Telcomp (Brazil): 5G infrastructure (cabling, antennas, small cells, etc) to be ~5x greater than 4G

A few weeks after the 5G auction in Brazil, the industry is calculating the energy demand required to implement this technology. The hope of the market and specialists, is to have a low-impact investment that provides greater efficiency – both in data exchange and in industrial procedures. The infrastructure required for companies to operate 5G – cabling and antennas, etc – should be around five times greater in comparison with 4G, says Luiz Henrique Barbosa da Silva, CEO of Telcomp (Brazilian Association of Competitive Telecom Service Providers).  We assume that estimate is for the RAN – not the core network (5G SA core vs 4G EPC).

Vivo’s solar power plant (see photo below) in Quissamã, Rio de Janeiro – Deway Matos/Divulgação The 5G antennas are smaller than the ones currently used and have the average size of a shoe box, according to Conexis, an association that represents telecommunication companies. The number of antennas to be installed depends on different factors, including population density and geographical elements, such as the presence of tunnels and hills, explains Barbosa da Silva, of Telcomp. Spaces with very high population density need more towers.

Vivo’s solar power plant

Despite the need for a larger number of antennas, the network is gaining efficiency. “Imagine a dark room. You put a light in the center: that’s the 1G network. It covers the whole room, but to get good lighting, you need to increase the power. With 2G you put one more bulb in, and when we get to 5G, I have more bulbs on the ceiling, but they are lower wattage. And that is more efficient,” he says. Furthermore, the technology is able to transport data with more efficient energy consumption than 4G, says Marcelo Zuffo, professor at the Polytechnic School at USP (University of São Paulo). In terms of energy consumption, the implementation of the 5G structure does not generate a very different impact from 4G, says Fabro Steibel, executive director of ITS (Institute of Technology and Society). “If you think in terms of carbon [footprint], perhaps the impact is greater, since there is a new standard, a new mesh to be installed,” says Steilbel.

In addition to new antennas, different equipment will need to be installed from those used to operate the 4G frequency, since in Brazil a so-called “standalone” model has been defined for 5G. “We will use a new technology and have to replace equipment because, in theory, companies cannot take what they have today and adapt it to a higher speed. But this is always within the concept of energy efficiency,” says Marcos Ferrari, CEO of Conexis, which represents the operators Algar, Claro, Oi, Sercomtel, Tim and Vivo.

Gains from 5G are not expected to reach the entire population, say experts. “When we compare our investment with other infrastructure sectors, such as highways and airports, we see that it is clean. We are talking about running a robust cabling system in the country. In urban centers, you have to pierce sidewalks to pass a pipeline, but that does not compare to investments that cross, for example, a forest reserve,” he says.

Furthermore, there is an expectation of a reduction in energy waste when devices other than mobile phones are connected to 5G – such as equipment used in a productive plant or in agribusiness, which will allow, for example, activities such as more precise irrigation. Ferrari says it is still too early to have an exact estimate of the impact of energy consumption for the implementation of 5G, but says that operators have environmental commitments both from the point of view of the current technology and the technology to come. According to data from the entity, Claro, for example, one of the winners of the auction of the main bands of the network, has since 2017 a program that provides for the use of clean energy (solar, wind, hydroelectric and biogas) to fuel the company’s operations. With 58 plants and generating plants in states such as Bahia, Minas, Pará, Paraná, Santa Catarina, Rio and São Paulo, the initiative serves more than 50% of the existing antennas with renewable energy. Also according to Conexis data, Algar, which won a regional lot of the auction that covers the Minas Gerais triangle and parts of Mato Grosso do Sul and Goiás, has today 66% of energy consumed originated from renewable sources, with a goal of reaching 85% in 2022 and 95% by 2024.

Vivo is carbon-neutral in direct emissions and since last year has been expanding its distributed energy generation project, which includes the installation of 83 solar, hydro and biogas plants (19 of which are already in operation).  The operator’s program will account for 89% of its consumption in low voltage, serving structures such as administrative buildings, base stations and data centers until 2022, when it should be completed.

TIM [1.]  states that it intends to extend renewable energy generation to the 5G network when it is already in operation in the country – one of the objectives of the environmental layer of its ESG program (good social, governance and environmental practices) is to increase the ratio between renewable energy use and total energy use. The company has 38 renewable energy plants (including solar, hydroelectric and biogas generators) in operation and wants to reach 60 by the end of 2022.

“Embarking on a new technology is not only a matter of providing a faster Youtube. It is also something I can do with less cost, with industrial efficiency,” says Mario Girasole, vice president of Regulatory and Institutional Affairs of TIM.

For the president of Telcomp, Luiz Henrique Barbosa da Silva, the agenda of clean energy generation is also linked to other issues – for example, hardly companies whose projects are not sustainable will be able to raise funds. Besides the concern with the principles of ESG, a positive impact for companies is the improvement of economic results, he says. “Many operators have invested in renewable energy generation parks. But they are also big consumers. So investing in that is also financially a good business.”

Note 1.  TIM started operations in Brazil in 1998 and consolidated ourselves as a national company in 2002, making us the first mobile operator to have a presence in all states of Brazil.


Vodafone Idea to use 5Gi (ITU M.2150-LMLC) in trials

Vodafone Idea (Vi) is working with a “few companies” to prepare for trials using India’s own 5G standard 5Gi, which is included in ITU-R M.2150 as 5G Radio Interface Technology (RIT) for LMLC- Low Mobility Large Cell. The third largest telco in India said that once the telecom equipment is ready, it will conduct trials using the 5G LMLC technology.

“We are already working with a few companies. As and when the product is ready, we will be keen and will be doing trials and deploy accordingly” Jagbir Singh, chief technology officer (CTO) of Vi said on Friday. He didn’t divulge details of the partners are.

5Gi is currently being evaluated by India’s Telecommunication Engineering Center (TEC) for commercial adoption in India.  Experts believe that 5Gi is a better option for setting up rural connectivity as it is cost-effective, improves spectral efficiency, and reduces spectrum wastage of up to 11 per cent compared to its global counterpart — the 3GPP approved 5G standard. However, existing telecom operators and equipment vendors are not in favor of adopting the local standard as they say 5Gi is yet to show any of these performance gains at a commercial scale.

Vodafone Idea has partnered with L&T Smart World and Communications, Athornet, Vizzbee Robotics, Tweek labs, Athonet, Nokia and Erricson to provide enterprise solutions.  Arvind Nevatia, Chief Enterprise Officer, Vodafone Idea, also said that Vi will be looking to partner with other enterprises now that they have been granted a six month extension on 5G trials.

Vi has been allocated 26 GHz and 3.5 GHz spectrum in the mmWave band by the DoT, for 5G network trials and use cases. Vi has achieved peak speeds in excess of 1.5 Gbps on 3.5 GHz, more than 4.2 Gbps on 26 GHz and up to 9.8 Gbps on backhaul spectrum of E-bands.

Indian telcos, network equipment and chipset vendors along with handset have opposed the incorporation of 5Gi as a national standard citing compatibility issues with 3GPP’s global 5G standard, which has already been adopted globally for commercial live networks. Telcos had urged the Department of Telecom (DoT) and the TEC to merge 5Gi with 3GPP’s global 5G NR spec to achieve scale and bring down costs, but that has not happened yet.

“We follow the 3gpp standards (they are specs- not standards– and have no official standing) for the core network…along with the firewalls. We are going to ensure whatever we do for our IT and network platform specific for the core data protection policy in coordination with 3GPP. Network slicing ensures data protection for each enterprise…all customers are equally protected in terms of security,” he added.

On Friday, Vodafone Idea (Vi) demonstrated some of the 5G technology solutions and use cases as a part of its ongoing 5G trials on government allocated 5G spectrum in Pune, Maharashtra and Gujarat. These tests come at a time when the three rivals -Bharti Airtel, Reliance Jio. and Vi are trying to keep pace with each other in the race towards next generation technology.

Singh added that Vi has 30-35% fiber for backhaul for its wireless network, which it is increasing in urban areas. “5G will be a combination of fiber and E band.”

The company is now preparing to expand the scope of 5G trials and is in talks with its and is in talks with its existing customers and startups. Rival Airtel became the first telco to test 5G technology in the 700Mhz band on Thursday.  The telco will be working with start-ups for more use cases.

“We were not aware that we will be getting an extension for trials till 3-4 weeks back. We were not doing that on a very high intensity basis, but now with the clarity we will restart the process of engagement,” Arvind Nevatia, Chief enterprise business officer, Vi.

The telco highlighted new revenue models, as a result of 5G. “What we are seeing is evolving models from fixed commission basis to subscription models whether it is in the consumer space or the SAAS space , a lot of new revenue models are emerging in the country…. ,” said Nevatia.

However, prices of 5G have been a contentious issue between the sector and the government. Chief regulatory officer P Balaji said the decision will be taken by the government, which is setting up the auction process process including consultation on prices with the regulator.

“We see Vodafone Idea as an active partner in the digital vision of the government and as India develops its own 5G plans , we will be happy to participate”, said Balaji.

The current base price of Rs 492 crore for a unit of 5G spectrum in the 3.3-3.6 GHz band has been deemed too expensive by all three Indian telcos.

Many experts believe that adoption of the ITU-R M.2150 5Gi standard in India by the government will enable India to leap-frog in the 5G space, with key innovations introduced by Indian entities accepted as part of global wireless standards for the first time. The nation stands to gain enormously both in achieving the required 5G penetration in rural and urban areas as well as in nurturing the nascent Indian R&D ecosystem to make global impact. TSDSI’s efforts are aligned with the national digital communication policy that promotes innovation, equipment design and manufacturing out of India for the world market. The TSDSI 5G standard also has the potential to make a significant impact in several countries with poor rural broadband wireless coverage. TSDSI remains committed to the development of globally harmonized 5G standards with substantial innovations to address hitherto neglected needs of countries such as India.  TSDSI-RIT is a step in the right direction so that our indigenous technologies for rural coverage and connectivity find their rightful place in the 5G eco-system that will be deployed in India and elsewhere.

Hyperscalers Outpace Network Operators in Private 5G

Microsoft is the most innovative private network provider globally, according to enterprises already using a private LTE and 5G network, finds a new study from Omdia.

AT&T and Deutsche Telekom are also singled out as industry pace setters, according to Omdia’s latest Private LTE and 5G Networks research which surveyed enterprises globally. Two thirds of enterprises require private network suppliers to demonstrate integration with their existing cloud platform before they will buy. Similar demands apply to enterprises’ IoT and application management platforms.

“Enterprises have needs beyond connectivity when they buy a private network,” advises Omdia principal analyst for Private Networks Pablo Tomasi. “The top two reasons enterprises invest in private networks are better security and digital transformation. They need partners that can service those needs. Telcos may lose out if they don’t step up.”

Enterprises also want these results to be achieved promptly. 55% of enterprises expect a two-year return on their private network investment, but almost a fifth of those already deployed expect ROI in only a year.

Consumption preferences are changing fast: three quarters of enterprises now planning a private network prefer a hybrid model instead of the fully dedicated private networks that dominate 70% of deployments today.

The findings are from an annual survey conducted by Omdia on enterprises using, trialling, or planning to deploy private LTE and 5G networks in six key verticals, part of the Private Networks Intelligence Service. A total of 451 respondents from seven countries participated in the survey.

Full analysis of the survey is available in Omdia’s Private LTE and 5G Network Enterprise Survey Insight – 2021 report.


What is Private Wireless?

One of the challenges with the private wireless concept is that it is not a specific technology but rather more of a broad term encompassing a wide range of technologies. Marketing departments will have some wiggle room, as the meaning of private wireless varies significantly across the ecosystem.

Some Wi-Fi suppliers, for example, believe they provide private wireless connectivity to enterprises. Smaller radio access network (RAN) suppliers without macro footprints typically associate private wireless with dedicated standalone connectivity for enterprises, while some of the more established macros RAN suppliers envision private wireless as encompassing a broader set of technologies, including both macro and small cell networks.

Suppliers focused on mission-critical and public safety networks see private LTE and NR combined with a new spectrum as an opportunity to upgrade existing private narrowband communications equipment. With the number of LoRa end nodes surpassing 0.2 B, LoRa base station suppliers believe they are dominating the private wireless IoT market.

The operators are also positioning the concept differently, with some focusing on the benefits with broader coverage, while others are capitalizing on some of the new local concepts.

While definitions or interpretations vary widely on the part of both suppliers and operators, there appears to be a greater consensus among customers.

For end-users, private wireless typically means consistent, reliable, and secure connectivity, not accessible by the public, to foster efficiency improvements. For industrial sites, private wireless typically means low latency and high reliability. It is less about the underlying technology, spectrum, or business model and more about solving the connectivity challenge. In other words, end-users don’t care what is under the hood.

From a Dell’Oro perspective, we consider private wireless as nearly synonymous with 3GPP’s vision for NPNs. According to 3GPP, NPNs are intended for the sole use of a private entity, such as an enterprise. NPNs can be deployed in a variety of configurations, utilizing both virtual and physical elements located either close to or far away from the site. NPNs might be offered as a network slice of a Public Land Mobile Network (PLMN), be hosted by a PLMN, or be deployed as completely standalone networks.

From an end-user perspective, private wireless is also a broader term, generally including not just the RAN but also transport, mobile core network (MCN), Multi-Access Edge Computing (MEC), and corresponding services.


Private Wireless RAN and Core Configurations

There is no one-size-fits-all when it comes to private wireless. We are likely looking at hundreds of deployment options available when we consider all the possible RAN, Core, and MEC technology, architectures, business, and spectrum models.

At a high level, there are two main private wireless deployment configurations, Shared (between public and private) and Not Shared:

  1. The shared configuration, also known as Public Network Integrated-NPN (PNI-NPN), shares the resources between the private and public networks.
  2. Not Shared, also known as Standalone NPN (SNPN), reflects dedicated on-premises RAN and core resources. No network functions are shared with the Public Land Mobile Network (PLMN).

Market Status

Preliminary 3Q21 estimates suggest the high-level trends remain unchanged with MBB and FWA dominating the 5G capex while private RAN revenues remain small —leading RAN vendors are reporting that private 5G revenues are still negligible relative to the overall public and private 5G RAN market.

Dell'Oro Group - Private and Public 5G RAN Revenue

Meanwhile, private wireless activity using both macro and local base stations is rising:

  • Huawei estimates there are now around 10 K 5G B2B projects globally and the supplier is engaged in thousands of trials focusing on various 5G private use cases.
  • Ericsson is currently involved in hundreds of private wireless customer engagements, including pilots with time-critical use cases.
  • Even though Nokia’s enterprise business declined year-over-year in 3Q21, Nokia’s private wireless segment continued to gain momentum in the quarter–Nokia now has 380+ private wireless customers.
  • ZTE has developed more than 500 cooperative partners in 15 industries, including industrial engineering, transportation, and energy. They have jointly explored 86 innovative 5G application scenarios and successfully carried out more than 60 demonstration projects worldwide supporting multiple 5G IoT use cases.
  • Federated Wireless, one of the leading CBRS SAS providers, is working on hundreds of CBRS-based private wireless trials in multiple vertical domains, including warehouse logistics, agriculture, distance learning, and retail applications.


Market Opportunity and Forecast

One of the more compelling aspects with private wireless is that we are talking about new revenue streams, incremental to the existing telco capex. More importantly, the TAM is large, approaching $10–20 B when we include Non-Industrial, Industrial, and Public Safety driven applications.

At the same time, it is important to separate the TAM from the forecast. Here at the Dell’Oro Group, we continue to believe that it will take some time for enterprises to fully conceptualize the value of 5G relative to Wi-Fi. And as much as we want 5G to be as easy to deploy and manage as Wi-Fi, the reality is that we are not yet there.


Still, the uptick in the activity adds confidence the industry is moving in the right direction. And although LTE is dominating the private wireless market today, private 5G NR revenues remain on track to surpass $1 B by 2025.

Bharti Airtel conducts 5G SA trial in 700 MHz band with Nokia

Indian network operator Bharti Airtel on Thursday said it has conducted India’s first 5G SA network trial [1.] in the 700 MHz spectrum band in partnership with Nokia.  The demonstration was conducted on the outskirts of Kolkata.  It also marked the first 5G trial in the eastern India, the company said in a statement.

Note 1.  No 5G commercial service  can commence in India till the government auctions 5G spectrum which is scheduled for in the second half of 2022.  However, it has been delayed time after time after time. Airtel has been allotted test spectrum in multiple bands by India’s Department of Telecommunications for the validation of 5G technology and use cases.

Using the 700 MHz band, Airtel and Nokia were able to achieve high speed wireless broadband network coverage of 40 Km between two 5G sites in real life conditions. Airtel used equipment from Nokia’s 5G portfolio, which included Nokia AirScale radios and Standalone (SA) core network.  [Nokia provides a common core network which supports the 4G – EPC and a 5G Core.]

Randeep Singh Sekhon, CTO – Bharti Airtel said: “Back in 2012, Airtel launched India’s first 4G service in Kolkata. Today, we are delighted conduct India’s first 5G demo in the coveted 700 MHz band in the city to showcase the power of this technology standard. We believe that with the right pricing of 5G spectrum in the upcoming auctions, India can unlock the digital dividend and build a truly connected society with broadband for all.”

Naresh Asija, VP and Head of Bharti CT, Nokia, said: “5G deployment using 700Mhz spectrum is helping communications service providers across the world to cost-effectively provide mobile broadband in remote areas, where typically it is challenging for them to set up the network infrastructure. Nokia is at the forefront in the development of the global 5G ecosystem, and we look forward to supporting Airtel on its 5G journey.”

Airtel says they are “spearheading 5G in India.” Earlier this year Airtel demonstrated India’s first 5G experience over a live 4G network. It also demonstrated India’s first rural 5G trial as well as the first cloud gaming experience on 5G. As part of #5GforBusiness, Airtel has joined forces with leading global consulting and technology companies and brands to test 5G based solutions.

About Airtel:

Headquartered in India, Airtel is a global communications solutions provider with over 480 Mn customers in 17 countries across South Asia and Africa. The company ranks amongst the top three mobile operators globally and its networks cover over two billion people. Airtel is India’s largest integrated communications solutions provider and the second largest mobile operator in Africa. Airtel’s retail portfolio includes high speed 4G/4.5G mobile broadband, Airtel Xstream Fiber that promises speeds up to 1 Gbps with convergence across linear and on-demand entertainment, streaming services spanning music and video, digital payments and financial services. For enterprise customers, Airtel offers a gamut of solutions that includes secure connectivity, cloud and data centre services, cyber security, IoT, Ad Tech and cloud based communication.

For more details visit

Nokia Contact:
Mohammed Shafeeq, Media Relations
Phone: +91 9167623398


Are China’s huge 5G numbers to be believed?


Many experts believe you can not trust any economic numbers reported by China’s government. China has a long history of opaqueness when it comes to reporting economic statistics. Here’s a reference:



Xie Cun, Director of China’s Information and Communication Development Department of the Ministry of Industry and Information Technology (MIIT), stated last week that China has built more than 1.15 million 5G base stations, accounting for more than 70% of the world.

Prefectural-level cities, more than 97% of counties and 40% of towns and towns have achieved 5G network coverage.  China’s network operators report they have a total of 450 million 5G terminal users, accounting for 27% of all mobile subscribers in China and more than 80% of the world.

210 million 5G smartphones have been sold in China so far this year, up 69% over 2020 and representing nearly three-quarters of all handsets sold in China.



The overarching  factor in China’s spectacular 5G statistics is the role of the national government.  In addition to its direct control of the three state owned network operators [1.], the CCP has ensured – through its high-profile national plans, the supportive Chinese media, and the now-ubiquitous enterprise party committees – that the entire industry is in sync with its prolific 5G ambitions.

Note 1. China Mobile, China Telecom and China Unicom are together allocating 185 billion yuan ($29 billion) for 5G capex this year alone.  5G plans are available at ultra-low prices, with China Mobile’s entry-level package around $12 a month.

According to the China telecom operators’ numbers, the total number of ‘5G package’ subscribers is 667 million – more than 50% higher than the number of actual 5G users. That’s because there are a tremendous number of 4G subscribers buying the bigger 5G packages.

Light Reading’s Robert Clark wrote:

The operators and the MIIT do not disclose the kind of meaningful network rollout data used by operators in the rest of the world, like percentage of population covered.

So we know nothing about the actual reach of China’s giant 5G project. Most likely, the two giant networks – China Mobile’s and the shared China Telecom-China Unicom network – each covers exactly the same population.

Which leads to the second problem – the distortions of a top-down plan driven by bureaucratic dynamics rather than market needs.

Major cities have rushed to offer rent and tax rebates to speed up rollouts and, of course, to catch the eye of their Beijing bosses.

According to Light Reading’s count, a year ago the wealthy cities of Shanghai, Beijing and Shenzhen accounted for nearly a third of the total 5G rollout.

That is why the MIIT’s new five-year plan makes a point of demanding that 5G be extended to 80% of all rural administrative villages by 2025. Currently, 5G is available in exactly 0% of them.

The other problem in this approach is the built-in irrational exuberance. Since launching 5G, the telcos have worked tirelessly to build out a portfolio of enterprise use cases, as anticipated by the national 5G plans. China Mobile, for one, has developed 470 enterprise apps and nine industry platforms.

But the operators are now tapping out, acknowledging the futility of developing thousands of customized applications, most of which they now admit are “showroom-only.” That’s without getting into the complexities of telco generalists trying to sell into highly specialized segments.

At first look, the scale of China’s government mandated 5G project seems quite impressive.  However,  in reality it’s a story of fake numbers, rapid rollouts and low subscriber prices.



AT&T, Verizon Propose C Band Power Limits to Address FAA 5G Air Safety concerns

AT&T and Verizon said today that they would limit some of their 5G wireless services for six months while federal regulators review the signals’ effect on aircraft sensors, an effort to defuse a conflict about C band interference that has roiled both industries.

The cellphone carriers detailed the proposed limits Wednesday in a letter to the Federal Communications Commission (FCC). The companies said they would lower the signals’ cell-tower power levels nationwide and impose stricter power caps near airports and helipads, according to a copy reviewed by The Wall Street Journal.   This comes after, both companies agreed to push back their 5G C band rollouts by an additional month to January 5, 2022 after the FAA issued a Nov. 2 bulletin warning that action may be needed to address the potential interference caused by the 5G deployment.

“While we remain confident that 5G poses no risk to air safety, we are also sensitive to the Federal Aviation Administration‘s desire for additional analysis of this issue,” the companies said in the letter to FCC Chairwoman Jessica Rosenworcel.

“Wireless carriers, including AT&T and Verizon, paid over $80 billion for C-band spectrum—and have committed to pay another $15 billion to satellite users for early access to those licenses—and made those investments in reliance on a set of technical ground rules that were expressly found by the FCC to protect other spectrum users.”

AT&T and Verizon said they had committed for six months to take “additional steps to minimize energy coming from 5G base stations – both nationwide and to an even greater degree around public airports and heliports,” and said that should address altimeter concerns.

Wireless industry officials have held frequent talks with FCC and FAA experts to discuss the interference claims and potential fixes, according to people familiar with the matter. An FCC spokesman said the agreed-upon limits “represent one of the most comprehensive efforts in the world to safeguard aviation technologies” and the agency will work with the FAA “so that 5G networks deploy both safely and swiftly.”  Wireless groups argue that there have been no C-Band aviation safety issues in other countries using the spectrum.

Earlier this month, the Federal Aviation Administration (FAA) warned it could restrict U.S. airspace in bad weather if the networks were turned on as planned in December. The FAA warning came in the thick of cellphone carriers’ network upgrade projects.  A spokesman for the FAA called the proposal “an important and encouraging step, and we are committed to continued constructive dialogue with all of the stakeholders.” The FAA believes that aviation and 5G service in the band telecom companies have planned to use can safely coexist, he said.

AT&T and Verizon said they would temporarily lower cell-tower power levels for their 5G wireless services nationwide.


Wireless industry executives don’t expect the temporary limits to seriously impair the bandwidth they provide customers because networks already direct signals away from planes and airport tarmacs, according to another person familiar with the matter.

Still, the voluntary limits are a rare step for wireless companies that place a high value on the spectrum licenses they hold. U.S. carriers spent $81 billion to buy licenses for the 5G airwaves in question, known as the C-band, and spent $15 billion more to prepare them for service this winter.

The carriers earlier this month delayed their rollout plans until early January after FAA leaders raised concerns about the planned 5G service. Air-safety officials worried the new transmissions could confuse some radar altimeters, which aircraft use to measure their distance from the ground.

At an industry event last week, FAA Administrator Steve Dickson said conducting flights in a safe manner and tapping spectrum for 5G services can both occur. He said the question was how to “tailor both what we’re doing in aviation so that it dovetails with the use of this particular spectrum.”  Mr. Dickson said another focus is the use of the spectrum in other parts of the world and how it differs compared with the U.S. “That’s what the discussions are that we’re having with the telecoms right now.”

U.S. wireless companies send 5G signals over lower frequencies than the altimeters, but air-safety officials worried that some especially sensitive sensors could still pick up cell-tower transmissions. Regulators in Canada and France have also imposed some temporary 5G limits.

The carriers’ letter said the mitigation measures would provide more time for technical analysis “without waiver of our legal rights associated with our substantial investments in these licenses.”

C-band limits are most relevant to AT&T and Verizon, which paid premiums to grab licenses for the new signals ready for use in December 2021. The companies still plan to launch their service, subject to the new limits, in January 2022. The proposed limits would extend to July 6, 2022 “unless credible evidence exists that real world interference would occur if the mitigations were relaxed.”

Rival carrier T-Mobile US Inc. is less vulnerable to delay because it spent a smaller amount for licenses that are eligible for use in December 2023. It also controls a swath of licenses suitable for 5G that aren’t subject to air-safety claims.

It’s not yet clear whether the proposal will be accepted by the FAA, which has warned pilots of the possibility that “interference from 5G transmitters and other technology could cause certain safety equipment to malfunction, requiring them to take mitigating action that could affect flight operations.” After July 6th, both carriers say they’ll set everything back to normal “unless credible evidence exists that real-world interference would occur if the mitigations were relaxed.”

“Our use of this spectrum will dramatically expand the reach and capabilities of the nation’s next-generation 5G networks, advancing US leadership, and bringing enormous benefits to consumers and the US economy,” Verizon and AT&T claimed in their joint letter sent to the FCC.

The federal agencies and the companies they oversee are meanwhile stuck in what New Street Research analyst Blair Levin called “a deep state game of chicken” guided by each regulator’s particular interest, with no clear path towards resolution.



C-Band 5G’s Threat to Aviation

Analysis: FCC’s C band auction impact on U.S. wireless telcos

Importance of FCC C Band Auction for 5G in the U.S.


Dish Network as systems integrator; will use Rakuten Symphony’s observability framework in its 5G network

In a press release today, Dish Network said it would use Rakuten Symphony’s observability framework (OBF) in its planned yet delayed 5G network. The company said it would use the Japanese upstart’s technology to collect telemetry data from its network functions in order to support the use of artificial intelligence and machine learning to make its operations more efficient.

Dish is adding Rakuten Symphony to its roster of modern telco infrastructure vendors that support Open RAN and cloud-native technologies as a provider of Operational Support Systems (OSS) services. Together, Dish’s roster of OSS vendors will aggregate service assurance, monitoring, customer experience and automation through a singular platform on the DISH 5G network.

The OBF will bring even greater visibility into the performance and operations of the network’s cloud-native functions with near real-time results. This collected data will be used to optimize networks through its Closed Loop Automation module, which executes procedures to provide automatic scaling and healing while minimizing manual work and reducing errors.

The agreement strengthens the operability of Dish’s cloud-native, Open RAN 5G network and lays the foundation for further collaboration in advancing OpenRAN and cloud-native network technologies.  As noted previously, Dish’s cloud native 5G core network will be implemented by Amazon AWS

Rakuten Symphony – a new, independent division of the Japanese Internet company Rakuten developed specifically to sell open RAN technologies globally – joins a growing list of Dish 5G vendors that seems to expand almost every week.

Among those tools and services are service assurance solutions that were developed based on Rakuten’s experience in the Japanese market. Rakuten Symphony CEO Tareq Amin has described Japanese consumers as “quality-obsessed” and shared anecdotal stories about customers who experience a dropped call or otherwise sub-optimal network experience sharing their stories far and wide on social media. This led to the development of new service assurance tools that went from generalized customer experience measures to drilling down to “accurate empirical data” at an individual subscriber level. Amin also told RCR Wireless News that Rakuten Symphony’s goal is to be a “platform partner” rather than a vendor.

“We had gotten a lot of inquiries about the applicability of this approach to the U.S. market. So, we decided to expand in the U.S. I have formally started a few weeks ago,” Azita Arvani, GM of Rakuten Mobile Americas, told Light Reading in early 2020.  The interest is mutual as Dish chairman Charlie Ergen said in February, “Rakuten is important in the sense that we’ve learned a lot from them.”


Recently, Dish said it would use Cisco for routing, IBM for automation, Spirent for testing and Equinix for interconnections – announcements noteworthy considering Dish is mere weeks from its first market launch.  The ability to automatically, virtually and in parallel test new 5G Standalone services, slices and software updates in the cloud is key to Dish Network’s network strategy and its differentiation, according to Marc Rouanne, Dish EVP and chief network officer for its wireless business. Rouanne said that the ability to rapidly test and certify network software and services has been part of Dish’s vision for its network.

Dish announced more than a year ago that it would use radio management software from both Mavenir and Altiostar, when Rakuten was a major investor in Altiostar [Note 1.]

–>So it seams that Dish Network’s 5G role will be that of a systems integrator, putting together the many outsourced parts of its 5G greenfield network.  It remains to be seen what combination of vendors will supply the Open RAN portion of the 5G network and what development, if any, Dish’s engineers will do for it.  And how will Dish’s 5G SA core network via AWS interface with those Open RAN vendors?

Note 1. Rakuten purchased Altiostar outright in August 2021 in a deal worth more than $1 billion. Rakuten’s purchase of Altiostar is part of the company’s broader effort to leverage its Japanese mobile network into a global business selling software, hardware and services to other network operators. The offering was initially dubbed Rakuten Mobile Platform (RMP), and then Rakuten Communications Platform (RCP), but the company in August named it Symphony and said the operation targeted an addressable market of up to $100 billion.


While our colleague Craig Moffett of Moffett-Nathanson is highly skeptical, some analysts are optimistic about Dish’s 5G prospects. “We have been bullish on Dish on the view that they would have a lower cost for capacity than the incumbents,” wrote the financial analysts at New Street Research in a note to investors this week. We argued that Dish would be worth over $100 / share if they sold their capacity at prices below Verizon’s cost. If correct, this sets up an exciting opportunity for disruption.”

About DISH:
DISH Network Corporation is a connectivity company. Since 1980, it has served as a disruptive force, driving innovation and value on behalf of consumers. Through its subsidiaries, the company provides television entertainment and award-winning technology to millions of customers with its satellite DISH TV and streaming SLING TV services. In 2020, the company became a nationwide U.S. wireless carrier through the acquisition of Boost Mobile. DISH continues to innovate in wireless, building the nation’s first virtualized, O-RAN 5G broadband network. DISH Network Corporation (NASDAQ: DISH) is a Fortune 200 company.

For company information, visit

About Rakuten Symphony:
Rakuten Symphony, a Rakuten Group organization with operations across Japan, Singapore, India, EMEA, and the United States, develops and brings to the global marketplace cloud-native, open RAN telco infrastructure platforms, services and solutions.



ZTE and Riedel jointly build customized Private 5G as a Service campus network

ZTE announced it has collaborated with Riedel Communications to deploy a customized, private 5G-as-a-Service on a campus network. The Germany media services company plans to work with ZTE on exploring the possible network services and infrastructure for serving large-scale events.

The 5G RAN and Stand Alone (SA) architecture is based on ZTE’s large-capacity Base Band Unit, 5G pad Remote Radio Unit and i5GC (Industrial 5G Core). For industry verticals, a private 5G networks with customized functions, precise SLAs, and reduced costs can be purchased on demand, ZTE said.

“In terms of the future, 5G is a topic that offers many new opportunities. Especially for our largescale events, we need flexible and high-performance systems that enable us to set up ad-hoc infrastructures. Riedel sees ZTE as a strong partner to drive forward these topics with smart technology and the right spirit” said Lutz Rathmann, Director Managed Technology Division.

“ZTE, as one of the global leaders in 5G, truly believes that 5G is driving the development of the verticals and the digital transformation of industries. Deploying a variety of 5G applications enables the move from traditional manufacturing to intelligent manufacturing while reducing costs and increasing efficiency and quality” said Yang Lin, Managing Director of ZTE Germany Representative Office. “In the cooperation, ZTE provides a campus network with a flexible architecture, which could be easily expanded as the size of campus or separated campus. The application platform and device can be also integrated in the campus network for different use cases.”

This cooperation is the first step for Riedel and ZTE to jointly explore the value of 5G in vertical industries. With the solid network foundation of 5G, it can be foreseen that subsequent open platforms and diversified applications based on 5G will innovate further in the future.

About ZTE:
ZTE is a provider of advanced telecommunications systems, mobile devices and enterprise technology solutions for consumers, operators, businesses and public sector customers. As part of ZTE’s strategy, the company is committed to providing customers with end-to-end integrated innovations to deliver excellence and value as the telecommunications and information technology sectors converge.  ZTE sells its products and services in more than 160 countries.

About Riedel:
Riedel Communications designs, manufactures, and distributes pioneering real-time video, audio, data, and communications networks for broadcast, pro audio, event, sports, theater, and security applications. The company also provides rental services for radio and intercom systems, event IT solutions, fiber backbones, and wireless signal transmission systems that scale easily for events of any size, anywhere in the world.  Riedel is headquartered in Wuppertal, Germany, and employs nearly 700 people in 25 locations throughout Europe, Australia, Asia, and the Americas.

Learn more about Riedel here


GSA: 5G Market Snapshot – 5G networks, 5G devices, 5G SA status

By end October 2021, GSA had identified 469 operators in 140 countries/territories were investing in 5G, including trials, acquisition of licenses, planning, network deployment and launches. (This number excludes nearly 200 additional companies awarded spectrum in the US CBRS PAL auction, which could potentially be used for 5G).

  • Of those, a total of 182 operators in 73 countries/territories had launched one or more 3GPP-compliant 5G services
  • 173 operators in 69 countries/territories had launched 5G mobile services
  • 65 operators in 36 countries/territories had launched 3GPP-compliant 5G FWA services (36% of those with launched 5G services)
  • Five operators had announced soft launches of their 5G networks that are not counted in the above launch figures.
  • 97 operators are identified as investing in 5G standalone (including those evaluating/testing, piloting, planning, deploying as well as those that have launched 5G SA networks).
  • GSA has catalogued 20 operators as having deployed/launched 5G SA in public networks

As for 5G endpoint devices:

The number of announced 5G devices continues to rise and has now reached 1115, an increase of 18.9% in the last quarter. Of these devices, 67.7% are understood to be commercially available. The number of commercial 5G devices has grown by 24.2% over the last three months passing 750 for the first time, to reach a total of 755 devices understood to be commercially available.

By end-October 2021, GSA had identified:

  • twenty-two announced form factors.
  • one hundred and sixty-five vendors who had announced available or forthcoming 5G devices.
  • one thousand, one hundred and fifteen announced devices (including regional variants, but excluding operator-branded devices that are essentially re-badged versions of other phones), including 755 that are understood to be commercially available:
  • five hundred and fifty phones (up 27 from September), at least 491 of which are now commercially available (up 32 in a month).
  • one hundred and ninety FWA CPE devices (indoor and outdoor), at least of which 90 are now commercially available.
  • one hundred and fifty-six modules.
  • seventy-one industrial/enterprise routers/gateways/modems.
  • forty-eight battery operated hotspots.
  • twenty-five tablets.
  • twenty laptops (notebooks).
  • eleven in-vehicle routers/modems/hotspots.
  • eight USB terminals/dongles/modems.
  • thirty-six other devices (including drones, head-mounted displays, robots, TVs, cameras, femtocells/small cells, repeaters, vehicle OBUs, a snap-on dongle/adapter, a switch, a vending machine and an encoder).
  • six hundred and twenty-seven announced devices with declared support for 5G standalone in sub-6 GHz bands, 434 of which are commercially available.

Not all devices are available immediately and specification details remain limited for some devices.

We can expect the availability of devices to continue to improve and for more information about announced devices to emerge as they reach the market. Based on vendors’ previous statements and recent rates of device release, we might expect to see the number of commercial devices surpassing the 820 mark by the end of Q4 2021. GSA will be tracking and reporting regularly on these 5G device launch announcements. Its GAMBoD database contains key details about device form factors, features and support for spectrum bands. Summary statistics are released in this regular monthly publication.

More information on 5G SA networks:

Operators are increasingly experimenting with and deploying 5G standalone (SA) networks. With a totally new, cloud-based, virtualized, microservices-based core infrastructure, some of the anticipated benefits of introducing 5G SA technologies include faster connection times (lower latency), support for massive numbers of devices, programmable systems enabling faster and more agile creation of services and network slices, with improved support for SLA management within those slices, and the advent of voice-over new radio (VoNR). Introduction of 5G SA is expected to facilitate simplification of architectures, improve security and reduce costs. 5G SA is expected to enable customization and open up new service and revenue opportunities tailored to enterprise, industrial and government customers.

GSA is tracking the emergence of the 5G SA system, including the availability of chipsets and devices for customers, plus the testing and then deployment of 5G SA networks by public mobile network operators as well as private network operators. This paper is the latest in an ongoing series of papers summarising market trends, drawing on the data collected in GSA’s various databases covering chipsets, devices, spectrum and networks.

Investment in 5G SA by public and private network operators

5G SA networks can be deployed in a variety of scenarios: as an overlay for a public 5G non-SA (NSA) network, as a greenfield 5G deployment for a public network operator without a separate LTE network, or as a private network deployment for an enterprise, utility, education, government or any other organization requiring its own private campus network.

GSA has identified 94 operators in 48 countries/territories worldwide that have been investing in public 5G SA networks (in the form of trials, planned or actual deployments). This equates to just over 20% of the 469 operators known to be investing in 5G licenses, trials or deployments of any type.

At least 19 operators in 15 countries/territories are now understood to have launched public 5G SA networks. A further four have deployed 5G SA technology but not yet launched services, or have only soft-launched them. In addition to these, at least 25 have been catalogued as deploying or piloting 5G standalone, 28 as planning to deploy the technology and 18 as being involved in evaluations/tests/trials.

A recent survey of European and North American mobile operators by Heavy Reading and EXFO (published October 2021) revealed that 49% of them plan to deploy 5G SA within a year and that a further 39% plan to deploy 5G SA within one or two years. Meanwhile, vendors are reporting the deployment of 5G core SA networks that are not announced publicly. So the active deployments and launches catalogued by GSA so far will be the first of many.

In addition to the investment in 5G SA for public mobile networks mentioned above, a number of organizations are testing, piloting or deploying 5G SA technologies for private networks. GSA has developed a new database tracking private mobile network licenses, trials and deployments. It has collated information about 626 organizations known to be deploying LTE or 5G private mobile networks, or known to have been granted a license suitable for the deployment of a private LTE or 5G network so far. Of those, 151 are known to be using 5G networks (excluding those labelled as 5G-ready) for private mobile network pilots or deployments. Of those, 27 (nearly 18% of them) are known to be working with 5G SA already, including manufacturers, academic organizations, commercial research institutes, construction, communications/IT services, rail and aviation organizations.



Despite the above 5G status report, many believe that 5G has been a failure. For example, Half-Baked Business Models…… from SDxCentral.



Posted in 5G

TIM Brasil, Ericsson, Qualcomm, Motorola test 5G SA for power distribution in LatAm

TIM Brasil has been carrying out a 5G Standalone (SA) pilot in Sao Paulo since August 2nd. It’s in partnership with energy distribution company Enel, reports Telesintese. The 5G SA tests in an electric substation in the neighborhood of Vila Olímpia are being conducted in the 3.5 GHz band and use Ericsson AIR 6449, AIR3227, and AIR 6488 antennas. Qualcomm provided a 5G Fixed Wireless Access (FWA) gen 2 CPE with Snapdragon X62 5G Modem, while Motorola provided Edge, Moto G 5G and Moto G100 smartphones.

Sensors installed by Enel in the substation allow remote control of the structure and identify in real time if there are faults or maintenance needs. According to the companies, this is the first pilot to use 5G in electrical distribution in Latin America.

Photo Credit:  Telesintese

As Leonardo Capdeville explained to Tele.Síntese , the 5G worked as a backhaul link for Qualcomm’s CPE, which radiated the WiFi signal through the power substation. Sensors installed by Enel in the substation allow remote control of the structure and identify in real time if there are failures or maintenance needs.

Another application tested is related to the field team. Enel technicians use smartphones connected directly to 5G. These feature augmented reality programs that allow instant access to substation data and detail how to perform maintenance just by pointing the camera at the equipment.

This was the first pilot to use 5G in electrical distribution in Latin America, according to the companies.

Currently, Enel uses systems that connect via 3G to its control centers. Such a connection is much slower, and results in response times in the seconds.

With 5G, observe Fernando Andrade, responsible for the Engineering and Construction area at the distributor, the response time is between 1 to 5 milliseconds, opening the way for a more intense use of the concept of “self healing” networks, that is, networks that establish routes for energy as problems in one of them are identified.


According to the executives, the project should evolve. Enel liked the result, noted gains in efficiency and speed in handling incidents. In the city of São Paulo there are 120 power substations that could be connected, but the executive goes further: “We started with the substation because it is a relatively controlled environment, but it is possible to spread the technology to the equipment throughout the network ”, he observed.

Andrade envisions the use of 5G for commanding drones, capturing and analyzing images. It even suggests that, in the future, garbage trucks bring cameras and sensors that analyze energy networks, freeing inspectors for other tasks.

Capdeville, from TIM, points out that the current test is based on a provisional license from Anatel, but that the antenna installed in Vila Olímpia must remain and be used to serve the 5G consumer in general as soon as the 3.5 GHz spectrum is released in the city ​​– the operator was one of the buyers of the track in the auction held by the regulatory agency at the beginning of the month .

The 5G network pilot is part of Enel’s Urban Futurability project, which will transform Vila Olímpia into a digital and sustainable neighborhood with an investment of R$125 million from the Research and Development program of the National Electric Energy Agency (Aneel).

TIM and Enel, both companies with Italian origins, already have a partnership for research and development of products and in different areas. Enel is one of the companies hired by TIM to supply energy from renewable sources. In this case, the built-in solar power plants distributor in Bahia serves the tele consumer units.

In addition, Enel X, the energy company’s innovation arm, has a contract with TIM to develop solutions for smart cities – such as smart grid applications.