Analysis: Intel and MediaTek partnership to make 5G PCs; Qualcomm competition?

Summary:

Intel and MediaTek are partnering to make cellular-connected personal computers.  Intel will “define” a 5G PC system spec (“Intel will define a 5G solution specification focused on deployment in key laptop segments”) while MediaTek will develop the 5G cellular chip for those PCs.  The first products are targeting availability in early 2021. Dell and HP are expected to be among the first OEMs to deliver laptops enabled with Intel and MediaTek’s 5G solution.

Intel also will help make sure the 5G chip works properly and will help computer makers integrate their processor into PCs (“Intel will also provide optimization and validation across the platform and lend system integration and co-engineering support to further enable its OEM partners.”).

The partnership is also expected to increase the global presence for MediaTek’s 5G modems, which are mainly sold to Chinese smartphone makers.  The 5G PC chip is based in part on MediaTek’s Helio M70 5G modem, introduced earlier this year.  From the Intel announcement:

“5G is poised to unleash a new level of computing and connectivity that will transform the way we interact with the world. This partnership with MediaTek brings together industry leaders with deep engineering, system integration and connectivity expertise to deliver 5G experiences on the next generation of the world’s best PCs.”
–Gregory Bryant, Intel executive vice president and general manager of the Client Computing Group

The partnership helps MediaTek break into a bigger U.S. market and prevents Intel from being shut out of 5G-connected PCs. It also helps Intel defends one of its most important markets: computers. It has long made the majority of chips that go into PCs, but rival Qualcomm has been gaining market traction with its Snapdragon SoCs that were originally designed for smartphones. Qualcomm’s SoCs generally provide better battery life and connectivity that are not traditionally found in computers.

5g 2x1

Image courtesy of Intel

………………………………………………………………………………………………………………..

The two companies are also working with Fibocom on the development of M.2 modules optimized for integration with Intel client platforms. As the first module vendor for this solution, Fibocom will provide operator certification and regulatory support, as well as lead 5G M.2 module manufacturing, sales and distribution.

…………………………………………………………………………………………………………..

Analysis:

Since the introduction of the iPhone in 2007, people have started to spend more time on their phones and less time on their PCs. They also hold onto computers longer than their mobile devices. The answer for Microsoft and traditional PC makers has been to turn computers into something more like phones. They’ve been working with Qualcomm on such devices for a couple of years, and Intel, the world’s biggest PC chipmaker, has started to jump into the fray.

Intel earlier this year introduced its Project Athena initiative, a multiple-company, multiple-year effort to make PCs more like computers. Devices are meant to wake instantly, sport brighter screens for outdoor use and have battery life that lasts all day. Project Athena laptops also need to be able to complete a biometric login process in a second or less after a laptop lid is opened, and Athena gets an additional second to connect to Wi-Fi. The first devices are due this year, but they’re not cellular-enabled.  For that, users have to turn to Qualcomm-powered PCs.

Last year, Qualcomm unveiled its first processor designed specifically for computers, called the Snapdragon 8cx Compute Platform. Qualcomm partnered with Lenovo to introduce its the Snapdragon 8cx 5G compute platform in late May this year. “Consumers can expect more to come from Lenovo and Qualcomm in early 2020,” the Qualcomm said. The chip is powerful but also power efficient, giving users multiple days of battery life on a single charge.

Many PC makers have started using Qualcomm chips. That includes the Samsung’s Galaxy Book S, which was unveiled in August and runs on the 8cx. The ultrathin, ultralight laptop has a 13.3-inch touchscreen and sports 23 hours of battery life. It also has built-in LTE.

Intel, on the other hand, struggled to make a cost competitive 5G chip for Apple’s iPhones and was losing lots of money on that project.   it exited the cellular modem business After Apple and Qualcomm reached a multiyear chip supply agreement in April, Intel exited the 5G smartphone modem business.  This past July, Apple and Intel jointly announced that Apple planned to buy Intel’s smartphone modem business for $1 billion. The deal likely gives Apple access to some of Intel’s work on 5G technology mostly from the latter’s acquisition of Infineon cellular division.

There are only four companies in the world making 5G chips: Qualcomm, MediaTek, Samsung and Huawei while only the first two sell into the merchant semiconductor market. Samsung and Huawei largely only use their 5G chips in their own devices (though a new phone from Vivo will use Samsung’s Exynos 5G modem).

MediaTek predominantly supplies modems to Asian (mostly China) handset makers. Its first 5G modem chip/chip set won’t work on any of the 5G networks that have been deployed in the U.S.

Intel and MediaTek now hope their efforts will be enough to fend off Qualcomm and attract PC makers.  Other spin offs are also possible, depending on the success of this initial effort.

…………………………………………………………………………………………………………………..

Qualcomm Competition or 5G Monopoly?

Qualcomm has supplied 5G modems for the vast majority of 5G smartphones sold this year. Intel wouldn’t partner with Qualcomm, a company it views as its chief rival in the semiconductor business.  Michael Chertoff, former Head of U.S. Homeland Security penned an oped in yesterday’s Wall Street Journal that Qualcomm’s Monopoly Imperils National Security.  He wrote:

A monoculture technology system likewise poses substantial risks. If there is some critical flaw in the single system on which the U.S. is dependent, its failure would be catastrophic. These technical vulnerabilities are especially risky in security-sensitive industries such as telecommunications. American reliance on a single chip provider creates an inviting target for adversaries, who would need to find and exploit only one vulnerability to execute a destructive cyberattack.

In the Pentagon’s view, maintaining the company’s economic health is also essential because it is a critical player in the competition with China to develop 5G technology. To be sure, it’s important to support the viability of U.S. firms that can compete with China on 5G, but this hardly justifies the risks of a mono-culture in the defense-industrial base.

Further, the argument mistakenly links two national-security issues in an artificial way. Qualcomm doesn’t need protection in the wireless chipset market to strengthen its competitive edge in the 5G race. To the contrary, it has every incentive to develop leading 5G technologies even in the absence of protection in the chip market.

In the technology race against China, the U.S. should prefer to let competition drive innovation rather than support exclusive national champions. Apart from the economic inefficiency, a single-source national champion creates an unacceptable risk to American security—artificially concentrating vulnerability in a single point. The government’s argument in support of Qualcomm isn’t prudent, and if courts accept it, the result would be a self-inflicted wound to U.S. national interests. We need competition and multiple providers, not a potentially vulnerable technological monoculture.

…………………………………………………………………………………………………………..

 

 

References:

https://newsroom.intel.com/news/intel-mediatek-partner-deliver-5g-pc/

https://www.cnet.com/news/intel-mediatek-partners-to-make-5g-chips-for-pcs/

https://www.lightreading.com/mobile/5g/intel-partners-with-mediatek-for-5g-pc-chips/d/d-id/755933?

 

JEDEC Forum: AI/ML for IoT; LP-WANs & Mediatek’s SoC Solutions – Part I.

Introduction:

Several new ideas, concepts and forecasts were made at JEDEC’s Mobile & IOT Forum on March 26, 2018 in Santa Clara, CA. In particular:

  • Artificial Intelligence/Machine Learning/Deep Learning will have a huge, positive impact on control of IoT devices (2 presentations summarized);
  • 3GPP specified NB-IoT is a strong contender among the many Low Power Wide Area Networks (LPWANs) for IoT;
  • New and different IT requirements at the network edge are needed to provide the low latency needed for real time control of IoT devices;  
  • MIPI Alliance specifications for Mobile and IoT were presented and MIPI’s role explained.

In this first of a two part event summary we provide highlights of the first two keynote speeches at the conference. In part II, we’ll look at more aspects of AI, MIPI, and the new IT requirements for the intelligent network edge as suggested by Lenovo.

Discussion of Selected Keynote Presentations:

  1. Signs of Intelligent Life: AI Simplifies IoT

In his opening keynote presentation, Stephen Lum of Samsung said that some IoT industry vertical device volumes have seen an explosion of demand due to the introduction of Artificial Intelligence into their usage model. The connection and control of those devices is driving tremendous data traffic volumes into the cloud where the AI/ML/DL actually takes place. For example, the Amazon Echo and Google Home connected device control has all voice recognition, language understanding, AI/ML/DL done in cloud resident data center compute servers owned and programmed by Amazon and Google, respectively. Autonomous vehicles will also have AI/ML/DL done in the cloud but likely at the network edge to provide ultra-low latency.

Stephen stated that a simple thesis of deep learning is that the more data used to train neural networks, the smarter the AI becomes. Some of his other cogent data points were the following:

  • New AI chips are being designed to efficiently process deep neural networks.
  • Solid state memory needs to keep pace with processors to prevent bottlenecks. See bullet points below for UFS.
  • Scalability becomes more critical as consumers adopt new services.
  • Universal Flash Storage (UFS) is a high performance, scalable interface for storage at the edge of the network.
  • UFS combines the key features of eMMC (embedded Multi-Media Controller) and SSDs (Solid State Drives).
  • UFS Card brings benefits to a removable storage form factor.

The diverse needs of three IoT industry verticals were said to be as follows:

  • Wearables (e.g. smart watches, fitness trackers, etc): Low power, Low density, Specialized form factors.
  • Smart Home (AKA Connected Home): Low cost, Low to mid density, Low to high bandwidth –depending on the device to be analyzed and/or controlled, 2-5 years longevity.
  • Automotive (more than just autonomous vehicles): High bandwidth, High density, Very high reliability, 7-10 years longevity.

Summary:

  • Artificial Intelligence is enabling more innovative real-time services to be delivered to consumers.
  • AI in the Cloud simplifies edge devices, encourages their adoption with low cost of entry.
  • Autonomous vehicles, cannot be Cloud dependent, will become AI servers on wheels.
  • JEDEC has enabled tremendous advances in memory while expediting quick adoption and provides a firm foundation for memory-related ecosystems

……………………………………………………………………………………………………………………..

  1. Opening a New Era of IoT -Opportunities and Solutions

Note: I related best to this presentation at it was the only one dealing exclusively with the network aspects of IoT.

Harrison Hsieh of Mediatek said at the beginning of his excellent presentation that we should look at the network required for IoT based on whether the devices/ end points were indoors or outdoors.

Let’s first look at an IoT indoor application presented by Mr. Hsieh:

Challenges of Smart Home (e.g. kitchen management, living room control, home heating/cooling/climate control, entertainment device control, security/surveillance, etc.):

  • Uncovered Zone: Bad connection, No signal, Dead end
  • Different Protocols (and wiring or wireless): Kitchen, Living room, Lighting, Climate control, Surveillance

Whole home IoT coverage requires Adaptive Networking which includes: Easy Setup/Configuration, Network Healing (after failure detection), Fast Roaming, Beam/Frequency Band Steering, Smart QoS, and Solid Security.

According to MediaTek, the IoT home system should be: Easy to Use, Have a unified protocol, be intuitive to install, have a single ecosystem with a user friendly interface (e.g. plug and play).

Harrison said that MediaTek’s Human to Machine interface solutions will focus on Hands-Free Voice Controlled Applications which are intuitive to configure and control diverse devices.  We strongly agree!

Next, the outdoor IoT applications face many challenges today, including:

a.] Complicated Technologies:

Unlicensed Wireless (e.g. LoRa WAN, Sigfox, etc)

Proprietary Technologies (too many)

Complex Deployment

b.] Limitation of Signal Coverage:

Low Penetration Capability (trees, buildings/walls, etc)

Limited Range with Single Base Station

c.] High Power Consumption:

Legacy Technologies

Not Dedicated or purpose built for outdoor IoT design (except for SIgfox and LoRA WAN, maybe LTE Category M/M1?)

Low Power Wide Area Networks (LPWANs) for IoT [1.] need a dedicated solution, which Mediatek believes is 3GPP’s NB-IoT. They think it’s the clear winner when compared to other LTE standards, including LTE Category M/M1 which many carriers are using today for IoT applications.

In particular, LTE NB-IoT R14 [2] was said to offer the following attributes:

  • System Bandwidth of 200kHz
  • Down Link Peak Rate of 127kbps
  • Up Link Peak Rate of 18kbps(ST) / 158kbps(MT)
  • Link Budget (power consumption) of 164 dB
  • Low Memory Requirement (especially compared to other LTE standards)
  • Half Duplex mode
  • Battery life measured in years rather than days or weeks

Other advantages of LTE NB-IoT R14 include:

  • Location Accuracy (UTDOA/OTDOA)
  • Mobility Enhancement (Cell Reselection)
  • High Data Rate (Supports FOTA or firmware updates over the air)

………………………………………………………………………………………………………………..

Note 1. Market for LPWANs:

LPWANs will be the world’s fastest-growing connectivity technology through 2025, supporting 4 billion IoT devices by that date, according to market tracker ABI Research.

We expect to have more than 100 million NB-IoT connections on our network by 2020,” said Xiaotian Chen, general manager of China Unicom’s IoT group, said in a Cisco press statement.

China Mobile reported at MWC 2018 that it has launched NB-IoT networks in 346 cities using chipsets from five companies — Huawei, Mediatek, Qualcomm, RDA, and ZTE. The carrier has approved for use on its network 15 NB-IoT modules using the chips, according to a report from TechInsights analysts at the MWC 2018 event.

China Telecom, gave an update on its aggressive deployments of NB-IoT at a U.S. the MWC Americas event last September.

In the U.S., T-Mobile, Sprint and Verizon plan to deploy NB-IoT with T-Mobile’s offering planned for 2018 with the others to follow.

……………………………………………………………………………………………………………………..

Note 2.  3GPP’s LTE NB-IoT R14 briefly explained:

In 3GPP LTE Release 13, Narrowband Internet of Things (NB-IoT) was specified for providing wide-area connectivity for massive machine-type communications for IoT.

In 3GPP LTE Release 14, NB-IoT was further developed to deliver an enhanced user experience in selected areas through the addition of features such as increased positioning accuracy, increased peak data rates, the introduction of a lower device power class, improved non-anchor carrier operation, multicast, and authorization of coverage enhancements. 

According to MediaTek, 3GPP Release 14 imbues essential features for NB-IoT mobile applications such as:

  • Location accuracy via just modem (UTDOA/OTDOA)
  • Mobility enhancements from seamless cell re-selection
  • Push-to-talk voice messaging services
  • Higher efficiency by lowering power consumption for wearables
  • Supports massive industrial or city-wide deployments with multicast

……………………………………………………………………………………………………………

Summary of Mediatek’s IoT LPWAN Solution:

Global Oriented NB-IoT Solution:

Support NB1 (Rel.13) & NB2 (Rel.14) Global Bands (450Mhz – 2.1Ghz)

Latest NB2 Modem Technology (Position allocation/Higher Data Rate/Cell Reselection)

Highly Integration with Low Power Design:

Leading SoC integrated design with Small form factor

Rich I/Os for various application

Optimized low power design in One-time battery

Comprehensive Product Portfolio:

Combination with MediaTek Connectivity technologies

Integrated and matured Software offerings

In closing, Harrison predicted that the IT user interface will change from keyboard to voice (it already has for this author on his smart phone and tablet) while NB-IOT market will “take off in 2019-2020” timeframe.

Mediatek’s System on a Chip (SoC) connectivity solutions are targeted at the home, on the move (mobile) and in the cloud.

……………………………………………………………………………………………………….

Part II. of this event summary was published on March 29, 2018 at https://techblog.comsoc.org/2018/03/29/ai-deep-learning-new-it-requirements-for-edge-computing-mipi-alliance-for-mobile-and-iot/

 

……………………………………………………………………………………………………………………………………………………………………………………………………

References:

https://labs.mediatek.com/en/blog/IoT-tech-comparison-and-vision

MediaTek targets “huge” NB-IoT opportunity – Mobile World Live

https://www.eetimes.com/document.asp?doc_id=1333023

https://www.nickhunn.com/13-companies-announce-nb-iot-chips/

https://www.eetimes.com/document.asp?doc_id=1332311

https://www.link-labs.com/blog/overview-of-narrowband-iot

JEDEC Forum: AI/Deep Learning, New IT Requirements for Edge Computing & MIPI Alliance for Mobile and IoT- Part II.

 

Recent Posts