Samsung vRAN to power KDDI 5G network in Japan
Samsung will deploy its cloud-native, fully virtualized Radio Access Network (vRAN) in KDDI’s 5G network, following the successful completion of a 5G Standalone (SA) call using Samsung’s vRAN and another vendor’s 5G Massive MIMO radios. Among other capabilities, virtualized networks will enable 5G network slicing. Samsung and KDDI will begin trials in Q1 of 2022, and start commercial deployment in the second half of 2022.
“We are delighted to extend our collaboration with Samsung and to become the first operator in Japan to use their 5G vRAN solutions, which are currently delivering superior performance in commercial networks,” said Kazuyuki Yoshimura, Chief Technology Officer of KDDI. “We believe in the power of virtualization, and this collaboration serves as a meaningful catalyst for driving the next phase of 5G innovation, and advancing our networks to offer best-in-class 5G services.”
With its latest 5G vRAN technology, Samsung brings a range of improvements to KDDI’s network. By replacing dedicated baseband hardware with software elements, vRAN offers more deployment flexibility, greater scalability and improved resource efficiency in network operation. With its cloud-native, container-based architecture, Samsung’s vRAN also simplifies end-to-end network management through automation, allowing operators to quickly introduce new services with minimal impact on deployment.
“With commercially-proven performance and reliability, our vRAN is an attractive technology option for operators — from both the deployment and operational perspectives,” said Woojune Kim, Executive Vice President, Head of Global Sales & Marketing, Networks Business at Samsung Electronics.
“We are excited to mark another milestone with KDDI, following previous network collaborations that include the commercialization of 5G in 2020, and the rollout of 700MHz 5G in 2021. We look forward to our ongoing work with KDDI to bring new 5G innovations to their customers.”
Virtualized networks will play a key role in supporting KDDI’s pursuit of new 5G use cases and next-generation capabilities. Last year, Samsung and KDDI demonstrated how 5G end-to-end network slicing could play a key role for mobile operators by enabling the creation of multiple virtual networks within a single physical network infrastructure.
Samsung has been at the forefront of vRAN leadership around the world, unveiling its fully virtualized 5G RAN in 2020, followed by successful commercialization with a Tier 1 operator in the U.S. In June 2021, the company was selected by a major European operator to bring vRAN to the U.K.
Samsung recently demonstrated its vRAN capability to support Massive MIMO radios on mid-band, reaching multi-gigabit speeds. The company also teamed with a Tier 1 U.S. operator to complete an end-to-end 5G vRAN trial over C-Band in a live network environment, demonstrating vRAN performance equal to that of traditional hardware-based equipment.
References:
https://news.samsung.com/global/samsung-and-kddi-to-bring-5g-vran-to-japan
Quortus: IT Decision Makers Very Interested in Private Cellular Networks
New research commissioned by LTE and 5G network solutions provider Quortus indicates that enterprise IT decision makers are becoming increasingly interested in private networks as an answer to productivity and efficiency woes caused by poor connectivity. Almost two-thirds (63%) of US and European enterprises have suffered reduced productivity and efficiency due to weak and unreliable public network connectivity.
Private cellular networks are 3GPP-based cellular networks offering a combination of low-power wide-area (LPWA), broadband LTE and even “massive” scale, ultra-reliable 5G connectivity for exclusive use by private parties. Deployed and managed separately of public cellular networks, they offer improved security, reliability and control.
The research, which surveyed 260 IT decision makers from the U.S., U.K., Germany and France, found that nearly two thirds (63%) of respondents said that weak and unreliable connectivity results in reduced productivity and efficiency at their enterprise. Further, a staggering 91% of them believe such limitations are directly tied to the limitations of macro public networks.
The research concluded that a fifth of enterprises do not believe the quality of their existing connectivity will support their future digital ambitions. Many enterprise IT leaders are looking for alternative options. 97% of them are ready to invest more money to ensure better connectivity.
The survey findings, published in an exclusive report ‘Build, don’t buy: the road to private networks‘ highlight the perceived inadequacies of public fixed and mobile networks:
- 91% of enterprise respondents believe the limitations of their existing connectivity is squarely tied to the limitations of macro public networks
- The major limitations of public networks frustrating enterprises include weak security, restricted network speeds and limited available network capacity limiting innovation
- 97% of organizations are ready to invest more money to ensure better connectivity, and almost half (47%) would increase current budgets by 10% if it reduced existing fears and limitations and helped drive operational efficiency
- A fifth of enterprises do not believe the quality of their existing connectivity will support the achievement of their future digital ambitions
“Enterprises, until recently, have had to rely on public macro networks for broadband connectivity,” said Neil Dunham, VP of sales at Quortus. “Our study reveals significant levels of frustration with the inherent limitations of macro networks. Too often global enterprises are finding that the quality of connectivity they receive is decided by an enterprise’s location, relative to network sites and the number of users relying on them.”
Dunham continues: “This burgeoning excitement towards private networks is seeing enterprises consider their options when it comes to build, design, and deployment. The key areas of motivation amongst enterprise IT decision makers include a willingness to benefit from specialist vertical knowledge and expertise, not being limited by a public operator’s footprint or service capability and need for bespoke requirements now and in the future. Only private networks can offer a truly bespoke connectivity solution to guarantee appropriate levels of performance, reliability, security and control for all global enterprises.”
Quortus also explored how those enterprises already working on establishing private networks at their facilities are doing so or intend to do, finding that 23% of enterprises surveyed currently operate their own network, while third (33%) would prefer to build their own network with the help of specialist partners, rather than buy it directly from a public operator.
Some of the major findings include a mission to build and not buy
The Quortus study revealed that many global enterprises are taking the safeguarding of high-quality connectivity into their own hands by building and operating private cellular networks.
- Almost a quarter (23%) of enterprises surveyed currently operate their own network
- A third (33%) would prefer to build their own network with the help of specialist partners, rather than buy it directly from a public operator
- The top perceived enterprise benefits of private networks include greater security, increased performance and tighter network control.
Reports from industry organization Global mobile Suppliers Association (GSA) supports Quortus’ research. The GSA in August said it is tracking at least 370 companies around the world that have been or are investing in private mobile networks, with 5G deployments beginning to gain momentum. The data suggests that manufacturing is an early adopter of local area private mobile networks, with 79 identified companies holding suitable licenses or involved in known pilots or deployments of LANs or probable LANs. Mining follows second, with ports also actively trialing/deploying local area private mobile networks.
“Our study reveals significant levels of frustration with the inherent limitations of macro networks. Too often global enterprises are finding that the quality of connectivity they receive is decided by an enterprise’s location, relative to network sites, and the number of users relying on them.”
“As this study shows, strong and reliable connectivity is a significant enabler to greater operational efficiency, enhanced service innovation and better productivity. It is therefore no surprise that enterprises are evaluating their future needs so closely and evaluating alternative means of supply.”
About Quortus:
Quortus is a pioneering UK company that is changing the mobile communications world using the best IT principles to create innovative mobile communication software that is easy to deploy, manage and scale. The company has created a software defined core network technology platform and a suite of products that covers 3GPP 4G, 3G and GSM standards, in addition to taking the lead with emerging technologies such as 5G, Mobile Edge Computing (MEC), Private LTE and cellular core network virtualization.
References:
Majority of global enterprises suffer reduced productivity and efficiency due to poor connectivity
Quortus research indicates ‘burgeoning excitement’ for private networks
Quortus Partners with TLC Solutions for Private 5G Network Radio Solution
Gartner’s 2021 Magic Quadrant for WAN Edge Infrastructure
Gartner’s 2021 Magic Quadrant for WAN Edge Infrastructure [1.] notes that spending on WAN edge equipment will grow by 2.6% per year through 2025. This is the result of the robust growth of SD-WAN (18.0% CAGR) and the decline of traditional branch office routers (-16.5% CAGR). The past several years have seen a large-scale shift from traditional MPLS-based customer edge routers to SD-WAN technology, according to the report.
Note 1. WAN edge infrastructure enables network connectivity from distributed enterprise locations to access resources in both private and public data centers as well as cloud (as a service). It is typically procured by senior networking leaders within an infrastructure and operations (I&O) organization. This market has evolved from traditional branch routers (often called “customer edge routers” in a Multiprotocol Label Switching [MPLS] implementation), and is undergoing dramatic change, driven by the needs of digital business transformation and the demands of line-of-business managers. The market for branch office wide-area network functionality is shifting from dedicated routing, security and WAN optimization appliances to feature-rich SD-WAN and vCPE platforms. WAN edge infrastructure now incorporates a widening set of network functions, including secure routers, firewalls, SD-WAN, WAN path control and WAN optimization, along with traditional routing functionality.
The increased sales of WAN edge technology in general has been driven by SD-WAN equipment designed to support work-from-home and in-office environments are slightly dampened by the fact that sales of traditional branch office routers are sharply down as a consequence, Gartner stated in its report.
The number of vendors Gartner has designated as Leaders in WAN-edge infrastructure since 2019 has increased as more are judged to have the requisite “completeness of vision” and “ability to execute”. Just two companies were rated “leaders” in 2019, compared to six in 2020 and 2021. The same six companies were ranked as leaders in the past two reports—Fortinet, VMware, Versa, Palo Alto Networks, Cisco and Silver Peak—although the Silver Peak was bought out last year by HPE/Aruba last year and has inherited the company’s spot in the new report. Gartner noted that edge network leaders offer versatile products with rich features, and broad name recognition.
SASE architecture is also on the rise, according to Gartner, who predicted that more than 70% of SD-WAN customers would implement SASE by 2024, up 10% from last year’s estimate. The ability to deliver a competitive SASE service affected this year’s ratings, making up a part of vendors’ innovation” score. If a vendor’s offerings include the types of network security features that would qualify its WAN edge products as SASE, the innovation score are slightly higher.
“We see network and security decisions being made at the same time and more often with the same solution,” the latest report said. “This is largely driven by the move to distribute internet access to support cloud applications and change the security perimeter.”
Gartner says Fortinet is a leader in this Magic Quadrant. Its offering is the FortiGate Secure SD-WAN product, which includes physical, virtual appliances and cloud-based services managed with FortiManager orchestrator. Fortinet is based in Sunnyvale, California, U.S., and Gartner estimates that it has more than 34,000 WAN edge customers with more than 10,000 SD-WAN customers. FortiOS v.7.0 combines ZTNA to its broad WAN and network security functionalities to deliver a capable SASE offering. It has a wide global presence, addressing customers across multiple verticals and sizes. We expect the vendor to continue investing in SASE, artificial intelligence for IT operations (AIOps) and 5G functionality.
VMware is a Leader in this Magic Quadrant. Its offering is branded as VMware SD-WAN, and is part of VMware SASE. The offering includes edge appliances (hardware and software), gateways — VMware points of presence (POPs) offering various services — and an orchestrator and its Edge Network Intelligence. VMware provides additional optional security via VMware Cloud Web Security and VMware Secure Access. Based in California, U.S., it has more than 14,000 SD-WAN customers. The vendor operates globally and addresses customers of all sizes, and in all verticals. Gartner expects the vendor to continue investments in this market, including enhancing options for remote workers and building out its SASE offering.
Cisco is also a leader in this Magic Quadrant. It has two branded offerings: Cisco SD-WAN powered by Viptela and Cisco SD-WAN powered by Meraki. Both include hardware and software appliances, and associated orchestration and management. Cisco also provides optional additional security via the Cisco Umbrella Security Internet Gateway (SIG) platform. Cisco is based in California, U.S., and has more than 40,000 WAN edge customers. The vendor operates globally and addresses customers of all sizes, in all verticals. We expect the vendor to continue to invest in this market, particularly in the areas of improved self-healing capabilities, new consumption-based pricing models and integrated security to enable a single-vendor SASE offering.
References:
https://www.gartner.com/reviews/market/wan-edge-infrastructure
https://www.gartner.com/en/documents/4005922
Ericsson IoT Accelerator Cloud Connect to connect cellular IoT devices to AWS
Ericsson has launched IoT Accelerator Cloud Connect to make it easier for enterprises using Ericsson’s IoT Accelerator platform to cellular devices to connect to the Amazon Web Services (AWS) server securely. According to Ericsson, Cloud Connect shifts the complex encryption required for secure IoT connectivity away from the device and onto the edge of the cellular network.
With an estimated five billion cellular IoT devices to be in use by the end of 2026, according to the Ericsson Mobility Report (June 2021), enterprises are increasingly outsourcing IoT device authentication and data management to public cloud providers such as AWS.
Enterprises on Ericsson IoT Accelerator-managing cellular devices such as sensors, meters, or tracking devices now have a much simpler way to connect to the already secure AWS server through Ericsson’s IoT Accelerator Cloud Connect, which moves complex encryption from the device to the edge of the cellular network.
Quotes from companies across multiple industry sectors:
Steve Dunn, CEO and Co-Founder at Digital Keys, a smart IoT security company, says: “Our cellular connected smartlocks with digital keys application are used for banks, hotels, universities, office buildings, shared labs, and apartments. Every smartlock has a SIM card that needs to connect to the cellular networks and the AWS cloud securely. It was a smooth process with Ericsson’s IoT Accelerator Cloud Connect.”
Communication service providers (CSPs) play a crucial role in the IoT ecosystem, providing global cellular connectivity using Ericsson IoT Accelerator. With more than 35 global CSPs already on Ericsson’s IoT Accelerator, enterprises of any size can manage the connectivity of their devices worldwide. It is now even easier to connect to AWS IoT Core.
Cristoff Martin, Chief Marketing Officer, Telenor Connexion, says: “This capability, integrated with our IoT Cloud service also developed together with AWS, will allow even more efficient development and operation of new connected solutions taking benefit of network technologies like Narrowband-IoT and the superior security capabilities of mobile networks in general.”
Jan Willem Smeenk, Chief Architect at SODAQ, a leading company in solar-powered asset tracking that specializes in scalable and efficient IoT hardware and software to empower businesses, says: “It is costly and complicated to connect our smart asset trackers securely, but with Ericsson as a key partner, we were able to order SIM cards from the operator on IoT Accelerator, insert them into our device with no additional encryption or certificate management required. Then, using Ericsson’s IoT Accelerator Cloud Connect, the device is authorized and automatically provisioned to the target AWS destination. It was simple and can serve our customers of any scale and size.”
Connecting to AWS IoT Core requires each connected device to use Transport Layer Security (TLS) encryption for all communications. With Cloud Connect, the IoT Accelerator service offers a plug-and-play alternative. In this, enterprises benefit from simple activation of devices that tunnel to the edge of the cellular infrastructure before automatically self-provisioning to AWS and securely connecting via Cloud Connect generated encryption and keys.
Rauno Jokelainen, Chief Technology Officer at UROS Group, a leading company in digital water services, says: “We see high value with the use of Cloud Connect in the UROS Sense Liquid Quality as a Service solution to provide real-time water quality detection to the municipalities and enterprises around the world in an easily deployable manner. With this solution, we can bring the peace of mind to the CIOs of the municipalities that their water networks are monitored in a secure manner.”
With Ericsson’s IoT Accelerator Cloud Connect, devices with unencrypted yet privately secured communications over cellular network leveraging Message Queuing Telemetry Transport (MQTT) or narrowband User Data Protocols (UDP) – such as Constrained Application Protocol (CoAP) – can connect seamlessly to AWS IoT Core, resulting in significantly lower power and data consumption.
Initial results show that Ericsson’s IoT Accelerator Cloud Connect enables low-powered devices to reduce mobile data by up to 95 percent and extend battery life by up to 50 percent by removing the need to run public end-to-end internet encryption.
Michael MacKenzie, General Manager, AWS IoT Connectivity & Control, says: “As enterprises connect more IoT devices to the public cloud, they want an easy and secure way to ingest IoT device data to AWS. Simple solutions like Ericsson’s IoT Accelerator Cloud Connect give enterprises flexibility by leveraging AWS IoT to easily manage and authorize devices, use zero touch provisioning, and ensure data is encrypted and secure.”
Kyle Okamoto, General Manager IoT, Ericsson, says: “Ericsson’s IoT Accelerator Cloud Connect removes barriers for enterprises to connect their IoT devices to numerous public clouds and to optimize the IoT data management infrastructure offered by providers like AWS. This means a faster time to market for enterprise devices and products. We are excited to offer this service to our IoT Accelerator community of over 7,000 enterprises globally.”
RELATED LINKS:
……………………………………………………………………………………………………………
Separately, Ericsson is cutting hundreds of jobs in China after losing market share during the recent awards of 5G contracts, according to Light Reading.
“Layoffs will happen by the end of this year as Ericsson merges three separate customer units in China into one. Until now, it has maintained a unit for each of China’s big mobile operators – China Mobile, China Telecom and China Unicom – but the restructuring will create a single mainland China customer unit catering to them all.”
Ericsson’s recent loss of market share has left it with a lower volume of 5G business to serve. Its move is aimed at rebalancing sales and costs so that it remains competitive on price.
Employees in China were briefed on the plans at an internal company meeting earlier today, where Chris Houghton, Ericsson’s head of market area for northeast Asia, said: “I sincerely regret that we now need to make changes to our great team, in order to reflect Ericsson’s changing market share position in China. We are committed to China and delivering value to our customers with our leading technology and solutions.”
The restructuring comes weeks after China Mobile gave Ericsson just 2% of the 700MHz bid on top of its existing share in 2.6GHz. This phase-two allocation in 5G is down from about 11% last year.
Ericsson has also picked up only a 3% share of the phase-two 5G work for China Telecom and China Unicom, which have joined forces to build a 5G network.
References:
https://www.ericsson.com/en/news/2021/9/ericsson-iot-cloud-connect-connects-iot-devices-to-aws
ITU-R Report in Progress: Use of IMT (likely 5G and 6G) above 100 GHz (even >800 GHz)
Introduction:
In July 2015, ITU-R published Report M-2376: Technical feasibility of IMT in bands above 6 GHz Since then, there has been academic and industry research and development ongoing related to suitability of mobile broadband systems in frequency bands above 100GHz. As a result, a new ITU-R Report ITU-R M.[IMT.ABOVE 100 GHz] was started at the August 2021 meeting of ITU-R WP5D (#38) to study the technical feasibility of IMT in bands above 100 GHz. That report will be a complement to the previous studies documented in Report M-2376.
Discussion:
Compared with the 3GPP 5G NR FR2 frequency band (24250 MHz – 52600 MHz), the terahertz frequency band above 100 GHz can provide a larger usable bandwidth, but it also suffers from greater path loss/signal attenuation. Fortunately, it is possible to overcome certain path attenuation by improving the directivity and gain of the antenna and using beamforming technology to increase the coverage of the cell. IMT technologies adopted for bands above 100 GHz can be used in indoor/outdoor hotspot environments, integrated sensing and communication and ultra-short-range environments to provide ultra-high data rate services.
Some possible use cases for IMT above 100 GHZ are:
Indoor hotspot in an large meeting room – small cell base stations operating at bands above 100 GHz may solve the needs of applications with extremely high data rates, such as Holographic displays. Considering the large path attenuation of bands above 100GHz, high-gain directional antennas or large-scale antenna arrays that can provide higher gains could be used to flexibly establish wireless fronthaul /backhaul links with outdoor base stations or core networks.
Integrated sensing and communication – A typical use case is the use of sensing technology to assist communication, such as using sensing technology to predict the user’s trajectory to assist the base station in beam tracking of the user, or using sensing technology to sense the user’s location for rapid beamforming. Using bands above 100 GHz can achieve better imaging and achieve higher positioning accuracy.
Secure Imaging and Infrared Thermal Cameras are other potential use cases depicted below:
In preparation for a contribution on this topic for the October 2021 WP5D meeting, the Republic of China conducted channel measurement campaigns in indoor scenarios at 140 GHz and 220 GHz. The measured indoor scenarios include a meeting room, and office area, and hallway in office room. Pathloss models for the investigated bands were derived based on the channel measurement campaigns conducted in a meeting room and an office room and presented in their contribution.
Reference 4. notes recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. It also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas.
References:
- W. Tong, P. Zhu, “6G: The Next Horizon, From Connected People and Things to Connected Intelligence”, Cambridge University Press, 2021.
- 5GCM, “5G channel model for bands up to 100 GHz,” Tech. Rep., Sep. 2016, Available online at http://www.5gworkshops.com/5GCM.html.
- 3GPP TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz,” v. 16.1.0, Dec. 2019. [4]. ITU-R M.2412, “Guidelines for evaluation of radio interface technologies for IMT-2020,” Sep. 2017.
- Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Xplore
Orange España: commercial deployment of 10 Gbps fiber in 5 cities
Orange’s new 10Gbps fiber access will be at Love Total Plus and Love Total Plus 4 rates for residential customers, and at Love Empresa 3 and 5 rates for freelancers and small businesses. Adopting this speed will mean an increase of 10 euros /month on the price of the same.
In the 10Gbps offered by Digi, only 8Gbps was obtained, and it is expected that in the case of Orange it might be similar. It remains to be seen, what actual performance it offers.
References:
Orange launches 10Gbps symmetric fiber for individuals and companies, first in five major cities
Canada’s TeraGo to Complete 5G Core Network for 5G FWA and private 5G network applications
Canadian network operator TeraGo said it is on track to complete its planned 5G core network expansion projects for this year, as the company prepares to deploy 5G fixed wireless access services to its existing customer base and 5G private networking applications for new customers.
TeraGo plans to achieve its goal using the capital raised earlier this year to increase capacity and throughput in its core network and to its wireless hub sites. This initiative is necessary to provide the network bandwidth that 5G fixed wireless access and private networks will require.
5G private networking applications are expected to take advantage of the security, high speed, and low latency that TeraGo’s licensed mmWave spectrum offers (not that 5G mmWave frequencies have yet to be agreed on in the still uncompleted revision 6 to ITU-R M.1036).
TeraGo 5G: TeraGo has Canada’s largest nationwide millimeter wave spectrum holdings, including the 7 largest cities in the country. Throughout 2021 and beyond, TeraGo will continue to invest in 5G technology trials and proof of concepts to explore how 5G Fixed Wireless solutions can be brought to market and solve real-world problems for our customers.
KEY FEATURES:
- Largest mmWave spectrum holder in Canada, including the 7 largest cites in the country
- Edge Computing (requires 5G SA Core network)
- Industrial IoT Applications (can use 5G NSA or 5G SA Core network)
SOURCE: TeraGo
………………………………………………………………………………………………………………………………..
To enable these new applications, TeraGo is expanding its overall network capacity this year by five to six times its pre-expansion levels. Nokia supplies TeraGo with 5G network equipment with customer premises gear from Askey Computer and Inseego.
“We continue to diligently work through our network upgrade plan, which includes over 50 projects that we expect to complete by year-end,” said Matthew Gerber, Chief Executive Officer (CEO) at TeraGo.
“Some of these projects include things like new fiber optic connections to our hub sites and core network link upgrades to 100 Gbps. We have completed over 40 of these projects to date and are currently on track to achieve our project objectives by the end of the calendar year. We will continue to target installing some of our first customer pilot installations over the next couple of months and remain confident in our ability to establish TeraGo as one of the first operators to launch commercial mmWave 5G fixed wireless and private networking services in Canada.”
About TeraGo:
TeraGo owns a national spectrum portfolio of exclusive 24 GHz and 38 GHz wide-area spectrum licenses including 2,120 MHz of spectrum across Canada’s 6 largest cities. TeraGo provides businesses across Canada with cloud, colocation and connectivity services. TeraGo manages over 3,000 cloud workloads, operates five data centers in the Greater Toronto Area, the Greater Vancouver Area, and Kelowna, and owns and manages its own IP network.
TeraGo offers a managed SD-WAN service as described in this blog post.
The Company serves business customers in major markets across Canada including Toronto, Montreal, Calgary, Edmonton, Vancouver, Ottawa and Winnipeg.
For more information about TeraGo, please visit www.terago.ca.
References:
https://terago.ca/what-is-managed-sd-wan-and-why-you-need-it/
http://www.apofc.com/news/show.php?itemid=359
Open Networking Foundation spins off Ananki to deliver open source-based Software Defined Private 5G as per Industry 4.0 requirements
Ananki plans to deliver software defined private 5G that is purpose built for the Industry 4.0 revolution, encompasng M2M mobile networks, IoT, and related communication initiatives.
- Private 5G is the key to empowering the machine-to-application communications necessary to complete this vision, according to the ONF.
- Industry 4.0 is a combination of intelligent devices, edge cloud and cloud-based AI/ML which is intended to enable software-based optimization and innovation.
Ananki’s Software-Defined Private 5G+ was said to deliver:
● Optimized 5G+ Experience – Software-defined, automated, AI powered, application optimized connectivity, with enhanced security enabled by a programmable data plane.
● Cloud First – pre-integrated with hyperscaler cloud and edge, delivering private 5G as a SaaS service, creating a continuously improving experience running on any multi-cloud platform.
● Industry 4.0 Ready – Empowering developers to build transformative IoT, IIoT and OT solutions with rich APIs.
Ananki’s technological foundation leverages ONF’s open source Aether™, SD-RAN™, SD-Fabric™ and SD-Core™ projects, and melds them together into a commercial offering that is delivered as a SaaS, making private 5G as easy to consume as wifi for enterprises. ONF also incorporates developer APIs to accelerate the creation of more powerful digital transformation solutions. This open platform is hardened and optimized for industrial applications, and introduces developer APIs to empower the creation of more powerful digital transformation solutions.
Other Highlights:
— Ananki delivers slice/device level SLA assurance for mission critical applications.
— Proactively identify network bottlenecks before they impact your application performance.
— Define application priority once and let Ananki (Self healing/optimizing/organizing network) deliver optimal application performance.
— CI/CD lets you dynamically upgrade your service to handle evolving application requirements and security threats.
— Telco grade security and resilience to Enterprise operational networks with AI/Ops fault and detection.
Ananki’s Inception:
When ONF’s Aether was selected for the $30M Pronto Project, DARPA encouraged ONF to commercialize the platform in order to advance the impact of the project’s secure 5G research. To date, ONF has operationalized and deployed Aether at 15 locations operating as a cloud managed service.
To accelerate Aether’s adoption, the ONF board voted unanimously to create a new separate venture backed commercial entity to provide an enhanced, hardened solution so vendors and partners can easily incorporate private 5G into the solutions they then build and deliver to enterprises.
Ananki, has been structured as a Public Benefit Corporation to support and promote open source. Furthermore, Ananki shares common executives with the ONF, ensuring that a consistent vision and mission keeps the two entities well aligned.
Quotes:
Andre Fuetsch, ONF Board Chair and AT&T CTO:
“ONF continues to innovate in ways that magnify the power of open systems and open source across our industry. The ONF board recognizes that the lack of support for open source initiatives from commercial companies remains an inhibiting factor for scaled adoption. To meet this challenge, we have agreed to spin out Ananki as an independent company to pursue commercialization of Aether with a view that this will help accelerate the adoption and impact of open source.”
Guru Parulkar, Executive Director ONF and CEO of Ananki:
“Ananki is broadening the impact of the ONF’s work, and will help ONF’s Aether become much more broadly adopted. By providing a commercially supported option for consuming Aether, many more organizations will be able to easily and economically leverage the benefits of Private 5G for building Industry 4.0 solutions. And in turn, Ananki is committed to contributing back to the ONF open source, helping to advance the Aether platform and broaden the ONF community.”
About Ananki:
Ananki delivers a commercially supported Software-Defined Private 5G as-a-service to help facilitate enterprise digital transformation. As a Public Benefit Corporation, Ananki synergistically builds on Open Networking Foundation (ONF) open source software platforms, and in turn contributes focus, funding, developers and contributions to the ONF projects. With Ananki, companies can now choose a commercially supported option when consuming ONF open source.
About the Open Networking Foundation:
The Open Networking Foundation (ONF) is an operator-led consortium spearheading disruptive network transformation. Now the recognized leader for open source solutions for operators, the ONF first launched in 2011 as the standard bearer for Software-Defined Networking (SDN). Led by its operator partners AT&T, China Unicom, Deutsche Telekom, Google, NTT Group and Türk Telekom, the ONF is driving vast transformation across the operator space. For further information visit http://www.opennetworking.org
For more information, please visit ananki.io and/or register to attend a live keynote on September 28th as part of the Private 5G for Industry 4.0 Spotlight event.
References:
STL Launches Accellus End-To-End Fiber Broadband And 5G Wireless Solution; India’s PLI scheme explained
India based telecom equipment company STL (Sterlite Technologies Limited) has launched Accellus, its flagship solution for 5G-ready, open and programmable networks. This new product line raises the position of STL as a provider of disruptive solutions for Access and Edge networks. For the past 5 years, STL has been investing in research and development to expand its capabilities in converged networks based on fiber optic broadband and Open RAN.
………………………………………………………………………………………………………………………………………………
India’s PLI Scheme
The Cellular Operators Association of India (COAI), which represents service providers and network equipment vendors, said that the production-linked incentive (PLI) scheme will boost local manufacturing, exports and also create employment opportunities. STL plans to take advantage of that initiative. Nokia (through its India subsidiary) said the guidelines were an encouraging initiative by the government towards making India a global manufacturing hub. “Nokia is committed to this vision with our Chennai factory that manufactures telecom equipment from 2G to 5G-making for India and the world.”
“India is already the second largest telecom market globally and this will go a long way in making the country a global hub for telecom innovation,” said SP Kochhar, director general, COAI.
………………………………………………………………………………………………………………………………………………..
STL’s Accellus is built on this industry-leading converged optical-radio architecture. The company expects the global adoption of this decision to accelerate at a rate of 250% on an annual basis, stimulating better TCO for customers and gross margin for shareholders. Accellus will allow four main benefits for network builders – scalable and flexible operations, faster time to market, lower TCO and greener networks.
Accellus will lead the industry’s transition from tightly integrated, proprietary products to neutral and programmable converged wireless and optical networking solutions. It offers wireless and fiber-based solutions:
1. 5G multiband radios: Exhaustive portfolio of RAN radios with single and multiband macro radios. Co-developed in partnership with Facebook Connectivity to build total availability for Open RAN-based radios
2. Internal small cells: O-RAN compliant, highly efficient internal 5G small cell solution, with level 1 edge treatment
3. Wi-Fi 6 access solutions: Outdoor Wi-Fi 6 solutions providing carrier-class public connectivity in dense environments
4. Intelligent RAN Controller (RIC): An Open RAN 5G operating system that allows the Open RAN ecosystem to use third-party applications to improve performance and save costs
5. Programmable FTTx (pFTTx): A complete solution that offers programmability and software-defined networks in large-scale FTTH, business and cellular sites (FTTx) networks
Commenting on the launch of Accellus, Philip Leidler, Partner and Consulting Director, STL Partners, said: “One of the goals of the O-RAN alliance was to expand the RAN ecosystem and encourage innovation from a wider base of technology companies worldwide. the message is the last indication that this goal has been achieved. “
Commenting on the launch of Accellus, Chris Rice, CEO of Access Solutions at STL, said: “Disaggregated 5G and FTTx networks based on open standards are becoming more common for both greenfield and brownfield deployments. These networks will require unprecedented scalability and flexibility, possible through an open and programmable architecture. STL’s Accellus will unlock business opportunities for our customers and provide a immersive digital experience worldwide.”
Optical fiber has evolved in its maturity and in its form factors to drive the infrastructure medium for the “wireline” side of the network. It continues to be the preferred medium for high-speed network delivery, Rice said.
“What network infrastructure is needed for 5G to become a reality and deliver expected Performance?”
Answer: “Upgrade the network backhaul and core IP infrastructure for the expected growth in bandwidth that 5G Applications will enable. The necessity of wireline 5G upgrades sometimes does not get the attention it deserves; this includes IP equipment (e.g. cell site routers) and the necessary fiber upgrades to the cell sites.
Perform the network planning for the new cell site builds required to get the coverage and capacity required for ubiquitous 5G at the speeds users expect. For 5G to pay off for Telcos, there have to be new capabilities and services to sell that deserve higher price points from consumers and business users.
Ensure that operational automation is available to keep operating costs reasonable, especially as the number of cell sites grows. CAPEX is typically only 20 to 25% of the Total Cost of Ownership (TCO) for a RAN, meaning that operating costs are 3X to 4X what CAPEX is. The RAN Intelligent Controller (RIC) is an example in ORAN / Open RAN that helps Telcos fulfil this need in an open way. It is essentially the operating system for Open RAN. It provides a platform for third-party applications to deliver these operational benefits and automation.”
How Is STL Helping Industry Stakeholders to Explain to Government Officials the Importance of Fiber for 5G or High-Speed Broadband?
Answer: “Network speed in the RAN air interface is essentially meaningless without the ability to ensure that the connected IP network can backhaul the required bandwidth. This fact necessitates additional fiber deployments to the existing cell sites (where it does not exist) and to new cells sites.”
In conclusion, Rice opined, “Our (STLs) newest business unit, the Access Solutions BU, focuses on fiber broadband and 5G wireless products. These products are based on open networking principles and give STL the opportunity to participate in the disruption that is occurring in the open networking markets, like ORAN and Open RAN initiatives. While Access Solutions BU is new, it has an R&D and innovation heritage of almost four years. During that time, a top talent team has been put in place, fundamental technology and innovation have been developed and matured, and now a well-defined product roadmap has been put in place as the BU launches many new products in its Accellus product line.”
References:
https://telecomtalk.info/5g-ecosystem-in-india-to-pli-scheme/468656/
Huawei announces seven innovations in digital infrastructure for next decade
On Friday at HUAWEI CONNECT 2021, Huawei unveiled “breakthrough” innovations in several different domains, providing a first look at its comprehensive digital infrastructure range. Several of these innovations are completely new and have never been seen before outside of Huawei’s labs. The release highlighted how these products and solutions are set to shape digital infrastructure for the next decade. Huawei is one of the world’s leading creators of digital infrastructure, and is dedicated to building a fully connected, intelligent world.
During the event, Huawei Executive Director and President of ICT Products & Solutions David Wang delivered a keynote speech titled Leading Innovation in Digital Infrastructure. In the speech, he noted, “Infrastructure has been vital to every stage of human development. The intelligent world is fast approaching and digital infrastructure is the key to building this intelligent world. The world now faces unprecedented challenges and so Huawei will remain customer-centric and committed to innovation. We are dedicated to breakthroughs to serve major application scenarios such as digital offices, smart manufacturing, wide area network (WAN), and data centers, and accelerate the development of the global digital infrastructure.”
David Wang unveils seven innovations in digital infrastructure at HUAWEI CONNECT 2021
…………………………………………………………………………………………………………………………
Wang explained how digital infrastructure of the future would need to be hyper secure, reliable, and deterministic, and need more efficient data circulation and computing power as the world dives into digital. This speech started with the ideas Wang introduced two days ago at the release event for Huawei’s Intelligent World 2030 report. The report itself finds that, by 2030, global connections will top 200 billion; monthly data per cellular user will grow 40 times to 600 gigabytes; worldwide general computing volume will grow 10 times over; and data generated will increase by 23 times, reaching one yottabyte for the first time. All of this creates a picture of new challenges and opportunities for the digital infrastructure sector over the next 10 years.
The main focus of his speech were seven specific innovations Huawei has launched or is about to launch onto the market.
1. Digital meeting rooms: Powered by intelligent “Office Twins” and bridging the world with ubiquitous gigabit and seamless collaboration
The newest “Office Twins” from Huawei are the AirEngine 6761 and IdeaHub. AirEngine 6761 are the industry’s highest-performance Wi-Fi 6E product that delivers an experience-centric, all-wireless network for businesses, with instant and secure user access, interaction latency down to 10 milliseconds, and ultra-fast file transfer at 1,000 Mbps. As part of the next generation of smart office tools, the 6-in-1 design of IdeaHub allows it to function as a projector, whiteboard, computer, conference endpoint, speaker, and microphone, enabling “frictionless collaboration” across different locations.
2. Huawei OptiXsense: Accelerating pipeline inspection
The Huawei OptiXsense EF3000 is the company’s first product under the OpiXsense family, and is currently the most accurate optical sensor of the industry. Coming packed with Huawei’s leading optical technologies, the OptiXsense uses a unique optical digital signal processor (oDSP) and a new vibration ripple analysis engine for automatic incident identification. The OptiXsense achieves 97% accuracy, compared with the industry average of 60%–80%. It is designed to streamline oil and gas pipeline inspections, and will ultimately enable intelligent, unmanned pipeline inspections. Going forward, OptiXsense products will also support other domains, monitoring temperature, stress, and water quality.
3. The industry’s first deterministic IP network solution: Making lights-out digital factories a reality
Industrial control systems demand extremely low levels of network latency and jitter. Conventional IP networks cannot deliver these standards, but today Huawei unveiled the industry’s first deterministic IP network solution, providing end-to-end guaranteed network performance to support industrial controls. This solution uses CloudEngine S6730-H-V2 switches and NetEngine 8000 M8 routers. Huawei’s innovations in IP system engineering and algorithms deliver microsecond-level single-hop latency and keep jitter within 30 microseconds from end to end, regardless of the number of hops. The solution supports multi-hop networking of tens of thousands of nodes, so it can deliver deterministic IP network performance for a workshop, a factory, or even multiple factories. It can even support centralized remote control of production lines located thousands of kilometers away.
4. H-OTN: Leading a revolution in secure production networks
H-OTN, the industry’s first converged optical device that supports hard pipe technologies, introduces an innovative Point-to-Multipoint (P2MP) OTN architecture for access networks. For the first time, Huawei enables an end-to-end hard pipe, from the access network to WAN, using a redefined product architecture and converged protocols. This not only guarantees 100% security, but also reduces latency by at least 60%. Huawei H-OTN will provide highly reliable communications networks, with ultra-low latency and simplified O&M, to support digital transformation across industries such as electric power and transportation.
5. An industry-leading IP network solution: Enabling cross-region computing resource scheduling
Huawei’s newest IP network solution delivers industry-leading performance to help customers build vast, unified networks for cross-region computing. This solution combines Huawei’s CloudEngine 16800 data center switches and NetEngine 8000 F8 WAN routers. Thanks to intelligent & lossless algorithm 2.0 and intelligent cloud graph algorithm, this Huawei solution is able to construct ultra-large data center networks connecting up to 270,000 servers, three times larger than the industry average. It guarantees 0 packet loss on Ethernet and lowers latency by 25%. This solution also features intelligent routing by cloud service type and cloud-network resource factor, improving transmission efficiency by 30%.
6. OceanStor Pacific: Ushering in an era of High Performance Data Analytics (HPDA)
OceanStor Pacific is the industry’s first distributed storage for HPDA, representing huge breakthroughs in technical architecture, including data flows adaptive to large and small I/O, converged indexing for unstructured data, ultra-high-density hardware, and EC algorithms. With this solution, a single storage unit can make data analytics 30% more efficient by supporting hybrid workloads across high-performance computing (HPC), big data analytics, and AI computing, breaking through the performance, protocol, and capacity barriers that typically limit HPDA. OceanStor Pacific has already been deployed in oilfields, and is set to accelerate the digital transformation of oil and gas exploration and create digital basins and oilfields.
7. Huawei CC Solution: Building the industry’s first public diversified computing service platform
Huawei’s CC Solution helps customers roll out public platforms that provide diversified computing power. It is designed with three scenarios in mind: AI computing centers, high performance computing centers, and integrated big data centers. The solution has four advantages over traditional solutions: diversified computing, rapid rollout, efficient utilization, and on-demand service. This solution is already in use in multiple projects, powering industry clusters with computing clusters and supporting the digital transformation of countless industries.
As Wang closed out the day’s events, he stressed that the future of digital infrastructure will need a thriving software ecosystem in addition to new and innovative hardware. He promised that Huawei continues its “dive into digital” and will continue working with partners, developers, and open source organizations from around the world to build a diverse software ecosystem that is shared and open.
Wang concluded by saying, “Each and every R&D employee at Huawei lives and breathes innovation. No matter what comes our way, innovation will remain constant. To sum up, our innovation in digital infrastructure centers on: breakthroughs in basic theories and algorithms; technology spillover; technical architecture; product architecture; industry pace; industry direction; and industry creation… Huawei will remain committed to innovation in digital infrastructure, create value for customers and partners on an ongoing basis, and work relentlessly to build a fully connected, intelligent world.”
Huawei hosts HUAWEI CONNECT 2021 online from September 23 to October 31. The theme of this year’s event is Dive into Digital. We’re going to dive deep into the practical application of technologies like cloud, AI, and 5G in all industries, and how they can make organizations of all shapes and sizes more efficient, more versatile, and ultimately more resilient as we move towards economic recovery.
References:
https://www.huawei.com/us/news/2021/9/huawei-connect-2021-david-wang-seven-innovations