by DoT will need modifications, and till that happens, the sector is in for a “waiting game” he said.

“US, Australia, Italy, Switzerland, Saudi Arabia and more (have started 5G spectrum auctions). Spectrum is the life blood of any wireless network. For 5G, globally regulators have been licensing mid-band (3.5GHz) and in some countries mmWave (millimeter Wave) spectrum bands as well.

For 5G to be rolled out in India, the first necessary step is for the regulator to auction the 5G spectrum. Everything else will be gated on spectrum,” he wrote in an email to the Economic Times of India.

Vodafone Idea recently said the auction of 5G spectrum should not be held before 2020 as the industry needs time to develop India-specific use cases for the next-generation technology.

A DoT official in December last year said the government expects to complete processes for 5G spectrum auction by August, 2019.

See the source image

…………………………………………………………………………………………………..

Tech Mahindra established a strategic partnership with Intel on a wide range of topics spanning across Virtualization of RAN (radio access network) , Cloud native 5G Core and on Edge Computing, Vyas said.

“Intel brings best in class technology for 5G infrastructure and will form the foundation of 5G networks.

We are collaborating with Intel to maximise the benefits of their technology for 5G networks and we are also working on developing 5G use cases for specific industry verticals in the CoE,” he said.

The IT systems integrator is working with many telcos across North America, UK, Germany, Asia-pacific Australia New Zealand and North Asia regions on 5G launch and digitalisation programs, he explained.
Read more at:
………………………………………………………………………………………
UPDATE: India DoT panel on scope of 5G trials, experimental spectrum submits report

A panel set up to recommend the scope of 5G trials in the country has submitted its report to the Department of Telecom (DoT), a source said.

The DoT-constituted committee chaired by IIT Kanpur Director Abhay Karandikar was tasked to give recommendations on the scope of trials, as well as size, quantum, pricing and other aspects for offering experimental/trial spectrum for 5G and other trials.

A DoT source privy to the development said that the report was submitted recently and is currently being examined, but did not divulge details.

Some industry representatives had earlier informed the committee, during the past deliberations, that the various stages involved in the process of experimentation and trials such as import and release of equipment, logistic clearance, installation and commission of equipment, network integration, interoperability checking, and testing of applications require longer duration and that the existing validity of three months is very short and needs to be increased.

The National Digital Communications Policy 2018 outlines a mission to ‘propel India’ by enabling next generation technologies and services through investments, innovation and IPR generation.

In this regard, it underlines the need to harness the power of emerging digital technologies, including 5G, Artificial Intelligence, Internet of Things, Cloud and Big Data to enable provision of future-ready products and services.

https://www.moneycontrol.com/news/technology/dot-panel-on-scope-of-5g-trials-experimental-spectrum-submits-report-3988761.html

Mukesh Ambani of Reliance Jio wants to connect next billion in India

Infrastructure and affordability barriers are being broken in India by Reliance Industries Chairman and Managing Director Mukesh Ambani and his initiatives, a new survey said on Friday.  According to the survey by Booking Holdings, a growing affluence has lifted over a billion people out of poverty, creating a new middle class — in many countries for the first time — and driving a growth in consumer demand.  Asked which factors were driving, or were likely to drive, increased internet adoption, the respondents highlighted pull factors like the increased availability of high-quality infrastructure, improved affordability and better public understanding of the internet as factors that would drive increased uptake.

Asked which factors were driving, or were likely to drive, increased internet adoption, the respondents highlighted pull factors like the increased availability of high-quality infrastructure, improved affordability and better public understanding of the internet as factors that would drive increased uptake.

“This ties in neatly with the infrastructure — as opposed to the human — barriers, the removal of which our respondents identified as being key to unleashing the potential of the Next Billion.

“With projects such as the $35 billion investment in 4G by Indian billionaire Mukesh Ambani, these barriers are quickly coming down in India,” the report emphasised.

As on March 31, the subscriber base of Reliance Jio stood at 306.7 million. The average data consumption per user per month was 10.9 GB and average voice consumption 823 minutes per user per month.

“We at Jio are truly overwhelmed and proud to now serve over 300 million subscribers. The growth in data and voice traffic at this scale has been unparalleled,” Mukesh Ambani said.

Mukesh Ambani breaking all barriers to connect next billion

The average Jio customer data consumption per user per month was 10.9 GB and average voice consumption 823 minutes per user per month.

……………………………………………………………………………………………………………………………………………………………………………………

For the survey, Booking Holdings surveyed tech experts and tech leaders in three markets — China, India and Indonesia.  Nearly 74 per cent respondents in India said internet access is a basic necessity.

One of the most heartening and economically significant impacts of the expansion of connectivity in Asia was the corresponding improvement in the lives of women and girls.

Nearly 79 per cent of respondents said gender was not a barrier to internet adoption in their country.

“Nearly 86 per cent said that increased gender equality would drive adoption and 91 per cent said greater digital participation would also improve gender equality in their country,” the findings showed.

By large majorities, the respondents expected their countrymen and women to benefit from digital inclusion in ways that would help them become more educated and more prosperous — allowing the connected to rise up the social ladder.

“This aspirational edge to gathering digital transformation of all three countries reveals a growing individualistic and entrepreneurial culture that would not be out of place in Silicon Valley,” the survey noted.

According to Glenn Fogel, CEO, Booking Holdings, much of this explosion of commerce and entrepreneurship is due to the growing availability and ease of internet connectivity in Asia.

“In India, the e-commerce market is expected to quadruple in size between 2017 and 2022 to a value of $150 billion… Asians are going online to sell and to shop,” he said.

Reference:
https://telecom.economictimes.indiatimes.com/news/mukesh-ambani-breaking-all-barriers-to-connect-next-billion/69277389

Indian telcos propose year-long 5G field trials which begin this June!

India’s major mobile operators have both submitted proposals to conduct year-long field trials of 5G services.  Bharti Airtel, Vodafone Idea and Reliance Jio Infocomm – along with technology partners including Cisco, Samsung, Ericsson and Nokia – have submitted detailed proposals to the Department of Telecom, the Economic Times reported.

The Indian mobile network operators are now awaiting approvals, and it is expected to take an additional initial three months to complete preparations and clearances, the Cellular Operators’ Association of India (COAI) told the publication. COAI is the industry body that represents Vodafone Idea, Airtel and Jio.

 

Telcos, vendors seek government nod for a year-long spectrum for 5G field trials

 

But the Department of Telecom has previously expressed a reluctance to allocate airwaves for 5G trials beyond a 90 day window, which the industry believes would be way too short of a time to conduct the required trials.  The India government has not taken any decision yet on the duration, a contentious issue for airwaves allocation.

According to COAI, the industry is expected to finally reach an agreement with the DoT on the duration of the proposed allocations, as well as other issues.  The Telecommunications Regulator of India has recommended the 3.5-GHz frequency range be used for 5G, and aims to complete an initial 5G auction early next year.

The much-awaited network trial for 5G services in India is scheduled to start this June, with a Telecom Ministry panel recommending spectrum for the test run to the incumbent telcos for a three-month period.  The panel which deliberated on the quantum and duration of the spectrum trial has recommended 5G spectrum to Airtel, Vodafone Idea and Reliance Jio initially for three months, which can be scaled up to one year in case they need more time for network stabilisation.

The three equipment vendors who have got the green signal from the panel are Samsung, Nokia and Ericsson, sources said.

The allocation will take place in the next 15 days and telcos could start intial 5G run in June itself. The network trial licenses will be issued in a few days’ time.

References:

https://telecom.economictimes.indiatimes.com/news/telcos-vendors-seek-government-nod-for-a-year-long-spectrum-for-5g-field-trials/69231635

https://telecom.economictimes.indiatimes.com/news/5g-spectrum-trial-begins-next-month-for-3-months/69223222

 

Will Reliance Jio overtake Bharti Airtel today to become India’s 2nd largest telecom operator?

By: – Published: May 6, 2019. Edited for clarity by Alan J Weissberger, IEEE Techblog Content Manager

The race to become India’s second largest telecom operator between Bharti Airtel and Reliance Jio is still on.  With Airtel’s Q4 results due on Monday, it will soon become clear if Mukesh Ambani’s Jio will actually climb the ladder and outshine Sunil Bharti Mittal’s company.

With 29 crore wireless subscribers towards the end of February 2019, Reliance Jio has emerged as a tough competitor to many telecom operators in India. Considering Jio’s growth trend in the previous few quarters, it may even leave behind Vodafone-Idea, dethroning it as the current largest telecom firm in India.

While other telecom operators have mostly maintained a ‘lose’ or ‘barely growing’ trend on the subscriber base, Reliance Jio has been the only telecom which maintained a ‘gain’ streak throughout the year 2018.  For the QE Sep-Dec 18, Reliance Jio was the only private telco (along with PSU BSNL) to gain subscribers while both small and large players, including Vodafone-Idea, registered mostly negative growth. Jio had added close to 3 crore subscribers in that quarter, according to TRAI’s Indian Telecom Services Performance Report. In the year 2018, Reliance Jio has continued to add more than 2.5 crore subscribers every quarter.

Reliance Jio’s own reported user base tells a similar story. In its Jan-Mar 2019 quarterly results details, Reliance Jio reported over 30 crore subscribers at the end of March. Bharti Airtel is due to report its March-end user base today, along with its quarterly results.

NOTE: Crore is an Indian term that =ten million; or = 100 lakhs, especially of rupees, units of measurement, or people.

Reliance Jio vs Airtel vs Vodafone Idea: Detailed descriptions of plans here. Check which is best for you

Reliance Jio vs Airtel vs Vodafone Idea: Who will emerge as India’s largest telecom operator?

………………………………………………………………………………………………………………………………………………………………………………

As of February 2019:

  • Vodafone-Idea had over 40 crore users (wireline and wireless combined),
  • Bharti Airtel had over 34 crore users.
  • Reliance Jio was strong with a little less than 30 crore subscribers (TRAI figures). Vodafone-Idea leads in terms of market share for wireless subscribers with 34.58% share.
  • Bharti Airtel’s market share is 28.75%, while Reliance Jio is inching closer with 25.11%.

In terms of wireline market share, BSNL leads with more than half the subscription hold, followed by Bharti Airtel at 18.95%. For broadband services, Reliance Jio topples all other telecom operators with a 54% share in the market.

https://www.financialexpress.com/industry/will-reliance-jio-overtake-bharti-airtel-today-to-become-indias-2nd-largest-telecom-operator/1569268/

…………………………………………………………………………………………………………

Update- May 21, 2019:  Jio adds 9.4 million customers in March, Airtel, Vodafone-Idea lose

: Reliance Jio has added 9.4 million customers while India’s teledensity has declined 1.82% to 90.11%, from 91.86% in March 2019 with active wireless subscribers reaching 1,021.75 million, the sector regulator in a finding Tuesday said.

Jio has added 9.4 million users in March to take its user base to 307.7 million, while Vodafone Idea and Bharti Airtel lost 14.5 million and 15.1 million customers, respectively, to take their subscriber bases to 394.8 million and 325.2 million during the same period, the Telecom Regulatory Authority of India (Trai) said.

Bharti Airtel had 27.99% subscriber market share, Vodafone Idea 33.98% and Jio had 26.40% market share as of March 2019.
Vodafone Idea’s active use base, or VLR, was 93.27% of its overall subscribers, while Reliance Jio was at 84.04%. The finding revealed that Bharti Airtel has the maximum proportion – of 100.82% – of active wireless subscribers in the month of March 2019.

In the broadband segment, Vodafone Idea had 19.57%, Bharti Airtel 20.35% and Reliance Jio had 54.45% market share as of March this year.

The monthly decline rates of urban and rural subscription stood at 0.90% and 2.98% respectively in March 2019, according to Trai.

The regulator added that in March, 5.30 million subscribers submitted their requests for Mobile Number Portability (MNP), and the cumulative porting requests have increased from 423.11 million in February to 428.40 million at the end of March 2019.

https://telecom.economictimes.indiatimes.com/news/jios-adds-9-4-million-customers-in-march-airtel-vodafone-idea-lose-trai/69430347

…………………………………………………………………………………………………………

 

References:

Reliance Jio may overtake Vodafone Idea & Airtel to become India’s largest telecom firm by 2018 year end

 

Reliance Jio Blankets India with Inexpensive 4G Service; Where are the Profits?

 

Samsung deploying small cells in large volumes for Reliance Jio in India

 

India delays 5G trials; Advocates “the Indian Way” within ITU-R WP 5D for IMT 2020

India Delays 5G Trials:

5G technology trials in India are now expected to begin by  the end of the current calendar year or early next year, according to a recently-constituted committee looking into the 5G field trial initiative.

5G trials may happen towards the end of this year or early next year. Early deployments may happen in the second or third quarter of 2020,” Abhay Karandikar, director, IIT Kanpur and chairman of the recently set up committee to look into SG spectrum for trials told ETT.

The much-anticipated 5G field trials have hit a policy roadblock with the department of telecom (DoT) wireless planning and coordination wing (WPC) averse to allocating airwaves beyond 90 days, which according to industry, would not serve any purpose.

March 29, 2919 Update from Prof AJ Paulraj:

“Government of India has confirmed that several statements in the article are incorrect. 5G trials are this year on and WPC has not created any hurdles.”

That implies the first reference cited (see below) is inaccurate.

………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Prof. Karandikar said that the industry needs to get trial spectrum for a reasonable duration or for at least one year with a minimum cost to telecom carriers for carrying out 5G trials.   “Current mechanisms of experimental license by DoT require modifications in terms of scope and duration for enabling telecom service providers and industry to undertake the 5G trial at the network level,” he said.

On February 25, the department has formed a committee headed by Karandikar with representation from the academia, industry and the government, to make recommendations related to licensing for carrying out 5G pilots, and also asked for the quantum, size, price and other aspects for offering experimental spectrum. The 5G India Forum will serve as a strategic national initiative which concerns all stakeholders, private and public, small and large, to meet the challenge of making 5G a reality in India, at timelines aligning with the rest of world.  5G India Forum is a collaborative body under the aegis of COAI.

Objective:  This 5G India forum aims to become the leading force in the development of next generation communications and will enable synergizing national efforts and will play a significant role in shaping the strategic, commercial and regulatory development of the 5G ecosystem in India.

Earlier in 2018, the Indian government has asked telecom service providers— Vodafone IdeaBharti Airtel and Reliance Jio— to partner with telecom gear makers such as Cisco, Samsung, Ericsson and Nokia, and showcase India-specific 5G use cases by early 2019.

The department has so far excluded Chinese telecom equipment firm ZTE from awarding intent letter to participate in trials. Shenzhen-based Huawei said it was still awaiting clarity from the government to conduct 5G trials and could deploy a 5G network within the three week’s time after the allocation of trial radiowaves.

Karandikar, one of the sector regulator’s advisers is also a member of the 5G high-level forum which under the noted scientist AJ Paulraj is working on to prepare a roadmap for 5G rollout in the country in tandem with some of the matured markets worldwide.  In September 2018, the forum submitted its recommendations to the government which has constituted several implementation-level committees or working groups to develop a wider 5G deployment strategy.

References:

https://telecom.economictimes.indiatimes.com/news/india-delays-5g-trials-to-start-by-end-of-year/68522451

https://www.coai.com/5g_india_forum

 

………………………………………………………………………………………………………………………………………………………………………………………………………………………

ITU-R WP5D split on the way forward for IMT 2020 specifications:

At the February 2019 ITU-R WP5D meeting 31bis, TSDSI (India’s telecom standards body) submitted updated information related to their proposal of candidate IMT-2020 radio interfaces.  The TDSI contribution was reviewed and the respective IMT-2020 documents were revised accordingly.

This meeting received and reviewed a number of input contributions on Process and use of the Global Core Specification (GCS), references, and related certifications in conjunction with Recommendation ITU-R M.[IMT‑2020.SPECS].”  There continues to be two diverse philosophies on how to proceed with the document – one desiring to significantly alter the process to support specific national needs (e.g. India) in the transposition phase of the process and the other demonstrating how the same objective could be accomplished with the existing process remaining unaltered in its scope, steps, and procedures.

The two views are Indian Way Forward (provided by TSDSI) and Summary of a Proposed IMT-2020 VVV Way Forward (AT&T v3 2-14-19) (provided by AT&T).

The Indian Way courtesy of TSDSI:

  • India believes that, the process works well ONLY for countries with strong industry presence in 3GPP
  • Most developing countries have no way to influence the technology they consume
  • Much of the value transactions in standardization are abrogated to external bodies
  • That relegates most of the developing countries to be consumers

What the ITU-R IMT 2020 standardization process should enable:

  • India believes the process should enable developing countries to take 3GPP (or other GCS) as the base specification.
  • Then provide enhancements and innovations to the base specifications, depending on local use cases.
  • TDSI believes it is possible to preserve interoperability/international roaming, while allowing for these regional enhancements
  • That is not enabled by the current process

TSDSI Proposal for ITU-R IMT-2020 Standard:

  • Reference to Base Specification  – Version 1.
  • Delta-DIS Version 1. (for national options)

References:

ATIS endorses 3GPP IMT 2020 RIT submission to ITU-R WP 5D; sees no need for separate LMLC India national option

TSDSI’s Initial Proposal on candidate RIT/SRIT for IMT 2020 Accepted

 

 

 

 

 

Page 7 of 8
1 5 6 7 8