Huawei and China Telecom Jointly Release 5G Super Uplink Innovation Solution

As a large number of new pre-standard 5G services emerge, they are posing higher requirements on the uplink rate and latency. During MWC2019 in Shanghai, China Telecom and Huawei jointly released the 5G Super Uplink Joint Technology Innovation solution to accommodate those applications.

The 5G Super Uplink solution proposes the innovative networking technology featuring TDD/FDD coordination, high-band/low-band complementation, and time/frequency domain aggregation, which achieves an unprecedented uplink rate of 5G networks and reduces latency over the air interface. This solution truly redefined 5G networks based on industry requirements.

At the “Hello 5G Encouraging the Future” 5G Innovation Cooperation Conference held in April this year, China Telecom formulated the networking strategy that depends on the standalone (SA) networking and applies three SA features of URLLC, eMBB, and eMTC to meet 2B/2C requirements. China Telecom has extensively explored 5G applications in vertical industries such as government affairs, transportation, ecosystem, party building, healthcare, tourism, policing, Internet of Vehicles (IoV), education, and manufacturing. In the future 2B/2C ecosystem, large bandwidth and low latency are the focus of services. For example, the 4K HD video backhaul will give rise to the boom of new media, Internet celebrity live broadcast, and other services, bringing immersive experience to the audience. Drone services, unmanned driving, and telemedicine have higher requirements on the uplink rate and network latency.

The 5G Super Uplink solution proposed by China Telecom and Huawei implements the time-frequency domain aggregation of TDD and FDD in the uplink frequency band. Therefore, the solution can increase uplink spectrum resources of NR, boost the uplink capability of the 5G network, reduce latency, and improve the utilization rate of the uplink spectrum of 2.1 GHz/1.8 GHz. At the launch event, the Proof of Concept (PoC) of “Super Uplink” was demonstrated. The test results showed that the experienced uplink rate of 5G UEs in the cell center was increased by 20% to 60%, the experienced uplink rate of 5G UEs at the cell edge was increased to 2 to 4 times, the air interface latency was reduced by about 30%, and the URLLC services were enabled. Huawei Balong 5000 chipset, customer-premises equipment (CPE), and Mate 20 X were also displayed at the event. Super Uplink is supported from end to end by Huawei 5G technologies.

Huawei Technologies

Corporation Limited, third from left Ding Yun, Executive Director of the Board President, Carrier Business Group Huawei Technologies Co., Ltd., third from right Yang Chaobin, President of 5G Product Line, Huawei Technologies Co., Ltd., second from right.  Photo courtesy of Huawei Technologies
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….

Liu Guiqing, executive vice president of China Telecom Group Co., Ltd., said: “The five ecosystems extend to 5G and become the important engine for China Telecom’s continuous growth. China Telecom adheres to the philosophy of “Customer First, Attentive Service”, insists on formulating standards first and leading technology development, and pioneers the practice of 5G network innovation. To provide better 5G experience, optimize customers’ service awareness, and enhance differentiated competitiveness in the market, China Telecom cooperates with Huawei to propose the innovative 5G networking technology featuring TDD/FDD coordination, high-band/low-band complementation, and time/frequency domain aggregation. This solution aims to further improve the uplink data capability and reduce latency, providing better development space for vertical industry applications. China Telecom will work with industry partners to seek the optimal network experience solution and promote the prosperity of the industry.”

Ryan Ding, executive director, CEO of the Carrier BG of Huawei Technologies Co., Ltd., commented: “5G not only changes everyday life but also revolutionizes human society. Service requirements are driving the development of 5G technologies. 5G industry innovation represents uplink ultra-large bandwidth, ultra-low latency, end-to-end slicing, and mobile edge computing (MEC). Based on the digital requirements of the industry, Huawei and China Telecom proposed the 5G Super Uplink Joint Technology Innovation solution. It is another breakthrough after Huawei CloudAIR solution.”

Yang Chaobin, president of 5G Product Line, Huawei Technologies Co., Ltd., noted: “The Super Uplink solution can meet the service requirements of large bandwidth and low latency at the same time. We are honored to work with China Telecom to implement the test and verification of 5G Super Uplink. Huawei 5G supports end-to-end Super Uplink and co-deployment of NSA and SA. Huawei will help industry partners continuously innovate to create the optimal 5G experience.”

China Telecom and Huawei continue to cooperate closely in technological innovation, promote 5G innovation, and contribute to 5G industry development. Huawei will support the strategic goal of China Telecom’s 5G development as always, and deepen cooperation on Super Uplink to help China Telecom take the lead in the new era of a 5G intelligent world.

Contact:
Nash Chong
nash.chong@maxusglobal.com

Reference:

https://www.globenewswire.com/news-release/2019/07/01/1876788/0/en/China-Telecom-and-Huawei-Jointly-Release-5G-Super-Uplink-Innovation-Solution.html

 

Philippines’ Globe Telecom to deploy “Air Fiber 5G” this month

Globe Telecom has made the Philippines the first country in Southeast Asia to offer commercial “5G” fixed wireless internet.  The rollout of these services, from early July 2019, form part of Globe’s efforts to connect two million homes across the Philippines by 2020.

The at home ‘Air Fiber 5G’ postpaid plans that Globe has released offer Filipinos the option of high bandwidth and low latency services, especially given the challenge of rolling out fiber optic cables across the country.

“The arrival of 5G has caused excitement in the global world of telecommunications,” said Ernest Cu, president and CEO of Globe Telecom. “Today, we made a crucial step in fulfilling our goal of connecting more Filipino homes, and our vision of bringing first-world Internet to the Philippines,” Cu added.

The Globe At Home Air Fiber 5G postpaid plans will offer fiber-like speeds up to 100Mbps.  Super-sized data packages of up to 2 terabytes will be initially available in select areas in Pasig, Cavite, and Bulacan.

Globe at Home Air Fiber 5G will be available to eligible customers in July 2019. Plans come at P1899 per month for up to 20Mbps, P2499 for up to 50Mbps and P2899 for up to 100Mbps. All come with up to 2TB data capacity.

“Prior to Air Fiber 5G, we have aggressively utilized fixed wireless solutions to connect more homes and businesses to the internet over airwaves,” said Cu. “This strategy resulted in home broadband subscriber base increasing by 55.1 per cent to 1.7 million in the first three months of 2019 from 1.1 million in the same period in 2016.”

The Globe At Home Air Fiber 5G modem

………………………………………………………………………………………………………

“Globe At Home Air Fiber 5G makes use of fixed location wireless radios instead of fiber optic cables which enables the company to go over the circuitous approval process of deploying a fiber optic cable – a task which proves to be arduous and involves securing multiple permits from local government units (LGUs),” Cu said.

“The right of process can sometimes take years to obtain, causing drastic delays in fiber optic roll-out completion,” Cu added.

Alberto de Larrazabal, Globe’s chief commercial officer, told reporters in the Philippines that Globe would use Huawei’s equipment, including radios and modems, to deliver “5G quality broadband internet.”

[Huawei and Finland’s Nokia were Globe’s equipment providers for its 4G-LTE service.]

Cu said that the company has been spending over 21% of its annual total revenues to upgrade and expand its telecommunication and IT infrastructure since 2012. “We have been ramping up our capital spend from P20.3 billion in 2012 to P43.3 billion in 2018, in order to provide our customers better broadband services,” he said.

Editor’s Notes:

  1. The Philippines ranks 107th among 178 countries in fixed broadband speed at 19.55 megabits per second (Mbps) versus the global average of 59.6 Mbps. Among 140 countries, it ranks 107th in terms of mobile internet speed at 15.10 Mbps, nearly half of the 27.22 Mbps global average.
  2. Globe is owned by Philippine conglomerate Ayala Corp, with Singapore Telecommunications Ltd holding a minority stake.

……………………………………………………………………………………………….

References:

https://www.globe.com.ph/about-us/newsroom/consumer/globe-at-home-air-fiber-5g.html

https://businessmirror.com.ph/2019/06/26/globe-at-home-air-fiber-5g-unveiled-to-connect-more-filipinos/

https://sg.channelasia.tech/article/663513/philippines-rolls-commercial-5g-services-through-globe-telecom/

https://www.gmanetwork.com/news/scitech/technology/699258/faster-internet-service-unveiled-to-connect-more-filipinos-at-home/story/

https://www.bworldonline.com/globe-launches-first-5g-service-in-southeast-asia/

https://techblog.comsoc.org/2018/11/26/huaweis-all-bands-go-to-5g-strategy-explained-partnership-with-china-telecom-described/

SK Telecom and Samsung Bring South Korea Closer to 5G Standalone Commercialization

The two companies successfully completed interoperability test between 5G Standalone Core and Commercial Network Solutions (based on 3GPP Release 15 which is not 3GPP’s final submission to ITU-R for IMT 2020 RIT/SRITs.

SK Telecom and Samsung Electronics today announced the successful completion of South Korea’s first interoperability assessment between 5G Standalone (SA) Core and other commercial network systems over a pre-standard 5G network. This successful result brings the two companies one step closer to 5G SA commercialization.

The 5G SA Core, jointly developed by SK Telecom and Samsung Electronics, not only supports technologies including network slicing and function modularization based on 3GPP standards, but also offers additional functions that operators have been using since LTE, include billing, subscriber management and operational convenience system. The interoperability assessment is the final stage for verifying the validity of 5G SA data transmission, signifying that the SA system is ready to be launched for commercial service.

Both companies implemented several cutting-edge technologies in the 5G SA Core that has been used for the interoperability. The technologies include Data Parallel Processing technology that performs QoS and transmission control simultaneously; Data Acceleration technology that classifies and distributes similar traffic types; and Path Optimization technology that automatically delivers data traffic to Mobile Edge Computing (MEC) platform.

“Along with the initial phase of NSA rollout, SK Telecom has been continuously focusing on researching and developing the SA technology in order to provide customers a differentiated service quality with innovative products, which will be launched in the first half of next year,” said Park Jin-hyo, Chief Technology Officer and Head of ICT R&D Center at SK Telecom. “By strengthening bilateral collaboration with Samsung, SK Telecom will drive and lead highly innovative 5G technologies and solutions.”

“The fundamental structure of 5G SA is built on a completely new configuration, successfully delivering the most optimized 5G service to customers and enterprises across numerous industries,” said Jaeho Jeon, Executive Vice President and Head of R&D, Networks Business at Samsung Electronics. “Maintaining Korea’s leadership in network innovations through continuous investments in next-generation technologies is important to Samsung and SK Telecom, and the companies will continue to collaborate on developing and commercializing 5G SA.”

Once 5G SA is commercialized, data processing efficient will be improved by threefold, allowing efficient control for supporting massive data traffic. Moreover, 5G SA system is highly optimized for emerging next generation services such as Autonomous driving, Smart Factory, Smart Farm, and AR/VR.

For the past five years, the two companies have been collaborating on LTE and 5G development, which ultimately led to this successful 5G SA Core interoperability test. Some of other accomplishments include the commercialization of Virtualized LTE Core and Packet Optimization system; and they have completed the development of 3GPP Rel. 15 based SA Core in July last year, and successfully launched 5G NSA commercial service in April this year.

…………………………………………………………………………………………………….

About SK Telecom:

SK Telecom is the largest mobile operator in Korea with nearly 50 percent of the market share. As the pioneer of all generations of mobile networks, the company has commercialized the fifth generation (5G) network on December 1, 2018 and announced the first 5G smartphone subscribers on April 3, 2019. With its world’s best 5G, SK Telecom is set to realize the Age of Hyper-Innovation by transforming the way customers work, live and play.

Building on its strength in mobile services, the company is also creating unprecedented value in diverse ICT-related markets including media, security and commerce.

……………………………………………………………………………………………………

For more information, please contact:

skt_press@sk.com or sktelecom@bcw-global.com.

 

Media Contact

Yong-jae Lee

SK Telecom Co. Ltd.

(822) 6100 3838

(8210) 3129 6880

yjlee6880@sk.com

Irene Kim

SK Telecom Co. Ltd.

(822) 6100 3867

(8210) 8936 0062

gahaekim@sk.com

Ha-young Lee

BCW Korea

(822) 3782 6421

Hayoung.Lee@bcw-global.com

 

ITU-R Proposal: Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

Proposal to develop a draft new ITU-R WP 5D Report on IMT-2020 for remote sparsely populated areas providing high data rate coverage

ITU-R WP5D July 2019 meeting contribution by LM Ericsson

Abstract:

Ericsson proposes that ITU-R WP 5D develops a Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum bands.

[This author thoroughly agrees with Ericsson’s proposal!]

Introduction:

IMT-2020 networks have the capacity of satisfying the need for high data rate coverage for enhanced mobile broadband services in under-served and remote, sparsely populated areas. In this contribution we are suggesting that work be started on a Report giving details on prospects associated with the provisioning of enhanced mobile broadband services to remote, sparsely populated and underserved areas, proposing enhancements of user equipment (UE) as well as for networks in suitable frequency bands

  • for user equipment, possible solutions based on affordable user deployed equipment combined with access to local spectrum at user premises could be considered and examined, and
  • for network equipment, possible solutions based on high gain massive MIMO antennas could be reviewed.

A significant part of the global population is currently connected to existing cellular and mobile broadband sites. As a complement, users in remote sparsely populated and under-served areas could be connected to higher tower sites.

The proposed Report could, for example, consider an existing GSM cellular site grid designed for voice coverage, which could be estimated to reach high downlink data rates at a cell edge of IMT-2020 coverage ranges using conventional UE and network equipment. The Report would need, however, to focus on and consider the uplink performance characteristics which may be regarded as not being satisfactory without further elaborations on policy, spectrum and other aspects. For example, consider suggesting enhancements on UE and network equipment as well as consider using high tower installations that may provide coverage reach far beyond that is currently supported by typical GSM sites.

Background:

With regard to current perceptions, it is easy to get the impression that IMT-2020 is primarily targeting a shorter-range network build using millimeter wave (mmW) bands supporting extremely demanding requirements on latency, capacity, and very high peak data rates.

However, it is suggested that IMT-2020 is designed to operate in frequency bands ranging from low-bands to high-bands and can be configured to perform better or on-par with IMT-Advanced in every aspect, also in rural sparsely populated areas. IMT-2020 has evolved from IMT-Advanced, adding significant improvements to an already capable and proven design. IMT-2020 provides two fundamental benefits relevant for longer-range coverage

  • Firstly, it is designed to fully utilize massive MIMO, and
  • Secondly, it is based on a flexible and lean design reducing energy consumption.

To achieve longer-range, earlier cellular and mobile broadband systems have relied on low-bands. System operated in bands around the frequency range 450 MHz having excellent coverage, but with the limitation of available bandwidth. Pushing uses to higher and higher frequency bands is clearly resulting in increased capacity, but also in reduced coverage range.

For IMT-2020 massive MIMO configuration there is no longer a simple relation between low-band use and longer-range coverage. Using high-band frequencies the size of individual antenna element decreases, resulting in reduced efficiency of each antenna element. However, with massive MIMO this effect can be compensated for by adding antenna elements, effectively keeping the physical antenna size constant while moving to higher frequency bands.

Long-range cellular coverage is very much about using higher towers, higher power, and high gain antennas. In previous cellular systems, higher radio frequency (RF) power resulted in larger network energy consumption. IMT-2020 efficiently supports lean-design and massive MIMO as it provides the right tools to deploy longer-range systems supporting high peak data rates with lower average network energy consumption.

One offered solution to achieve both good coverage as well as high capacity is to use two or more frequency bands from low-band, mid-band and / or high-band, in an aggregated configuration. This approach has proven to be very effective in dense urban areas when deploying IMT-2020 in mmW bands in combination with a low-band or mid-band that can provide improved coverage.

When combined in an effective way, the high-band off-loads the traffic from the low-band and / or mid-band, resulting in significantly improved coverage as well as capacity. This could potentially also be a promising solution for bringing IMT-2020 to underserved rural sparsely populated areas. Combining IMT-2020 using a band in the range 3.5 GHz and IMT-Advanced in a band below the frequency 1 GHz on a GSM cellular grid can provide superior capacity compared to a standalone IMT-Advanced network deployment below 1 GHz. The reason being that in mid-bands in the range 3.5 GHz there is access to more bandwidth, and the low-band on a band below 1 GHz, provide coverage for cell edge users at the same time.

Considering the above, the proposed Report could review, discuss and assess the feasibility for potential enhancements for both network equipment and UE, it may consequently be viable to deploy IMT-2020 network in a band in the range 3.5 GHz providing high capacity and long-range coverage in underserved rural sparsely populated areas. This could be more feasible and economical than deploying new sites in these areas.

IMT-2020 could potentially provide high peak data rate and high capacity mobile broadband services in underserved rural sparsely populated areas by utilizing a band in the range 3.5 GHz, where typically 100 MHz bandwidth is available compared to 20 MHz that can be expected to be available in band in the range below 1 GHz. The Report could elaborate several possible enhancements using higher towers for extended range coverage. Further contribution based on studies, within the context of the proposed Report, would be required to find a technically as well as economically best practice solution resulting in sufficiently long-range, cell-edge throughput, and capacity. Such a solution could be to consider and review the use of both the existing grid of cellular towers and possibly the higher but also sparser television towers in combination, as well as reviewing a standalone 3.5 GHz configuration, or possible aggregation between the range 3.5 GHz for downlink and low-bands for uplink.

In addition, spectrum and policy aspects having a possible impact on a feasible network configuration may need to be addressed by a possible Report.

Proposals:

Ericsson proposes that WP 5D develops a draft new Report that addresses the specific needs for high data rate coverage for sparsely populated and under-served areas using suitable frequency spectrum.

Editor’s Note:

Attachments 1 and 2 of Ericcson’s proposal, with more detailed proposals and time schedules, are only available to ITU member organizations and individuals with a TIES account.

ZTE and China Mobile demo 5G 8K+VR ultra-wide bandwidth and 5G MU-MIMO at Mobile World Congress Shanghai 2019

by Margaret Ma, ZTE

1.  5G 8K+VR ultra-wide bandwidth:

ZTE Corporation a leading provider of telecommunications, enterprise and consumer technology solutions for the mobile internet, and China Telecom have today demonstrated 5G 8K+VR ultra-wide bandwidth experience at a 5G experience zone at Mobile World Congress (MWC) Shanghai 2019.

The 5G commercial network-based demonstration has not only showcased the excellent performance and business-enabled capabilities of China Telecom’s commercial network, but also reflected ZTE’s excellent 5G end-to-end commercial capabilities, providing a good model for 5G business cases.

ZTE will fully support the construction of China Telecom’s 5G commercial networks, exploring the application and business models of the 5G industry, helping establish China Telecom’s 5G brand leadership and achieve a win-win co-operation in the 5G era.

In addition, for visitors to MWC Shanghai 2019, China Telecom and ZTE have arranged a 5G Tour, travelling 5km with continuous coverage of the 5G network onboard a 5G experience bus. On this trip, visitors can enjoy diversified service experiences, including 5G-8K VR panoramic live streaming, 16-channel HD video live streaming, and 5G commercial smartphone video calls.

A screen on the bus shows the real-time 5G date rate that visitors can achieve, with a peak date rate of more than 1GBPS.

Empowered by the technologies of China Telecom and ZTE, the 5G-8K VR panorama live streaming combines 8K and the VR technology. The images and data captured by a 8K VR 360-degree camera are transmitted through a 5G network, allowing visitors to wear VR glasses and enjoy an immersive viewing experience.

With the capability of providing complete 5G end-to-end solutions, ZTE looks forward to working closely with industry partners to actively promote 5G business applications and practices, thereby facilitating the digital transformation of vertical industries.

……………………………………………………………………………………………………………………………………………………………………………..

2. 5G MU-MIMO:

In addition, ZTE and China Mobile demonstrated a 5G MU-MIMO (Multi-User, Multiple-Input Multiple-Output) multi-user performance test based on 5G commercial base stations and smart phones at Mobile World Congress Shanghai 2019. The demonstration showcases both companies’ leading positions in commercial performance.

The MU-MIMO makes full use of multi-antenna features to maximize the utilization of spectrum resources, creating much greater revenue for users. It is the core technology of 5G to realize ultra-wide bandwidth.

This MU-MIMO test was carried out in China Mobile’s Guangzhou 5G field, employing ZTE’s industry-leading 160M full-band 4/5G dual-mode commercial base station. The base station supports dynamic spectrum sharing, achieving dual-network integration at 2.6GHz, and 16 ZTE commercial mobile phone Axon10 Pro.

The test result showcased that a 5G single cell throughput is over 3.7Gbps, while a single EU downlink data rate is more than 200Mbps. The result is also a four-time increase in network system capacity than that of the SU-MIMO technology. The test footage and data were also transmitted back to China Mobile’s booth at MWC Shanghai in real time from Guangzhou.

ZTE and China Mobile have been strategic partners for years, working together on 5G technical innovation and industry development. The two parties have witnessed a series of milestones in the path to 5G commercialization. China Mobile and ZTE jointly developed the world’s leading 5G prototype base station, the world’s leading 5G site, the world’s leading 2.6GHz NR IoDT and the world’s leading end-to-end system.

With great capability of providing complete 5G end-to-end solutions, ZTE looks forward to working closely with industry partners to actively promote 5G business applications and practices, thereby facilitating the digital transformation of vertical industries.

…………………………………………………………………………………………………………………………………………………………………………………………………

About ZTE:
ZTE is a provider of advanced telecommunications systems, mobile devices, and enterprise technology solutions to consumers, carriers, companies and public sector customers. As part of ZTE’s M-ICT strategy, the company is committed to provide customers with integrated end-to-end innovations to deliver excellence and value as the telecommunications and information technology sectors converge. Listed in the stock exchanges of Hong Kong and Shenzhen (H share stock code: 0763.HK / A share stock code: 000063.SZ), ZTE’s products and services are sold to over 500 operators in more than 160 countries. ZTE commits 10 per cent of its annual revenue to research and development and has leadership roles in international standard-setting organizations. ZTE is committed to corporate social responsibility and is a member of the UN Global Compact. For more information, please visit www.zte.com.cn.

…………………………………………………………………………………………………………………………………………………………………………………………………

Media Contact:
Margaret Ma
ZTE Corporation
Tel: +86 755 26775189
Email: ma.gaili@zte.com.cn

References:

https://www.zte.com.cn/global/about/news/20190628e3

http://asiatoday.com/pressrelease/zte-and-china-mobile-showcase-leading-mu-mimo-multi-user-performance-mwc-shanghai-2019

T-Mobile mmWave 5G to be available in six cities on June 28th along with Samsung Galaxy S10 5G smartphone

T-Mobile US has announced it will use millimeter wave (mmWave) spectrum to offer up “pre-standard 5G” services in parts of six cities beginning on June 28th.  Sales of the Samsung Galaxy S10 5G will commence that same day (see References below). The company published detailed coverage maps showing where subscribers in Atlanta, Cleveland, Dallas, Las Vegas, Los Angeles and New York can expect to access their 5G network.

T-Mobile has said its plan for nationwide coverage hinges on its vast portfolio of 600 MHz spectrum, but the “Un-carrier” also has its own stash of high-band frequencies. Sprint activated its mobile 5G offering using mid-band 2.5 GHz spectrum. The complementary aspects of Sprint’s and T-Mobile’s spectrum is a key piece of the pending $26.5 billion merger, which is awaiting regulatory approval which may be delayed due to several states filing opposition lawsuits.

 

T-Mobile US CEO John Legere, has been highly critical of AT&T’s and Verizon’s millimeter wave-based 5G deployments (particularly the lack of coverage maps). He wrote in a June 20th blog post that the “New T-Mobile” (merged with Sprint) could deliver the range of spectrum needed for 5G.

Current 5G networks in the U.S. aren’t anything to write home about. That’s because they’re mostly focused on high-band millimeter wave (mmWave) spectrum, which doesn’t travel far from the cell site and is blocked by things like trees, windows and doors. It’s a massively important part of 5G, don’t get me wrong, but it’s just that – a PART. We’ve been clear all along… real, game-changing 5G will require a range of spectrum – low, mid and high – and only the New T-Mobile will be able to deliver it.”

Legere stated that the “New T-Mobile” (merged with Sprint) would be better able to deliver 5G because:

  • We’ve got the high-band spectrum with mmWave, which delivers massive capacity over a very small footprint.
  • Later this year, when compatible smartphones launch, we’ll launch broad 5G on our low-band 600 MHz spectrum, providing the wide area coverage necessary to reach across America.
  • If regulators approve our merger with Sprint, we’ll have the crucial mid-band spectrum (2.5 GHz), which provides the balance of coverage and capacity that enables a seamless and meaningful 5G experience. Mid-band spectrum is key to providing an ideal mix of coverage and capacity for 5G networks, and the combination of Sprint’s mid-band and our low-band will allow New T-Mobile to use both spectrum more efficiently, increasing capacity even more.

………………………………………………………………………………………………………………………………………………………………………………………………………………………………

T-Mobile said it will use “Multi-band Dual Connectivity” to aggregate “5G in the millimeter wave band and LTE.”

T-Mobile plans to launch a larger 5G network later this year using the low-band 600Mhz 5G spectrum, a technology not supported by the Galaxy S10 5G.  5G smart phones that support both mmWave and the low-band spectrum are expected later this year.

However, critical infrastructure for mmWave 5G will require many more small cells (due to limited range)  that will need to be mounted on mainly local (public) government property with fiber backhaul.  We wonder why that gating item is hardly ever discussed on line or in the telecom business press?  It is probably why T-Mobile’s 5G mmWave coverage is extremely limited as you can see from their coverage maps.

References:

https://www.t-mobile.com/news/samsung-galaxy-s10-5g

https://www.t-mobile.com/5g

https://www.tmonews.com/2019/06/t-mobile-galaxy-s10-5g-launch-network-six-cities/

 

OpenSignal reports on 5G Speeds and 4G LTE Experience in South Korea & Other Countries

Introduction:

South Korea wireless telcos have all deployed pre-standard versions of “5G,” based on 3GPP Release 15 NR NSA.  That relies on a “LTE anchor” for signaling, mobile packet core, etc.  Are those “5G” speeds significantly greater than 4G LTE Advanced Pro which AT&T claims is 5GE?

Opensignal has published what it says is  the first “real analysis” of 5G download speeds as of June 20, 2019.  Their latest report (June 2019) is on  the performance of various 4G LTE wireless carriers and devices in South Korea.

5G Speeds in South Korea:

The market research firm reveals that the average 5G download speeds in South Korea (for the Samsung S10 5G and LG Electronics V50 ThinQ 5G) is 111.8 Mbps (see illustrations below), or 48% faster than comparable recent 4G smartphones, and 134% faster than other 4G LTE phones.

While those average 5G speeds outpace what 4G devices obtain, Opensignal’s results show that those averages track well behind the maximum capabilities supported by 5G in South Korea.  The vast majority of South Korean 5G smartphone users currently have either the Samsung S10 5G or LG V50 smart phone. Therefore, we compared these 5G users with owners of 4G flagship smartphone from those two brands released in 2018 and 2019, this includes: Samsung S9, S9+, Note 9, S10e, S10, S10+ and  LG G7 range, V40, and G8.

…………………………………………………………………………………………………………………………………………………………………………………………………….

Opensignal lists maximum 5G download speeds of 1.2 Gbit/s in the U.S. and 988 Mbit/s in South Korea.

“While 1.2 Gbps is the maximum (download) speed experienced by Opensignal users in real-world conditions, Opensignal has seen speeds as high as 1.5 Gbps in the U.S. using our software but in test conditions that do not reflect the real-world experience.”

Currently, 5G smartphone users connect to both a 4G spectrum band and a (3GPP Release 15) 5G New Radio (NR) band simultaneously in what is called Non-Standalone Access (NSA) mode. Effectively, the system is using 5G for raw download bandwidth, but uses 4G for other network functions. When operators launch services based on Standalone Access, 5G smartphones will be able to connect exclusively to a 5G NR signal and latencies should decrease significantly, improving the experience for consumer applications such as online multiplayer games like Fortnite or PUBG, as well as internet-based voice communication like FaceTime, Tango, WhatsApp, KakaoTalk, LINE, etc.  Opensignal expects the experience of 5G users to change during the course of 2019 as 5G’s coverage improves and vendors resolve initial 5G problems.

While there is a significant increase in the average download speeds experienced by 5G smartphone users, both upload speeds and latency — a measure of the responsiveness of the network — are similar between 4G smartphone users and 5G smartphone users. This upload and latency finding is what Opensignal would expect at this early stage of the 5G era because initial 5G technology does not yet seek to improve either characteristic.

As vendors fix 5G teething issues and refine their solutions, peak and average 5G speeds will improve. And, while some 5G frequency bands are not available in particular countries yet – for example 3.5Ghz in the U.S., mmWave in Europe – they will be over the next few years and experience gained from other countries will help carriers improve these later 5G roll outs.

4G LTE Speeds in South Korea and other countries:

South Korea was the only country where smartphone users enjoyed average mobile Download Speeds over 50 Mbps, although Norway was close behind with 48.2 Mbps. Then there was a bit of a drop in speeds to the next two countries, Canada and the Netherlands, where OpenSignal measured Download Speed Experience at just over 42 Mbps. The remaining six of the top 10 markets scored in the 33-40 Mbps range. The global average score of the 87 countries analyzed was 17.6 Mbps — barely a third of the top score.

Canada’s impressive third place is little surprise. Users experienced over 35 Mbps in Download Speed Experience, while speeds of over 60 Mbps weren’t uncommon in the country’s biggest cities.

……………………………………………………………………………………………………………………………………………………………………………………………….

4G LTE Mobile Experience in South Korea:

OpenSignal said there was a wide variety of of their metrics in Download Speed Experience, with average speeds ranging from over 50 Mbps to less than 2 Mbps. There were 13 countries with Download Speed Experience scores over 30 Mbps, while 35 of the 87 markets measured fell into the 10-20 Mbps range, and 20 scored under 10 Mbps.

For 4G Availability, LG U+ achieved a near-perfect score.  All three South Korean wireless operators were able to deliver a 4G signal to their users more than 95% of the time, putting them among the global elite in 4G reach. LG U+ went further. Its 4G Availability score of 99.5% means that there was practically no instance where our users couldn’t find a 4G connection during our data collection period.

South Korea rates highly in Video Experience. U+ and SK telecom both landed in the Very Good range (65-75 in our 100-point scale) in Video Experience, while KT was less than a point shy of achieving the same rating. That indicates that the consumer Video Experience in South Korea is commendable, exhibiting short load times and little stalling during playback. But South Korea’s operators didn’t score as highly in Video Experience as operators in many other countries, despite their superiority in most of our other metrics. Extremely fast speeds and ubiquitous 4G reach don’t always translate into an Excellent consumer Video Experience.

…………………………………………………………………………………………………………………………………………………………………………………..

Conclusions:

Opensignal believes that these early results will improve and change as 5G matures. The firm notes that early 5G networks, like those in South Korea, use the non-standalone 5G spec (3GPP Release 15 NR NSA), which relies on the 5G data plane for downloads, but utilizes 4G LTE for control plane functions.

Opensignal says that average speeds will improve as standalone 5G is deployed and more 5G frequency bands are used.

…………………………………………………………………………………………………………………………………………………………………………………..

References:

https://www.opensignal.com/blog/2019/06/20/5g-smartphone-users-experience-1118-mbps-average-download-speed

https://www.opensignal.com/reports/2019/06/southkorea/mobile-network-experience

https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-05/the_state_of_mobile_experience_may_2019_0.pdf

https://www.lightreading.com/mobile/5g/average-5g-speeds-in-south-korea-fall-well-behind-maximums-opensignal-finds-/d/d-id/752313?

 

 

Verizon CTO Upbeat on 5G Millimeter Wave vs Lack of mid band spectrum?

Millimeter wave spectrum “opens up so many possibilities,” said Verizon Executive Vice President and Chief Technology Officer Kyle Malady at an investor conference today.  Malady made his comments at the Wells Fargo Telecom 5G Forum, which was webcast.  “The cloud will go closer and closer and closer,” he said without providing any rationale or support for that statement.

The latest pre-standard 5G technology was designed to support speeds of a gigabit or more, along with lower-latency 9via 3GPP Release 16 not yet completed) and other attributes.  However, getting the highest wirelessspeeds requires wide swaths of spectrum that are nearly impossible to come by in frequency bands traditionally used for cellular service. Wide swaths of spectrum are available in high-frequency millimeter wave bands – the downside is that range is not as great as with lower-frequency bands which will require many more small cells in a given geographical area.

5G pioneers AT&T and Verizon used millimeter wave for their initial deployments, but as Sprint and T-Mobile get into the game or make plans to do so, they have touted their ability to quickly cover broad areas by using lower-frequency spectrum, although that didn’t stop T-Mobile from spending more than $842 million to obtain millimeter wave spectrum in the recent auctions. Likewise, AT&T and Verizon have said they expect to deploy 5G in lower-frequency bands as well as in the millimeter wave band.

Verizon 5G Millimeter Wave
Nevertheless, Verizon executives get most fired up when they talk about the millimeter wave band.

Malady offered an interesting data point to support his millimeter wave enthusiasm. Before obtaining millimeter wave spectrum through the acquisition of Straight Path, Verizon had amassed licenses for an average of 160 MHz of spectrum in all bands nationwide. In comparison, the company used four segments, apparently each comprised of 100 MHz, for a total of 400 MHz of millimeter wave spectrum to support its initial mobile 5G launches in Chicago and Minneapolis. And according to Malady, “we’re working on bringing [that] to eight” segments.

Malady didn’t discuss the speeds Verizon is experiencing with mobile service, but he noted that some customers are obtaining gigabit speeds using fixed wireless 5G service in the millimeter wave band, which Verizon has launched in four markets.

AT&T has said it has seen speeds of 1.2 Gbps in mobile 5G trials using a 400 MHz channel over a distance of 150 meters.  More on AT&T’s mmWave spectrum holdings here.

Millimeter wave distance limitations are driving a change in network topology, Malady noted. “As the network [becomes] flattened, the antennas [are] smaller and lower,” he explained. “Wireless becomes fiber with antennas hanging off of it.”

As Verizon builds out more fiber to support this model, the fiber also can be used by the company’s other business units, he added.

There may be one additional requirement before 5G can reach its full potential, and Malady discussed that as well. He pointed to the example of police using facial recognition to help find an abducted person by comparing a photo with numerous public cameras, then identifying the closest officer to the abductee’s location. Applications such as that will require processing power located closer to the network edge.

 

References:

Verizon CTO: 5G Millimeter Wave “Opens Up So Many Possibilities”

https://www.verizon.com/about/our-company/5g/what-millimeter-wave-technology

AT&T owns >630 MHz nationwide of mmWave spectrum + HPE partnership for Edge Networking & Computing

 

https://www.fiercewireless.com/wireless/verizon-ceo-mmwave-early-days-but-engineering-team-good-it

https://www.lightreading.com/mobile/5g/ve

rizon-mmwave-is-not-a-coverage-spectrum-for-5g/d/d-id/750980

…………………………………………………………………………………………………….

Meanwhile, carriers and analysts say that a lack of mid-band spectrum is delaying the deployment of wireless services. The Federal Communications Commission has recently proposed allowing carriers to share parts of the Educational Broadband Service spectrum in this range, a plan that a number of educational groups oppose.

The Wall Street Journal (tiered subscription model) 

 

AT&T owns >630 MHz nationwide of mmWave spectrum + HPE partnership for Edge Networking & Computing

Following the close of FCC Auction 102, AT&T won 24 GHz spectrum in 383 Partial Economic Areas (PEAs) for a nationwide average of 254 MHz. All of the licenses won were in the more valuable upper 500 MHz portion of the 24 GHz band, giving AT&T stronger nationwide coverage and additional spectrum depth and capacity in many top markets where demand is often greatest. In the top 10 markets alone, AT&T won nearly 286 MHz on average, including 300 MHz in 8 of those markets.

“We’re leading the nation in mobile 5G deployment and the large, contiguous block of spectrum we won in Auction 102 will be critical to maintaining that leadership,” said Scott Mair, president of AT&T Operations. “We’ve already been recognized for having the nation’s fastest1 and best2wireless network, and by further strengthening our spectrum position, we intend to build on our success. I’d like to congratulate and thank the FCC on the conclusion of another successful auction.”

The licenses it won cover all top 50 PEAs and 99 of the top 100 PEAs.  When added to the mmWave spectrum AT&T already holds in the 39 GHz band, AT&T’s average spectrum depth in mmWave increased by two-thirds to more than 630 MHz nationwide.

AT&T will use the spectrum to bolster its mobile 5G strategy. AT&T was the first U.S. wireless carrier to introduce mobile 5G service. The company’s 5G service is currently available in parts of 19 cities – more than any other wireless carrier – with plans to reach parts of 29 cities by the end of 2019. In the first half of 2020, the company expects to have the best combination of mobile 5G, providing high speeds and low latency service over mmWave spectrum and nationwide 5G service over “sub-6” spectrum.

The company spent about $980 million to win an average of 254 MHz of 24 GHz spectrum in 383 out of about 400 total partial economic areas (PEAs) nationwide. The winnings supplement the company’s previous millimeter wave spectrum holdings in the 39 GHz band.

The key appeal of millimeter wave spectrum is that large swaths of it are available, enabling the spectrum to support the highest speeds – although service deployed in the millimeter wave band has less range than service deployed in lower-frequency bands. AT&T’s initial 5G deployments have been in the millimeter wave band, but the company eventually expects to use a combination of millimeter wave and lower frequency spectrum to support 5G.

The average 630 MHz of millimeter wave spectrum that AT&T now holds in key markets would appear to position the company well to support high speeds, as the company previously achieved speeds of 1.2 Gbps in trials using a 400 MHz channel over a distance of 150 meters.

The company also has said that it has seen speeds as high as 400 Mbps on its commercial 5G network, although it cautioned that average speeds are lower.

AT&T also noted in a press release that the licenses it won in the 24 GHz band were in the “valuable” upper 500 MHz of the 24 GHz band and that the licenses cover all top 50 PEAs and 99 of the top 100 PEAs.

Late last year, AT&T was the first U.S. carrier to launch mobile 5G service, although the company did not have a smartphone available for use with the network until last week.  Customers initially used 5G-capable Wi-Fi hotspots that work with virtually any smartphone to access the network, which now covers parts of 19 cities.  AT&T plans to expand to parts of 10 more cities by the end of 2019 and to launch nationwide service in the first half of 2020.

The company’s initial target for 5G service is business customers – a decision that enabled the company to plan its initial 5G millimeter wave deployments for areas in which key business customers were located. The company also has said that it hopes to command a premium for 5G service in comparison with what it charges for earlier-generation services – a strategy that U.S. wireless carriers have not used previously.

References:

https://about.att.com/story/2019/att_enhances_spectrum_position.html

https://www.telecompetitor.com/att-average-5g-mmwave-spectrum-holdings-reaches-630-mhz-nationwide-potentially-supporting-gig-plus-speeds/

………………………………………………………………………………………………………………………………..

Separately, AT&T said it will work with Hewlett Packard Enterprise (HPE) to help businesses harness powerful edge capabilities. The two companies have agreed to a go-to-market program to accelerate business adoption of edge connections and edge computing.

Edge computing marks a giant leap forward in providing faster processing and potentially enhanced security for business applications. AT&T Multi-access Edge Compute (MEC) Services enable businesses to take advantage of AT&T cellular coverage – including 5G as it becomes available – as well as new capabilities to manage cellular traffic through virtual network functions. HPE Edgeline Converged Edge Systems help create use cases where applications can reside on premises for lower latency processing.

“AT&T’s software-defined network, including our 5G network, combined with HPE’s intelligent edge infrastructure can give businesses a flexible tool to better analyze data and process low-latency, high-bandwidth applications,” said Mo Katibeh, Chief Marketing Officer, AT&T Business. “Bringing compute power closer to our network helps businesses push the boundaries of what is possible and create innovative new solutions.”

Enabling edge computing is a core tenet in AT&T’s strategy to help businesses get the most out of 5G. This is an important step in bringing these technologies to scale, so businesses can continue to transform how they will use networks in the 5G era.

“HPE believes that the enterprise of the future will need to be edge-centric, cloud-enabled and data-driven to turn all of its data into action and value,” said Jim Jackson, Chief Marketing Officer, HPE. “Our go-to-market alliance with AT&T, using HPE Edgeline Converged Edge Systems, will help deliver AT&T MEC services at scale to help our customers more quickly convert data into actionable intelligence, enabling unique digital experiences and smarter operations.”

https://about.att.com/story/2019/att_and_hpe.html

 

Ericsson announces 5G standalone NR software and 2 new Massive MIMO radios

Ericsson released a software update to its cellular base station hardware that the vendor says will markedly improve 5G network performance by increasing its capacity and coverage, especially indoors and in hard-to-reach areas. The upgrade will support a 3GPP Release 15 specification of Standalone 5G New Radio (NR)  which, unlike NSA (Non Stand Alone), does not need 4G LTE infrastructure such as signalling, mobile packet core and network management.

Ericsson says its 5G standalone NR software makes for a new network architecture, delivering key benefits such as ultra-low latency and even better coverage (says the company).

Ericsson also announced what it calls inter-band NR carrier aggregation, which is software that extends the coverage and capacity of NR on mid bands and high bands when combined with NR on low bands. Ericsson claims the software can help improve speeds in areas with poor coverage and in indoor environments.

Ericsson says it is evolving its cloud solution with an offering optimized for edge computing to meet user demand. This will enable service providers to offer new consumer and enterprise 5G services such as augmented reality and content distribution at low cost, low latency, and high accuracy.

Fredrik Jejdling, Executive Vice President and Head of Business Area Networks, Ericsson, says: “We continue to focus our efforts on helping our customers succeed with 5G. These new solutions will allow them to follow the 5G evolution path that fits their ambitions in the simplest and most efficient way.”

The new standalone 5G NR software can be installed on existing Ericsson Radio System hardware. Coupled with Ericsson’s 5G dual-mode Cloud Core solutions, the new products are aimed at opening new business opportunities for service providers – especially having established an architecture that facilitates agility, provides advanced support for network slicing and enables the speedy creation of new services.

Most pre-standard “5G” network operators have deployed NSA (Non Stand Alone) using LTE infrastructure.  Once the 5G coverage has been established, they can now also deploy standalone.

Low bands will play a key role in cost-efficiently extending the coverage provided by 5G deployments to date. Ericsson has also launched Inter-band NR Carrier Aggregation – a new software feature that extends the coverage and capacity of NR on mid- and high bands when combined with NR on low bands. This will improve speeds indoors and in areas with poor coverage.

Two new Massive MIMO radios have also been added to the Ericsson Radio System mid-band portfolio, allowing service providers to build 5G with precision: AIR 1636 for wider coverage which provides optimized performance on longer inter-site distances; and AIR 1623 for easy site build with minimal total cost of ownership.

Ericsson's 5G hardware is now being used in networks launching all over the world.Ericsson’s 5G hardware is now being used in networks all over the world.  Image courtesy of Ericsson

…………………………………………………………………………………………………………………………………………………………………………

5G (with low latency as per 3GPP Release 16 and later- IMT 2020) will enable augmented reality, content distribution and gaming, and other applications that require low latency and high bandwidth to perform with accuracy. To help service providers meet these requirements and offer new consumer and enterprise services, Ericsson is evolving its cloud solution with the launch of Ericsson Edge NFVI (Network Functions Virtualization Infrastructure), optimized for the network edge.

A compact and highly efficient solution, Ericsson Edge NFVI is part of the end-to-end managed and orchestrated distributed cloud architecture, which makes it possible to distribute workloads, optimize the network and enable new services in the cloud.

Ericsson is also launching the Ericsson partner VNF Certification Service, a partner certification program for virtual network functions (VNF). The service is open to all VNF vendors and grants a certification on the Ericsson NFVI platform using Ericsson Labs. This will create an ecosystem with a shorter time-to-market for working with partners and applications.

Industry Analyst Hugh Ujhazy, Vice President, IOT & Telecommunications at International Data Corporation (IDC), Asia Pacific, says: “Ericsson’s latest 5G offerings equip service providers with an even broader 5G portfolio by adding the Standalone NR option.  The series of solutions being added to the Ericsson 5G platform will allow service providers to deploy 5G sensibly and address new business opportunities with full flexibility. What you get is faster, cheaper, makes better use of existing assets and with fewer truck rolls.  That’s pretty cool.”

Dana Cooperson, Research Director, Analysis Mason, says: “Improved E2E 4G/5G network architecture flexibility and new 5G use cases require distribution to the edge. To be successful in providing new services it is essential to have a cost-efficient platform for distributed workloads. Ericsson’s initiative with the Edge NFVI solution and distributed cloud architecture will contribute to service providers’ success in 5G.”

References:

https://www.ericsson.com/en/press-releases/2019/6/ericsson-launches-enhanced-5g-deployment-options

https://venturebeat.com/2019/06/17/ericsson-updates-5g-cell-tower-software-to-improve-speed-and-coverage/

 

 

Recent Posts