ITU-R WP5D Feb 2020 Meeting Report Excerpts: Technology Aspects WG

by Hu Wang, Chair, ITU-R WP 5D Working Group Technology Aspects (edited for clarity by Alan J Weissberger)

Introduction and Overview:

The WP 5D Technology Aspects WG met two times during the 34th meeting of ITU-R Working Party (WP) 5D in Geneva, Switzerland.  The meeting concluded on February 26, 2020.

Main activities of Technology Aspects WG during this meeting were to:

  1. review evaluation reports of Independent Evaluation Groups for the candidate technologies; complete evaluation report summaries (IMT-2020/ZZZ) and complete the Step 4 of the Evaluation Process;

  2. continue working on a new Report ITU-R M.[IMT-2020.OUTCOME];

  3. continue working on a new Recommendation ITU-R M.[IMT-2020.SPECS];

  4. continue working on the revision of Recommendation ITU-R M.1457-14;

  5. continue working on synchronization of multiple IMT TDD networks;


During this meeting, WG Technology Aspects established five Sub-Working Groups (SWGs):

– SWG Coordination (Chair: Mr. Yoshio HONDA),

– SWG Evaluation (Acting Chair: Mr. Yoshio HONDA),

– SWG IMT Specifications (Chair: Mr. Yoshinori ISHIKAWA),

– SWG Out of band emissions (Chair: Mr. Uwe LÖWENSTEIN),

– SWG Radio Aspects (Chair: Mr. Marc GRANT)

Image result for image of IMT 2020

Evaluation of IMT-2020 candidate technology submissions:

This 34th WP 5D meeting is a milestone of the IMT-2020 submission and evaluation process: Step 4 – Evaluation of candidate RITs or SRITs by independent evaluation groups.

Twelve Independent Evaluation Groups (IEGs) submitted to this meeting twenty-seven evaluation reports of all the candidate technology submissions. The meeting reviewed these evaluation reports, with participations of the IEGs, the proponents of candidate technology submissions and other participants. The Step 4 was completed with all the evaluation reports recorded.

Evaluation report summaries are captured in the respective documents (5D/TEMP/112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 125 and 126). The meeting also developed an overall summary – Summary of Step 4 of the IMT-2020 Process for Evaluation of IMT-2020 Candidate Technology Submissions (5D/TEMP/124), which also captures different views raised during the discussion at the meeting.

An addendum to the Circular Letter 5/LCCE/59 was developed to convey the completion of Step 4.

The meeting also made progress on the work of Document M.[IMT-2020.OUTCOME]. It was agreed to upgrade the working document to a preliminary draft new Report (5D/TEMP/111).


The work of M.[IMT‑2020.SPECS] continued at this meeting based on received contributions. The working document and the work plan were revised accordingly (5D/TEMP/41 and 40).

A draft liaison statement to potential GCS Proponents to request the inputs to 35th meeting was developed. It was noted that confirmation of the potential GCS Proponents can only be done after WP 5D takes a decision for Steps 6 & 7 on IMT-2020 RIT/SRIT at its 35th meeting.

Work items in SWG Radio Aspects

The meeting made progress on the work of Synchronization of multiple IMT-2020 TDD networks and the working document was updated (5D/TEMP/93).

A new working document is created to study terrestrial IMT for remote sparsely populated areas providing high data rate coverage – M.[IMT TERRESTRIAL BROADBAND REMOTE COVERAGE] (5D/TEMP/101).

The meeting also agreed to start work on future technology trends, and a work plan was developed (5D/TEMP/96).

Objective for the 35th WP 5D meeting

The key objectives of WG Technology Aspects for the 35th WP 5D meeting are as follows:

i) complete the work of Step 6 and Step 7 of the IMT-2020 submission and evaluation process; finalize the document M.[IMT-2020.OUTCOME];

ii) continue work on M.[IMT‑2020.SPECS];

iii) finalize the revision of Recommendation ITU-R M.1457-14;

iv) continue work on synchronization of multiple IMT-2020 TDD networks;


Huawei confirms position as #1 5G network equipment vendor with 10 key enablers for 5G

Huawei Technologies Co has secured its position as the most sought-after 5G telecom equipment supplier, despite the US government‘s intensified push to contain the Chinese technology giant on the geopolitical, legal and technological front lines.  Among the 91 commercial 5G contracts Huawei has inked, the largest number by any telecom gear maker so far, more than half are from Europe, where Washington has spared no effort to dissuade its allies from using the company in their 5G systems.

Analysts said the steadily growing contracts show that Huawei has won the trust of more foreign telecom operators with its technological prowess, and Washington’s groundless security accusations have failed to convince even some of its closest allies.

Ding Yun, president of Huawei’s carrier business group, said at a launch event in London on February 20th that the company’s 91 commercial 5G contracts is an increase of nearly 30 from last year. That is ahead of the 81 announced by Swedish telecom company Ericsson last week and well ahead of Nokia, which said it had secured 67 5G commercial deals as of Feb 10th. Ding said 47 of its 5G contracts are from Europe, 27 from Asia and 17 from other regions.  Huawei will invest $20 million in innovative 5G applications over the next five years, contributing to a thriving 5G ecosystem and accelerating the commercial success of 5G, officials said.

At the same event that day, Yang Chaobin, President of Huawei 5G Product Line (see photo below), unveiled Huawei’s 10 key enablers for 5G.  Those are the following:

  • #1 Extensive 5G Commercial Experience to Accelerate 5G Scale Deployment
  • #2 Comprehensive Portfolios to Provide Consistent 5G Ultimate Experience.
  • #3 Industry’s Only Ultra-Broadband Solution, Simplifying Network Deployment.
  • #4 Exclusive Blade AAU, All in One for Simplified Deployment.
  • #5 Industry’s First Commercial DSS Solution, Enabling Fast FDD 5G NR Deployment
  • #6 Cutting-Edge Algorithm Enables Leading Network Performance
  • #7 Low Energy Consumption Makes Green 5G
  • #8: E2E NSA/SA Converged Solution for Future Industry Digitalization
  • #9 Unique E2E SUL to Unlock UL Experience and Latency for Industry Needs
  • #10 E2E Network Slicing Solution Facilitates Industry Digitalization


Yang Chaobin Unveils Huawei 5G 10 Key Enablers in London


Mr. Yang Chaobin said, “In the process of mobile communications development, telecom operators have been using greater numbers of antenna units as a solution for insufficient sites and poles. Now they have to deal with insufficient antenna installation space. Huawei’s unique Blade AAU, which prides itself on “ultimate simplicity,” aims to reduce operators’ TCO and investment in hardware and sites.”

According to the latest GSA update, by the end of 2019, 62 telecom operators in 34 countries had officially announced the commercial release of 5G, and 41 of them are supported by Huawei, accounting for two-thirds of the total figure.

In the 5G era, continuous large-bandwidth TDD spectrum is the optimum choice for achieving an ultimate 5G experience. However, a significant number of telecom operators only get discontinuous segments of spectrum due to satellite occupation or discrete allocation. Huawei has launched the industry’s only full series of ultra-broadband solutions, which support a maximum bandwidth of 400 MHz. With just one module, all discrete spectrum within 400 MHz can be used. It saves modules and simplifies site deployment, greatly slashing site rental and hardware cost for telecom operators.

2020 will see large-scale 5G deployment worldwide. Apart from the mainstream 5G deployment on mid-band spectrums, operators can also deploy 5G networks on sub-3 GHz FDD to achieve fast 5G coverage. For new FDD spectrum, Huawei’s suggestion is direct 5G deployment on them to significantly improve the FDD spectral efficiency with NR technologies. It is proven that NR operating at an FDD frequency can deliver an impressive improvement in user experience compared to that of LTE.

For existing FDD spectrum, Huawei’s 1 ms dynamic spectrum sharing (DSS) solution can be adopted. This technology dynamically allocates spectrum resources in milliseconds based on LTE and 5G service and traffic requirements, maximizing spectral efficiency. “In November 2019, Huawei DSS was put into commercial use in Europe. Until now, our customers have 100 million legacy FDD RRUs that can be adapted efficiently to 5G using this solution,” said Yang Chaobin.

“Huawei has undergone extensive R&D, innovation, and commercial adoption in Massive MIMO. We have the most complete product portfolios and state-of-the-art algorithms to keep our Massive MIMO performance unrivalled. In terms of software algorithms, Huawei has MU-MIMO, SRS, full-channel beamforming and more to provide optimal capacity, coverage and user experiences. In 2019, Huawei helped LG U+ in South Korea, EE in the UK, and Sunrise in Switzerland to deploy 5G commercial networks.

In the third-party network performance tests conducted by RootMetrics and Connect, Huawei helped its operators rank No.1 in user experience, with an average downlink rate of 1.5 to 2 times higher than that of competitors’ networks, which further demonstrates Huawei’s superior Massive MIMO performance in actual commercial use,” according to Yang Chaobin.

“Every new generation of mobile communications technologies is developed to offer more applications and a better experience. 5G is no exception. 5G coverage must be good enough to provide excellent experience, and 5G experience must be better than any of the previous generations. Huawei’s products and solutions are committed to carrying forward this mission. 2020 will be a key year for 5G to be put into commercial use on a larger scale. “No one can whistle a symphony, it takes an orchestra to play it.” We hope to work with global partners to continuously carry out technology and application innovations, which utilize 5G as the connection platform, together with AI and Cloud technologies, to jointly build a healthy, viable, and sustainable digital ecosystem,” said Yang Chaobin.



Geo-Political Backdrop for Huawei:

The UK announced on Jan 28 that it would allow Huawei in the noncore part of its 5G network, with a cap of 35 percent market share. A day later, the EU announced its toolbox for 5G deployment, which does not ban Huawei and leaves it up to the member countries to make their final decisions.

French Minister of Economy and Finance Bruno Le Maire confirmed that the government will not exclude Huawei. The same view was expressed by Swedish and Italian officials, though those countries also said there would be security reviews for vendors.

Bai Ming, a senior research fellow at the Chinese Academy of International Trade and Economic Cooperation, said more European countries are taking an unbiased approach toward Huawei because Washington has never provided factual evidence to support its security accusations.  “Challenges only make Huawei stronger,” Wang said.

“More people realized that mixing politics with normal business cooperation could only delay the global deployment of 5G,” Bai said.

But analysts also warned that tougher headwinds are still ahead for the world’s largest telecom equipment maker, given media reports that the US government is planning to further restrict US technology sales to Huawei.

Meanwhile, a federal judge in Texas on Tuesday dismissed a lawsuit filed by Huawei to challenge a 2018 congressional defense bill that stopped federal agencies from doing business with the company.

Wang Yanhui, secretary-general of the Mobile China Alliance, said a broader US ban on technology sales won’t substantially harm Huawei’s telecom business, as it has already shipped US-component-free 5G base stations around the world.

The Shenzhen-based company has also been scrambling to build its own mobile software ecosystem, the foundation for its ability to continue selling smartphones in overseas markets to mitigate the fallout from US restrictions.




Deutsche Telekom earnings beat, seeks to be #1 U.S. carrier

Deutsche Telekom AG (DT) said Wednesday that net profit rose 78% in 2019 as revenue climbed higher, and forecast further growth in the year ahead.  Highlights of DT’s earnings report:

  • Annual revenues increased 6.4 percent to EUR 80.5 billion.
  • Adjusted net profit rose 8.9 percent to EUR 4.9 billion, and free cash flow was up 15.9 percent to EUR 7.0 billion.
  • Adjusted EBITDA after leases improved 7.2 percent to EUR 24.7 billion, led by growth at T-Mobile US.
  • CAPEX, before spectrum investments, was higher than forecast in 2019, at EUR 13.1 billion, a 7.6 percent increase over 2018. The increase was due to the accelerated 5G build-out in the US, the company said. Spending is expected down slightly to EUR 13.0 billion in 2020, with the US stable at EUR 7.8 billion.
  • DT also grew to 3.3 million fiber homes passed in Europe, completed its FTTC build in Germany and expanded to 28 million premises with super-vectoring at up to 250 Mbps. The all-IP migration was completed in the consumer market in Germany and is expected finished in the B2B segment by end-2020. In the rest of Europe, 91 percent of lines were moved to IP, up 9 percent points over the year.
  • DT ended the year with 9.6 million Magenta Eins subscribers taking both fixed and mobile services, up by 2 million from 2018. Mobile postpaid subscribers increased by 2.4 million in Europe to 58.0 million at year-end, and the US business grew by a total 6.4 million customers to 86.0 million.

In the fourth quarter of 2019, the company’s growth strengthened, with revenues up 5.4 percent to EUR 21.4 billion and adjusted EBITDA growing 8.2 percent to EUR 6.0 billion. Revenue growth reached 1.0 percent in Germany, 7.7 percent in the US, 3.0 percent in the rest of Europe and 0.2 percent at Systems Solutions. On an organic basis, adjusted EBITDA after leases rose 16.8 percent at Systems Solutions, 4.7 percent in the US, 3.1 percent in Europe and 2.4 percent in Germany.

“The results were strong, particularly in Europe, and reassuring on Germany,” said Citi analyst Georgios Ierodiaconou.

For 2020, the #1 German network operator forecast revenue growth and adjusted EBITDA up around 3% to EUR 25.5 billion, including EUR 13.9 billion outside of the U.S.  That guidance does not take into account the impact of the U.S. merger and Deutsche Telekom will revise its outlook once it goes through.


DT is aiming to become market leader in the United States, CEO Tim Hoettges said on Wednesday, now that a deal for its T-Mobile US unit to take over Sprint is within reach.

“We have the chance to become No.1 in the United States, to overtake AT&T and Verizon. That is our ambition,” Hoettges told reporters in Bonn after Deutsche Telekom reported record annual results in its 25th year as a listed company.

Ebullient, Hoettges brandished a coffee cup bearing a picture of U.S. World War Two character Rosie the Riveter and the slogan ‘We Can Do It’ in front of photographers.

“We’re going to build the best 5G network,” he added (see CNBC video reference below).

Timotheus Höttges Deutsche Telekom

DT CEO Tim Höttges said the T-Mobile US/Sprint deal benefits Deutsche Telekom on all levels. (Deutsche Telekom)





Qualcomm Introduces 3rd Generation 5G Modem-RF System for 5G endpoints

Qualcomm has announced its third-generation 5G modem-to-antenna silicon system – the Snapdragon X60 5G Modem-RF System. The company said the device is the world’s first 5G modem to support spectrum aggregation across all key 5G bands and combinations, including mmWave and sub-6 GHz using FDD and TDD. This will enable speeds of up to 7.5 Gbps down and 3 Gbps up.

The modem features the new Qualcomm QTM535 mmWave antenna module and QTM535, the company’s third-generation 5G mmWave module for mobile, as well as a more compact design than the previous generation, allowing for thinner, sleeker smartphones.

Image result for pic of Snapdragon X60 5G Modem-RF System

Qualcomm said the modem will up performance for operators and increase 5G speeds in mobile devices. It added that the Snapdragon X60 is engineered to accelerate network transition to 5G standalone mode through support for any key spectrum band, mode or combination, along with 5G Voice-over-NR (VoNR) capabilities.

The company said the Snapdragon X60 is the world’s first to support mmWave-sub6GHz aggregation, allowing operators to maximize their spectrum resources to combine capacity and coverage. Additionally, the Snapdragon X60 contains the world’s first 5G FDD-TDD sub-6 carrier aggregation solution, in addition to supporting 5G FDD-FDD and TDD-TDD carrier aggregation, along with dynamic spectrum sharing (DSS), allowing operators a wide range of deployment options – including the ability to repurpose LTE spectrum for 5G – to effectively deliver higher average network speeds and accelerate 5G expansion. This 5G modem-to-antenna solution can deliver up to 7.5 gigabits per second (Gbps) download speeds and 3 Gbps upload speeds, and the aggregation of sub-6 GHz spectrum in standalone mode allows the doubling of peak data rates in 5G standalone mode compared to solutions with no carrier aggregation support. VoNR support in Snapdragon X60 will be an important step in the global mobile industry’s transition from non-standalone to stand-alone mode, as it will allow mobile operators to provide high-quality voice services on 5G NR.

“Qualcomm Technologies is at the heart of 5G launches globally with mobile operators and OEMs introducing 5G services and mobile devices at record pace. As 5G standalone networks are introduced in 2020, our third-generation 5G modem-RF platform brings extensive spectrum aggregation capabilities and options to fuel the rapid expansion of 5G rollouts while enhancing coverage, power efficiency and performance for mobile devices. We are excited about the fast adoption of 5G across geographies and the positive impact 5G is having on the user experience,” said Cristiano Amon, president, Qualcomm Incorporated.

Qualcomm previously said its second-generation 5G modem, the X55, was being used by over 30 device manufacturers.

For more information, visit the Snapdragon X60 Modem-RF System product page.

Or watch the Snapdragon X60 video.



Point-Counterpoint: 5G is the future, but deployments are slowing!


This author believes 5G is headed for the greatest “train wreck” in modern tech history.  Over-hyped, rushed to market, incomplete standards, lack of vendor interoperability, no real business case or killer apps (not until ultra low latency and ultra high reliability are standardized and implemented), operators have no serious plan to monetize 5G and recover their build-out costs, small cell permit and placement objections/ NIMBY (Not In My Back Yard), power issues, massive fiber deployments needed in urban areas for mmWave small cell backhaul, and many other caveats.

Image result for image of 5G being a failure


What does the future of Qualcomm look like?

Steve Mollenkopf, CEO of Qualcomm interview in Sunday’s NY Times:

It’s basically 5G. Think of it like when electricity replaced steam. Who’s going to win, who’s going to lose? The reason that you see so much international competition for the leadership of 5G is because it is so important to the fundamental way in which economy works.

The first 5G wave will be a handset wave, which is very good for us, and will continue for a long time. But there’s a second wave — with artificial intelligence, the cloud and all that data. That second wave makes me think, “Wow, we are on the cusp for something very big.”


WSJ: 5G Rollouts Hit Slow Patch, Equipment Suppliers Say:

The rollout of new 5G wireless networks is showing signs of slowing, denting near-term sales prospects for some networking equipment makers and potentially delaying access for some consumers to the lightning-fast data speeds the technology promises.

Industry officials say there is no common cause for the slowdown seen across multiple markets, with various countries affected by different dynamics. In some cases, the equipment makers say, telecom providers want certainty that the investments made will reap returns before plowing more money into further infrastructure.

Investments required to deploy fifth-generation cellular networks are significant, in part because of how the systems operate. To blanket a city, 5G requires more base stations and local relay points than traditional communications infrastructure to connect devices to the network.

Research firm Gartner Inc. estimates companies spent more than $2 billion on 5G wireless infrastructure last year, more than triple the level in 2018. But spending growth is expected to slow somewhat this year, reaching about $4 billion.

Quinn Bolton, an analyst at Needham & Co., said delays in the build-out of 5G infrastructure in Asia and the U.S. were causing the slowdown.

South Korea was a trailblazer in 5G adoption, and operators that invested heavily in the first half of 2019 have since eased up, he said. Samsung Electronics Co., a major gear manufacturer for South Korean 5G networks, said last month its domestic 5G business would decline this year though grow elsewhere.

The 5G rollout in the U.S. is somewhat slower than expected because some cities and towns oppose the massive number of antennas needed to deliver ultrafast 5G data speeds to consumers, industry executives say. Some have banned antennas in residential areas, and a group of cities is suing the Federal Communications Commission over its requirement that cities make decisions on approval of 5G antennas within 60 or 90 days.

The protracted antitrust battle over T-Mobile US’s merger with  Sprint also affected the pace of 5G spending. The two agreed to combine nearly two years ago, but it was only this week that a federal judge gave the go-ahead, siding with the companies over states that had raised antitrust concerns. The companies have yet to formally close the deal.

As the companies were awaiting the merger outcome, T-Mobile told contractors in a letter last fall that new work orders were postponed, according to people familiar with the matter. Michael Sievert, T-Mobile’s chief operating officer, earlier this month told The Wall Street Journal that engineers overshot their budget at the end of 2019 but the company would ramp up investment again early this year.

Pierre Ferragu, an analyst at New Street Research, said the T-Mobile–Sprint combination would speed 5G development in the U.S., calling it “positive for equipment vendors.”

Some makers of networking equipment that pipes data to and from new 5G antennas are still largely awaiting the anticipated spending spree. Juniper Networks Inc. Chief Financial Officer Ken Miller said this week that reaping the 5G opportunity would have to wait until 2021 or 2022.

“I think it’s going to be a little slower and a little longer spending cycle than maybe people predicted a year or two ago,” he said. Juniper makes hardware that manages internet traffic, which network operators will need more of to handle fast-moving 5G data.

For companies more directly involved in the 5G deployment, such as Cree Inc., an electronics provider in Durham, N.C., the impact has been more concrete. “We’ve seen some near-term delays in the 5G rollout,” Chief Executive Gregg Lowe said last month.

Xilinx Inc., a San Jose, Calif., chip maker, also cut its sales growth outlook and announced it was reducing its workforce by 7% because of U.S. restrictions on some trade with China and a slower 5G outlook. CEO Victor Peng said many telecom operators that spent heavily to put the initial 5G networks in place now are waiting to see if the spending generates anticipated returns before plowing more money into the infrastructure.

Overseas, Sweden’s Ericsson AB—one of the largest telecom equipment manufacturers—said it has encountered higher 5G-related costs and seen a slowdown in North America sales that it attributes partly to Sprint–T-Mobile merger delays.

Ericsson CEO Börje Ekholm said concerns around the use of Huawei Technologies Co. equipment also have affected deployments. The U.S. has been pressing allies not to use Huawei’s 5G gear because of cybersecurity concerns about the Chinese manufacturer—concerns Huawei has rejected.

Several countries have been reviewing what role Huawei equipment should have in their systems because of U.S. concerns. The U.K., after months of debate, recently said it would allow some use of Huawei equipment in its 5G infrastructure. Huawei late last year struck a 5G deal in Germany.

Some industry analysts expected the U.S. campaign to stem the use of Huawei equipment or to boost other vendors, such as Ericsson. Mr. Ekholm said, “This whole notion that this was a win for Ericsson and Nokia so far has not materialized.”

Some rollouts in Europe also have been delayed because governments haven’t completed the spectrum allocation to operate such systems, industry officials said.

Despite the recent slowdown in equipment purchases, executives remain bullish on longer-term 5G prospects. Handset makers are ramping up plans for new devices: Gartner forecasts 221 million 5G smartphones will be sold this year.

Samsung, the world’s largest smartphone maker, this week unveiled three Galaxy S phones with 5G capability.

“There appears to be a significant bifurcation in demand trends currently between the 5G infrastructure and smartphone segments,” Mr. Bolton, the Needham analyst, said.

Not every network operator is taking a pause, either. AT&T Inc. CEO Randall Stephenson last month said the company’s 5G network covered 50 million people and was expected to reach the entire U.S. in the second quarter. “We’re not slowing down,” he said.

Verizon Communications Inc. Chief Executive Hans Vestberg last month projected fast growth of the company’s 5G network, though he said it would be more pronounced next year.

In China, a key market for 5G handset sales, network rollout plans remain broadly on track, according to analysts. Bernstein Research telecom analyst Chris Lane said Chinese operators were building hundreds of thousands of cell towers and weren’t going to slow down, barring any effects of the coronavirus outbreak.


WSJ: 5G Sends a Confusing Signal –Marketing hype remains hot for next-gen wireless technology, but network expansion seems to have slowed:

Part of the problem is that services marketed under the 5G label can vary widely in terms of speed and availability. Some aren’t much faster than existing 4G networks. And the fastest—including those using millimeter wave technology—currently are available only in certain dense urban areas due to their signal limitations.

Meanwhile, 5G devices remain expensive. Samsung’s new 5G phones range in price from $999 to $1,399. The lowest of those would be the cheapest price seen in the U.S. for a 5G phone so far, but still a bundle for a product offering an unclear benefit. Samsung itself noted previously that smartphone prices creeping above the $1,000 range were “driving market resistance.”

5G will see its biggest test this fall, when Apple Inc. is widely expected to launch its first 5G iPhones. Many assume this will spur adoption of the technology: Apple’s share price has nearly doubled in the past 12 months in part based on hope for a 5G-driven “supercycle.” But Apple’s phones won’t be cheap either given the cost of 5G chips and Apple’s famous focus on maintaining industry-leading margins.

The onus will remain on carriers to get 5G services built out enough to attract consumers to invest in the phones. VerizonAT&T and T-Mobile all have broadcast aggressive plans in this vein for the year. Like its predecessors, 5G will one day be the default standard for all wireless devices. A growing number of companies and investors are counting on it happening sooner than later. That looks risky.

References:  (on line subscription required) (on line subscription required)

Posted in 5G

ITU-R Report: Terrestrial IMT for remote sparsely populated areas providing high data rate coverage

ITU-R WP 5D is progressing a preliminary draft new Report ITU-R M.[IMT TERRESTRIAL BROADBAND REMOTE COVERAGE] which we offer highlights of in this IEEE Techblog post.  Co-authors of this draft 5D document are: Huawei Technologies Co. Ltd, Nokia Corporation, Telefon AB – LM Ericsson, Qualcomm Inc. and ZTE Corporation.

This post is an update and replacement of an earlier version, which can be read here.  The scope has been broadened to include all types of IMT, not just IMT 2020 (5G).


On a global basis, the total number of mobile subscriptions was around 8 billion in Q3 2019, with 61 million subscriptions added during the quarter, the mobile subscription penetration is at 104 percent. There are 5.9 billion unique mobile subscribers using mobile networks, while 1.8 billion people remain unconnected. In year 2025 it is forecasted to be 2.6 billion 5G subscriptions and 8.6 billion mobile subscriptions globally at a penetration level of about 110 percent[1].

In 2025 the forecast is for 6.8 billion unique mobile subscribers using mobile networks, while 1.5 billion people remain unconnected, many of whom are below the age of nine.

The prospect of providing mobile and home broadband services for most of the 1.5 billion unconnected people, living in such underserved rural areas, is largely related to techno-economic circumstances.

This Report provides details on scenarios associated with the provisioning of enhanced mobile broadband services to remote sparsely populated and underserved areas with a discussion on enhancements of user and network equipment.


Deploying networks in remote areas is normally more expensive, and at the same time, expected revenues are lower in comparison with deployments in populated areas. A further reason for not being incentivized to deploy new IMT broadband (e.g. IMT-2020/5G) Base Stations (BS) in these areas is the expected number of new BS sites. Therefore, the total economic incentives to deploy traditional networks in sparsely populated areas are consequently narrowed.

[1] Ericsson Mobility Report, November 2019, mobile broadband includes radio access technologies HSPA (3G), LTE (4G), 5G, CDMA2000 EV-DO, TD-SCDMA and Mobile WiMAX.


The competition model, applying to densely populated areas, is normally not providing rural coverage expansion at a speed that society wish. Connectivity in underserved remote areas is important to national policy makers facing needs of consumers, to service providers for reasons of branding, and to satisfy regulatory conditions in countries.

When expanding coverage in remote areas, it may imply an undesirable local monopoly, suggesting that only one service provider would expand in to such a remote area due to a low consumer base.

Rural coverage might in the future be driven by the need for national security and public safety connectivity, intelligent traffic systems, internet of things, industry automation and end users need for home broadband services as an alternative to fiber connections.  In order to fulfill the needs of rural coverage, it is a matter of urgency to identify viable solutions for mobile and home broadband services.

Related ITU-R Recommendations and Reports:

ITU-R Recommendations

M.819        “International Mobile Telecommunications-2000 (IMT-2000) for developing countries”.

ITU-R Reports

M.1155      “Adaptation of mobile radiocommunication technology to the needs of developing countries”

Solutions that support remote sparsely populated areas providing high data rate coverage:

Possible technical solutions to achieve both extended coverage as well as high capacity in remote areas could be to use dual frequency bands at the same time, one lower band for the uplink (UL) and one higher band for the downlink (DL), in aggregated configurations.

Combining spectrum bands in the mid-band range and the low-band range on an existing grid can provide extended capacity compared to a network only using the low-band range.

An alternative technical solution to provide extended coverage in a remote area using a reduced number of terrestrial BS sites, aiming to bringing cost down, requires careful selection of proper locations and technical characteristics compared to configurations of suburban networks. Realizing such extended network configuration for coverage, several considerations need to be taken into account, both at a BS site and at customer premises. Considerations of accommodating BSs on high towers in sparsely populated areas could be further studied. Such opportunities rest with traditionally high tower used for analogue or digital television with an average inter-site distance (ISD) of the order of 60 km to 80 km designed to provide blanket coverage of national terrestrial television services.

With potential enhancements of base station (BS), user equipment (UE), and customer premises home broadband configurations, it is deemed feasible to deploy a standalone network in the range 3.5 GHz providing high capacity and coverage over tens of kilometers in rural areas. This could potentially be a promising solution for bringing IMT broadband (e.g. IMT-2020/5G) to underserved regions.

Combining spectrum bands in the mid-band range 3.5 GHz and the low-band range, e.g. 600 MHz, 700 MHz or 800 MHz, on an existing grid can provide extended capacity compared to a network only using the low-band range. The reason being that the mid-band range offer access to more spectrum bandwidth, and the low-band range combined, can provide the coverage for cell edge users in a unified manner.

Generally, at a BS site, the antenna height and the radio frequency (RF) output power have a profound impact on the coverage and capacity performance. Effective performance solutions are also represented by a high level of antenna sectorization, high antenna beamforming gain, and the use of MIMO antennas, as well as the use of carrier-aggregation. Furthermore, additional spectrum bands and bandwidth, and usage of redundant signaling protocol will improve performance. As the UL performance is the limiting factor, enhancing the UE transmission performance is key to enable extended coverage. For a home broadband deployment in a “wireless fiber” configuration using an outdoor directional antenna mounted line-of-sight to the BS antenna site extend the coverage range significantly by avoiding building penetration losses.

Underserved sparsely populated areas are every so often characterized by limited internet access and basic mobile service provide by a 2G network designed for voice connectivity. Therefore, one of the key aspects providing coverage in a remote area, aiming to bringing cost down, is possible to use such existing 2G network grid by means of conventional spectrum bands in 600 MHz, 700 MHz, 800 MHz, 850 MHz or 900 MHz for UL connectivity in combination with the band 3.5 GHz for the DL system installed in a high tower used for analogue or digital terrestrial television with an average ISD of the order of 60 km to 80 km designed to provide blanket coverage of national terrestrial television services.

It is assumed that a conventional 2G or 4G antenna arrangement is used for the UL system. For the IMT-2020/5G 3.5 GHz DL system, an antenna array is assumed to have 64 dual-polarized antenna elements installed in a television towers at a height of about 250 m. The considered ISD is regarded to be representative for a conventional 2G network grid. The maximum supported coupling loss for 2G is approximately 137 – 144 dB to support acceptable control channel signaling, and here assuming a maximum of 140 dB coupling loss is needed for basic coverage. The propagation losses are similar for IMT-Advanced/4G at 600 MHz, 700 MHz, 800 MHz, 850 MHz and at 900 MHz, here searching for an ISD that results in 140 dB coupling loss at the cell-edge for 4G at 800 MHz. From experience it is estimated that at 140 dB coupling loss occurs at an ISD of about 4 km. In terms of IMT-2020/5G, a beamformed coupling loss of approximately 143 dB should be supported.

The DL and UL user throughput can be estimated in a deployment scenario using the parameters above. For DL, over 20 times capacity gain can be achieved by utilizing an additional IMT-2020/5G connectivity link in the band 3.5 GHz compared to an IMT-Advanced/4G connectivity link only in the band 800 MHz. This is in recognition of the wider bandwidth of the band 3.5 GHz together with the advanced BS antenna array deployed. For users located at the cell edge, data rates of over 100 Mbit/s can be reached in the DL direction using conventional 5G UE terminals.

Due to the limited UE transmit power of 23 dBm together with the propagation conditions in the band 3.5 GHz, a standalone network has limited possibilities to provide adequate coverage in the UL direction for users located at the cell edge.

Adding the new band 3.5 GHz for mobile and home broadband connectivity, networks can clearly deliver on the promise to increase on the coverage requirements for IMT-2020/5G services, but only adequately in the DL direction. For such a communication circumstances, a IMT-2000/2G or IMT-Advanced/4G grid is indispensable to combine to provide adequate UL coverage.

Analyzing configurations for an IMT broadband network operating only in the band 3.5 GHz:

For the circumstances in underserved remote areas the DL capacity performance can be significantly improved by using the band 3.5 GHz whilst the UL coverage is representing the bottleneck in attempts of satisfying needs for coverage. With potential upgrades of BS and consumer premises UE configurations, the feasibility of providing improved remote area coverage is considered by using only the band 3.5 GHz.

Addressing firstly the UL coverage issue for a standalone network using only the band 3.5 GHz, a potential network upgrade can include increased BS antenna height. Obviously, increased RF power only would not resolve the issues involved. In addition, improved configuration, such as usage of high gain directional UE antenna deployed at the consumer premises for home broadband systems may need to be incorporated into the network design for improved remote coverage and for the reciprocity between DL and UL performance.

This assumption for IMT-2020/5G macro sites is considering the use of television towers at a height of about 250 m, applying ISDs of the order of 60 km to 80 km which is considered to reflect realistic distances for current terrestrial television networks.

In addition, a conventional RF power of 23 dBm is considered for UE at the consumer premises using home broadband services configured for rooftop installation using a high-gain antenna of 20 dBi at about 10 m height can reach 5 Mbit/s at cell edge at reasonably low traffic loads for the UL, and 120 Mbit/s for DL.

With omni-directional UE antennas, the ISD will need to be reduced to 40 km to achieve similar performance at cell edge.

Annex 1. List of acronyms and abbreviations: 

BS Base Station
DL Downlink
ISD Inter-Site Distance
MIMO Multiple Input Multiple Output
RF Radio Frequency
UE User Equipment
UL Uplink



ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage



Verizon to double 5G mmWave cities and use DSS by end of 2020

Verizon plans to double the number of cities covered by its mmWave based 5G wireless network by the end of the year.  The company also said it will expand its mmWave 5G coverage areas in the 31 cities where it already offers the service, according to a Fortune article citing comments from Verizon CEO Hans Vestberg. 
CEO Vestberg also said that Verizon would expand its 5G Home fixed wireless Internet service to a total of ten cities during 2020, up from the five it currently covers. That’s noteworthy considering Verizon recently overhauled the offering to include a do-it-yourself installation component coupled with new, 3GPP-Release 15 5G NR compatible network equipment.”
Verizon did not name the additional cities it will expand 5G Home and mmWave 5G services.
“We have the opportunity to continue our journey to be the leader on 5G,” Verizon CEO Hans Vestberg said at a meeting with investors in New York on Thursday. “We’re not only expanding markets, we’re also expanding coverage in all the markets.”
Verizon’s announcements essentially counter worries that the company is shrinking from the daunting task of deploying commercial mobile services in mmWave spectrum bands. Due to the physics governing transmissions in such bands, signals in mmWave spectrum can only travel a few thousand feet at the most, and often cannot travel through obstacles like buildings, trees and glass.
As a result, Verizon and other operators building mmWave networks have been forced to construct more “small cell” transmission sites – Verizon said it expects to build five times more small cell sites in 2020 than it did last year, according to the Fortune article. However, Verizon did not provide a specific number for its small cell ambitions.Importantly, Verizon’s Vestberg said the operator’s 5G actions are designed in part to encourage customers to upgrade to one of the company’s 5G service plans. Verizon currently charges an extra $10 per month for 5G access on its cheapest unlimited plan, and has promised to impose that fee on its more expensive unlimited plans sometime in the future.
Image result for verizon 5G imagesBut Verizon’s 5G efforts aren’t exclusive to its mmWave spectrum. Vestberg reiterated Verizon’s promise to expand 5G to other spectrum bands sometime this year.  The U.S. #1 wireless carrier plans to use Dynamic Spectrum Sharing (DSS)  which will let it share lower frequencies for use with 4G and 5G endpoint devices at the same time from one cell site. That would let it cover far more territory, though with slower download speeds.[Note  that T-Mobile has reported difficulties with at least one vendor in deploying DSS.]

Rivals have said the gear isn’t ready yet, but Vestberg pushed back on Thursday. “This year we will launch nationwide 5G based on dynamic spectrum sharing,” he said. “We’re going to launch that when we think it’s commercially right, when we see enough handsets out in the market.”

In other Verizon news, the company said it plans to expand its edge computing agreement with Amazon AWS, first announced late last year. The companies hope to operate a total of 11 edge computing sites by the end of 2020, up from one site when the pact was first announced.

Verizon’s announcements today reflect continued momentum by the operator in the realm of 5G. Unlike its rival AT&T, which is in the midst of building out a streaming video operation via its acquisition of Time Warner, Verizon has bet much of its corporate future on 5G. Thus, given the operator’s size and scope, it can be viewed as a bit of a 5G bellwether.

It’s difficult to gauge the details of Verizon’s 5G progress considering the company does not disclose important metrics like the number of 5G handsets it has sold, the number of 5G customers it counts, the number of 5G transmission sites it operates and the specific revenues it expects to derive from 5G.




NEC and Mavenir collaborate to deliver 5G Open vRAN platform

NEC Corp. and Mavenir entered a collaboration agreement to deliver a 5G Open virtualized RAN (vRAN) platform to the Japanese enterprise market. This move will open up Local/Private 5G Network opportunities for enterprises, regional authorities and other organizations, according to the companies.

Under this collaboration, NEC and Mavenir said they will jointly work on 5G Open vRAN and Local 5G business developments and create a simple and cost-efficient ecosystem in the market. The collaboration will bring together NEC’s expertise in IT, network and system integration and Mavenir’s cloud-native network technology.

Editor’s Note:

Moving to a virtual RAN (vRAN) may offer operators important benefits, including a reduced capital expenditure (CAPEX) and operational expenditure (OPEX) over time. Additionally, RAN transformation can be boosted by network functions virtualization (NFV) technology, which changes the typical network architecture from hardware-based to software-defined infrastructure and decouples the baseband functions from the underlying hardware. In turn, the architecture is more flexible, agile, and easier to maintain, allowing operators to launch new services to market faster than ever before.

Cisco created and announced Open vRAN at Mobile World Congress 2018. Conversations with key network operator customers, as well as our partners, made it apparent that something needed to change and they thought we could help. Since then, it’s been a whirlwind ride – working with customers to better define this future and the key elements, building solutions with our partnersinnovating in the market to explore new service designs, and contributing to the process of defining industry specifications.

On that last topic, sometimes there is a little confusion between Open vRAN and O-RAN due to the similar names and similar principles. The naming similarity was coincidental, but not surprising, given both are fairly descriptive of the opportunity. O-RAN (Open RAN Alliance) describes themselves well on their website: The O-RAN Alliance was founded by operators to clearly define requirements and help build a supply chain eco-system to realize its objectives.”  They have extensive details available on their website and in their whitepaper.


Mavenir delivers an Open vRAN platform that provides strategic differentiation by enabling multi-source Remote Radio Units (RRUs) to interwork with the virtualized, containerized, Cloud Base Band software over Ethernet Fronthaul (FH), using the O-RAN open interface, overcoming the traditional constraints of the proprietary walled garden specifications used by the other traditional equipment vendors.

“We are excited to collaborate with NEC, as we move together toward open, virtualized networks,” said Pardeep Kohli, Mavenir’s President and CEO. “Mavenir’s vRAN and NEC’s radio naturally come together to quickly and easily bring new and innovative solutions to the Japanese Enterprise Market.”

NEC actively promotes an open, virtualized infrastructure model in support of the 5G era, using IT, orchestration and network expertise. Moreover, the NEC ecosystem contributes to vRAN via inter-operability testing between multiple vendors’ equipment that is compliant with O-RAN fronthaul specifications.

“The combination of advanced assets and expertise from Mavenir and NEC will enable us to offer end-to-end one-stop 5G Open vRAN and Local/Private 5G solutions, including an advanced 5G network solution for the ecosystem, and vertical solutions that meet the needs of a great variety of Enterprise customers.” said Nozomu Watanabe, senior vice president at NEC.

This joint collaboration will continue to provide value-added products for customers worldwide.  An overview of this collaboration will be introduced during MWC Barcelona 2020  (assuming the event is not cancelled as is rumored now) at the NEC booth, Hall 3, 3M30.


About Mavenir:

Mavenir is the industry’s only end-to-end, cloud-native Network Software Provider focused on accelerating software network transformation and redefining network economics for Communications Service Providers (CSPs) by offering a comprehensive end-to-end product portfolio across every layer of the network infrastructure stack. From 5G application/service layers to packet core and RAN, Mavenir leads the way in evolved, cloud-native networking solutions enabling innovative and secure experiences for end users. Leveraging industry-leading firsts in VoLTEVoWiFiAdvanced Messaging (RCS)Multi-IDvEPC and OpenRAN vRAN, Mavenir accelerates network transformation for more than 250+ CSP customers in over 140 countries, which serve over 50% of the world’s subscribers.

We embrace disruptive, innovative technology architectures and business models that drive service agility, flexibility, and velocity. With solutions that propel NFV evolution to achieve webscale economics, Mavenir offers solutions to help CSPs with revenue generationcost reduction, and revenue protection. Learn more at




U.S. District Judge approves T-Mobile- Sprint merger; New T-Mo will be #2 wireless carrier in U.S.

A federal judge has ruled in favor of T-Mobile USA’s merger with Sprint, despite evidence presented that showed the deal will likely erode competition, raise U.S. wireless data prices, and result in significant layoffs as redundant jobs are eliminated.  U.S. District Judge Victor Marrero concluded the T-Mobile USA merger with Sprint, worth $26 billion when it was struck two years ago, wasn’t likely to substantially lessen competition, and rejected the main arguments by a group of states seeking to block the deal as anti-competitive.  The judge praised T-Mobile in his ruling, calling it “a maverick that has spurred the two largest players in its industry to make numerous pro-consumer changes” and describing its business strategy as “undeniably successful.

Judge Marrero wrote:

“While Sprint has made valiant attempts to stay competitive in a rapidly developing and capital-intensive market, the overwhelming view both within Sprint and in the wider industry is that Sprint is falling farther and farther short of the targets it must hit to remain relevant as a significant competitor.”

“Finally, the FCC and DOJ have closely scrutinized this transaction and expended considerable energy and resources to arrange the entry of Dish as a fourth nationwide competitor, based on its successful history in other consumer industries and its vast holdings of spectrum, the most critical resource needed to compete in the RMWTS markets.”

“Dish’s statements at trial persuade the court that the new firm will take advantage of this opportunity, aggressively competing in the RMWTS markets to the benefit of price-conscious consumers and opening for consumer use a broad range of spectrum that had heretofore remained fallow.”

The two companies said they would move forward to finalize their long-delayed merger. The deal’s current terms offer Sprint shareholders new stock equal to 0.10256 of one T-Mobile share.

“Today was a huge victory for this merger… and now we are FINALLY able to focus on the last steps to get this merger done!” cheered T-Mobile CEO John Legere (pictured below) in a press release.

The states might decide to appeal the ruling and another U.S. district judge in Washington must approve the existing Justice Department arrangement. Letitia James, New York’s attorney general, said the states disagreed with the decision and would review their options. “There is no doubt that reducing the mobile market from four to three will be bad for consumers, bad for workers and bad for innovation,” Ms. James said.

The two companies also need clearance from California’s Public Utilities Commission and face a private antitrust suit challenging the merger. A judge in the Northern District of California ruled in January 2020 that the case could proceed if the carriers overcame the state-led challenge.

T-Mobile and Sprint hope to close the merger by April 1st. The two telcos have spent more than seven years pursuing a combination in some form. They abandoned previous attempts in 2013 and 2017 before their boards struck an agreement in early 2018 that would allow T-Mobile to take over its smaller rival, creating a company closer in size to Verizon and AT&T.

The new T-Mobile would be a formidable rival to Verizon and AT&T, the two largest wireless carriers in the country.  In fact, the total number of “New T-Mobile” wireless subscribers will be more than AT&T currently has.

The “New T-Mobile” will be strengthened by a massive stockpile of wireless radio licenses held by Sprint. Those spectrum holdings allow the new company to serve more customers with high-speed internet service on the go, putting pressure on AT&T and Verizon to match them as carriers upgrade to faster 5G mobile networks.

The court victory also benefits T-Mobile parent Deutsche Telekom AG and Japan’s SoftBank Group Corp., Sprint’s majority owner. SoftBank Chairman Masayoshi Son, a billionaire investor who upended the telecom business in Japan, had been seeking a way to rescue an investment that proved less successful in the U.S.

Tuesday’s court verdict will test the idea that three big players will compete as effectively as four did. Dish enters the market with fewer customers than Sprint, making it a distant No. 4 in the consumer-cellular business.

Dish Chairman Charlie Ergen testified during the trial that his Englewood, Colo., company was better equipped to compete than Sprint. His new wireless service will ride over T-Mobile’s network at first, though customers will eventually use a new cellphone system Dish is required to build over seven years.

Quotes from opponents of the deal:

“We are profoundly disappointed that the judge approved a merger that will harm communities of color and low-income communities across California,” said Greenlining Institute Technology Equity Director Paul Goodman, in a statement.

“While the court may think it unlikely for a newly entrenched trio of enormous wireless carriers to collude rather than compete, the history of broken and abandoned merger promises from these companies – to say nothing of the mountains of evidence and expert analysis in this trial – say otherwise,” said Free Press Vice President of Policy and General Counsel Matt Wood, in a statement.

“The Rural Wireless Association disagrees with Judge Marrero’s decision to approve this deal, which has been consistently and drastically altered from what was originally proposed in early 2018, and now includes Dish, a company that has zero experience operating as a facilities-based mobile wireless carrier network as the savior for wireless competition,” the association said in a statement.

Quotes from supporters of the deal:

“I’m pleased with the district court’s decision. The T-Mobile-Sprint merger will help close the digital divide and secure United States leadership in 5G,” said FCC Chairman Ajit Pai in a statement.

“We appreciate Judge Marrero’s thorough evaluation of this merger. The ruling, in addition to the DOJ and FCC approvals, accelerates our ability to deploy the nation’s first virtualized, standalone 5G network and bring 5G to America,” said Dish Network’s Charlie Ergen in a statement. “We are eager to begin serving Boost customers while aggressively growing the business as a new competitor, bringing lower prices, greater choice and more innovation to consumers. We look forward to the Boost employees and dealers joining the Dish family.

Analyst Opinions:

“This is clearly a big win for T-Mobile, which will now how [sic] a superior spectrum position which it can use to launch 5G and handle even higher growth,” wrote the Wall Street research analysts at Lightshed in a post. “We also see this as a big win for Dish based on what we have learned about its MVNO terms. It’s not great news for Verizon, given that it removes Sprint and Dish’s spectrum as an alternative, created a new competitor in Dish and has empowered T-Mobile with the tools to deliver a superior network experience to consumers.”

“We view a deal as initially negative to AT&T/Verizon despite our view that consolidation should help to further rationalize the competitive/pricing environment long term considering T-Mobile is likely to be aggressive at least early on to help validate the premise of the deal which is it will result in more favorable pricing for consumers,” wrote the Wall Street analysts at Cowen in a note to investors.

“Dish will need to execute on a myriad of levels including building a cloud-native nationwide network followed by the operational challenges that come with competing against three very well entrenched wireless players,” the Cowen analysts added.

“The wireless industry is going to get tougher. Cable would have had a much easier time sucking subscribers out of Verizon and AT&T in a four-carrier market with a capacity constrained T-Mobile. Now they are going to have to fight T-Mobile for every one of those subs, and industry pricing is likely headed lower,” wrote the Wall Street analysts at New Street Research in a note to investors.

However, the New Street analysts pointed out that cable companies may also see some silver lining in the merger of Sprint and T-Mobile, if it is ultimately approved. “Cable will have one more company competing for its MVNO business. We have been surprised the companies haven’t announced new MVNO terms with Verizon or AT&T; negotiations were in full force in October / November last year. Perhaps they have been waiting to see what T-Mobile might offer them if the deal went through. Altice will be the most immediate winner; their MVNO with Sprint now moves to a much better network.”


Addendum from  Robin Hood Snacks:

Here’s the history of this complex courtship:

  • June 2018: T-Mobile’s CEO announces that his company has agreed to merge with Sprint. The combo company – valued at $146B – would be split between 3 owners: Deutsche Telekom (T-Mobile’s parent), SoftBank (which owns most of Sprint), and retail investors like you and us who own remaining shares.
  • November 2019: The Department of Justice and the Federal Communications Commission approve the merger under certain conditions… But 13 states plus DC sued to block the deal, saying it would hurt competition and lead to pricier phone bills.

Sprint has been lagging rivals for a while… so the judge doesn’t think this deal will substantially hurt competition. Plus, regulators will make sure that Dish Network enters the game as a viable new service provider. Sprint will have to sell Dish 9M customers, but that’ll still be a distant competitor to the Big 3.


We have a three-opoly on our hands… Here’s the pecking order now: Verizon #1, New T-Mobile #2, and AT&T #3. And a three-opoly could affect your bill:

  • Interpretation A: Competition has been reduced, now that we’ve gone from 4 major players to 3. When there’s less competition, companies tend to charge higher prices.
  • Interpretation B: Actually, this merger increases competition, because Sprint was never a real player and T-Mobile wasn’t big enough to compete over future 5G networks. Now T-Mobile + Sprint can effectively challenge AT&T and Verizon.



Importance of FCC C Band Auction for 5G in the U.S.

FCC Chairman Ajit Pai has described the commission’s plan for its auction of a portion of the C-band — the 4Ghz to 8GHz radio frequencies used mostly for consumer satellite transmissions, but in the future for 5G mobile broadband.

The FCC wants to auction off the bottom 280MHz (the 3.7 – 4.2Ghz range) of the C-band and reserve 20Mhz of the band above that threshold for further needs. Both the FCC and current satellite operators say this will still leave enough spectrum for the operators to provide the same level of service that we have today.

The C-band is a valuable block of very underutilized spectrum. Portions of it are also a great addition to mobile operators who want to roll out 5G using the mid-band spectrum.

The 3.7 to 4.2Ghz range of the C band would offer a great balance of range and capacity which is important when carriers want to offer any real nationwide 5G service. A combination of low-band, mid-band, and upper millimeter-wave bands would offer carriers plenty of spectrum to maintain existing networks and add 5G expansion from coast to coast, and that’s what carriers and the current FCC wants to see happen.

Executives from Verizon, AT&T and T-Mobile stated their support for Federal Communications Commission (FCC) Chairman Ajit Pai’s proposal to get C-band spectrum cleared and available for a public auction, a plan that immediately saw backlash from some senators and public interest groups.

The network operators’ support isn’t surprising given they’ve been pressing for more mid-band spectrum for 5G and lobbying for quick action on C-band spectrum specifically, but they’re all coming at it from different places.

Currently, four satellite operators provide the majority of C-band satellite service in the U.S. — Intelsat, SES, Eutelsat, and Telesat. These are the companies that provide the actual satellite broadcast that you might be paying another company for and reach well over 100 million homes.

The satellites and ground equipment need to be changed so that they use the upper 200MHz of the C-band to transmit at the same level of service we’re all used to. The cost of this relocation is expected to be in the $3 billion to $5 billion range and will be covered by the auction winners.

The FCC would like this relocation, which is expected to be finished by September 2025, to be expedited. It proposes what chairman Pai calls “accelerated relocation payments.” These would also be paid by the winning bidders, but only if the satellite operators meet a specific schedule: free the lowest 100MHz of the spectrum by September 2021 and the remaining 180MHz by September 2023.  Should this occur, the fees would include these expedition bonuses and rise to $9.7 billion.

Chairman Pai says that this is almost necessary if the U.S. wants to be competitive with the rest of the world when it comes to 5G:

“It is in the public interest to make available frequency in the C-band as quickly as possible as part of a national priority to promote American leadership in 5G. To get the job done quickly, we need to align the private interest of satellite companies with the public interest.”

Pai also notes that these are simply FCC proposals and that Congress can overrule any or all of them.

While acknowledging that Congress can have the final say, Pai also stated the regulations that allow the FCC to make these decisions.


Section 316 of the Federal Communications Act grants authority to modify any licenses granted to current holders of C-band spectrum, section 309 allows the FCC to auction the lower 280MHz of the spectrum for “flexible” use, section 303 allows the FCC to set new rules and regulations for the technical usage of the C-band, and Title 3 allows the FCC to require the auction winners to pay any and all relocations fees.

Pai also suggested that he hopes Congress will make a small override to the proposed FCC recommendations and offer 10% of the proceeds to rural broadband initiatives. This is a promise Pai has made and championed for since placed as FCC chair, yet so far we’ve seen no movement from carriers or to regulations.

If there is to be any real nationwide 5G network that’s reliable and stand-alone, we’ll have to see plenty of spectrum reallocation. Some, like this news, will be authorization for new use cases and others will be carriers repurposing existing holdings. It will take a lot of work before any country has a full 5G nationwide network.



Recent Posts